7,417 research outputs found

    An approximation scheme for an Eikonal Equation with discontinuous coefficient

    Full text link
    We consider the stationary Hamilton-Jacobi equation where the dynamics can vanish at some points, the cost function is strictly positive and is allowed to be discontinuous. More precisely, we consider special class of discontinuities for which the notion of viscosity solution is well-suited. We propose a semi-Lagrangian scheme for the numerical approximation of the viscosity solution in the sense of Ishii and we study its properties. We also prove an a-priori error estimate for the scheme in an integral norm. The last section contains some applications to control and image processing problems

    Analysis and approximation of some Shape-from-Shading models for non-Lambertian surfaces

    Full text link
    The reconstruction of a 3D object or a scene is a classical inverse problem in Computer Vision. In the case of a single image this is called the Shape-from-Shading (SfS) problem and it is known to be ill-posed even in a simplified version like the vertical light source case. A huge number of works deals with the orthographic SfS problem based on the Lambertian reflectance model, the most common and simplest model which leads to an eikonal type equation when the light source is on the vertical axis. In this paper we want to study non-Lambertian models since they are more realistic and suitable whenever one has to deal with different kind of surfaces, rough or specular. We will present a unified mathematical formulation of some popular orthographic non-Lambertian models, considering vertical and oblique light directions as well as different viewer positions. These models lead to more complex stationary nonlinear partial differential equations of Hamilton-Jacobi type which can be regarded as the generalization of the classical eikonal equation corresponding to the Lambertian case. However, all the equations corresponding to the models considered here (Oren-Nayar and Phong) have a similar structure so we can look for weak solutions to this class in the viscosity solution framework. Via this unified approach, we are able to develop a semi-Lagrangian approximation scheme for the Oren-Nayar and the Phong model and to prove a general convergence result. Numerical simulations on synthetic and real images will illustrate the effectiveness of this approach and the main features of the scheme, also comparing the results with previous results in the literature.Comment: Accepted version to Journal of Mathematical Imaging and Vision, 57 page

    Perspective shape from shading and viscosity solutions

    Get PDF
    International audienceThis article proposes a solution of the Lambertian shape from shading (SFS) problem in the case of a pinhole camera model (performing a perspective projection). Our approach is based upon the notion of viscosity solutions of Hamilton-Jacobi equations. This approach allows us to naturally deal with nonsmooth solutions and provides a mathematical framework for proving correctness of our algorithms. Our work extends previous work in the area in three aspects. First, it models the camera as a pinhole whereas most authors assume an orthographic projection, thereby extending the applicability of shape from shading methods to more realistic images. Second, by adapting the brightness equation to the perspective problem, we obtain a new partial differential equation (PDE). Results about the existence and uniqueness of its solution are also obtained. Third, it allows us to come up with a new approximation scheme and a new algorithm for computing numerical approximations of the ?continuous? solution as well as a proof of their convergence toward that solution

    A unifying and rigorous Shape From Shading method adapted to realistic data and applications

    Get PDF
    International audienceWe propose a new method for the Lambertian Shape From Shading (SFS) problem based on the notion of Crandall-Lions viscosity solution. This method has the advantage of requiring the knowledge of the solution (the surface to be reconstructed) only on some part of the boundary and/or of the singular set (the set of the points at maximal intensity). Moreover it unifies in an unique mathematical formulation the works of Rouy and Tourin, Falcone et al., Prados and Faugeras, based on the notion of viscosity solutions and the work of Dupuis and Oliensis dealing with classical solutions and value functions. Also, it allows to generalize their results to the "perspective SFS" problem

    Shape-from-shading for Surfaces Applicable to Planes

    Get PDF
    ISBN 2-7261-1297 8International audienceUnder the classical assumptions of shape-from-shading, we show that the image of any applicable surface (surface applicable to a plane) is also the image of a 1- dimensional manifold of applicable surfaces, provided the image contains no singular point. Moreover, we show that the knowledge of a normal in the image sufces to reconstruct the whole shape of the surface, since the problem can be reformulated as an ordinary differential equation w.r.t. the normal, in this case. The usefulness of this theoretical result to document image analysis is straightforward

    A rigorous and realistic Shape From Shading method and some of its applications

    Get PDF
    This article proposes a rigorous and realistic solution of the Lambertian Shape From Shading (SFS) problem. The power of our approach is threefolds. First, our work is based on a rigorous mathematical method: we define a new notion of weak solutions (in the viscosity sense) which does not necessarily requires boundary data (contrary to the work of [rouy-tourin:92,prados-faugeras-etal:02,prados-faugeras:03,camilli-falcone:96,falcone-sagona-etal:01]) and which allows to define a solution as soon as the image is (Lipschitz) continuous (contrary to the work of [oliensis:91,dupuis-oliensis:94]). We prove the existence and uniqueness of this (new) solution and we approximate it by using a provably convergent algorithm. Second, it improves the applicability of the SFS to real images: we complete the realistic work of [prados-faugeras:03,tankus-sochen-etal:03], by modeling the problem with a pinhole camera and with a single point light source located at the optical center. This new modelization appears very relevant for applications. Moreover, our algorithm can deal with images containing discontinuities and black shadows. It is very robust to pixel noise and to errors on parameters. It is also generic: i.e. we propose a unique algorithm which can compute numerical solutions of the various perspective and orthographic SFS models. Finally, our algorithm seems to be the most efficient iterative algorithm of the SFS literature. Third, we propose three applications (in three different areas) based on our SFS method
    • …
    corecore