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Abstract

Under the classical assumptions of shape-from-shading,
we show that the image of any “applicable surface” (sur-
face applicable to a plane) is also the image of a 1-
dimensional manifold of applicable surfaces, provided the
image contains no singular point. Moreover, we show that
the knowledge of a normal in the image suffices to recon-
struct the whole shape of the surface, since the problem can
be reformulated as an ordinary differential equation w.r.t.
the normal, in this case. The usefulness of this theoretical
result to document image analysis is straightforward.

1. Introduction
Among various computer vision techniques for 3D-

reconstruction, shape-from-shading (SFS) is sometimes
considered as a “toy problem”, since its results are unsat-
isfactory on real images [25, 8]. As for photometric stereo,
a main problem of SFS is to get the reflectance properties of
the materials which constitute the scene. However, even if
this knowledge is available, a second problem with SFS is
ill-posedness. In the definition by Hadamard, a problem is
well-posed if it has a unique solution and if the solution is
stable w.r.t. a small perturbation in the data. Many inverse
problems are ill-posed because of instability.

In this paper, we focus on the question of uniqueness
of the solution. More precisely, we show that for a class
of surfaces, namely the applicable surfaces which contain
no singular point, there exist a 1-dimensional manifold of
solutions to the SFS problem. Moreover, the knowledge of
the normal to the surface at one point is enough to compute
the whole 3D-shape. This result is of great interest in the
framework of document image analysis.

In Section 2, we recall the classical assumptions of SFS
as well as its basic model, and we tackle the question of
uniqueness of the solution. In Section 3, we show that
the image of an applicable surface without singular point
is also that of a 1-dimensional manifold of applicable sur-
faces. This is the theoretical contribution of the paper. In
Section 4, a straightforward application of this result con-

sists in reconstructing the 3D-shape of a curved document
from its shading. Finally, Section 5 concludes our study and
states several perspectives.

2. Shape-from-shading and Well-posedness
2.1. Shape-from-shading Model

We attach to the camera a three-dimensional coordinate
system Oxyz, such that Oxy coincides with the image
plane H. Let us denote x = (x, y, z) the current point
of a scene surface. Under the assumption of orthographic
projection on H, the visible part of the scene is a graph
z = u(x, y). The SFS problem consists in computing the
function u for (x, y) ∈ Ω ⊂ R

2, from one image only. As
is well known [12], it can be modeled by the “image irradi-
ance equation”:

R(N(x)) = I(x, y), (1)

where I(x, y) is the greylevel at a point (x, y) in the im-
age (in fact, I(x, y) is the irradiance, but both quantities are
usually proportional) and R(N(x)) is the reflectance func-
tion, giving the value of the light re-emitted by the surface
as a function of its orientation i.e., of the unit normal N(x)
to the surface. This normal can easily be expressed as:

N(x) =
1

√

1 + p(x, y)2 + q(x, y)2
(−p(x, y),−q(x, y), 1),

(2)
where p = ∂xu and q = ∂yu. Assume that there is a
unique light source at infinity whose direction is indicated
by the unit vector ω = (ω1, ω2, ω3) ∈ R

3. Recalling
that, for a Lambertian surface of uniform albedo equal to
1, R(N(x)) = φ 〈ω, N(x)〉, where φ is the “density” of the
illumination, Eq. (1) can be written, using (2):

I(x, y)

φ

√

1 + ‖∇u(x, y)‖2+〈(ω1, ω2),∇u(x, y)〉−ω3 = 0,

(3)
which is a first order non-linear partial differential equa-
tion (PDE) of the Hamilton-Jacobi type. Points (x, y) ∈ Ω
such that I(x, y) = φ correspond to the particular situation



where ω and N(x) point in the same direction. These points
are usually called the “singular points” [12].

Let us consider the equation which appears in most of
the papers and which corresponds to vertical light source at
infinity i.e., ω = (0, 0, 1). Then (3) becomes the “eikonal
equation” [5]:

p(x, y)2 + q(x, y)2 = f(x, y), (4)

with f(x, y) = φ2/I(x, y)2 − 1. In this particular case,
the singular points are those where where p(x, y) = 0 and
q(x, y) = 0.

Let us mention that the eikonal equation is not only the
SFS model for Lambertian materials, since it also holds for
any radially-symmetric reflectance [19]. Finally, more so-
phisticated models have appeared in the last few years, but
we concentrate in this paper on the simple model of the
eikonal equation.

2.2. Uniqueness of the Solution
The number of solutions to the SFS problem has been

addressed in various situations. In [1], Belhumeur et al.
determine the set of images of an object under all possible
lighting conditions, a problem currently referred to as the
“bas-relief ambiguity”. The existence of impossible shaded
images is proved in [19, 4, 14]. However, our concern in
this paper is uniqueness.

First of all, it is obvious that a translation of the surface in
the direction of Oz does not modify the first member of Eq.
(4). Moreover, Eq. (4) is also invariant by symmetry w.r.t.
the image plane H. This is known as the “concave/convex
ambiguity”. In his pionneering work [12], Horn shows that
the presence of a singular point in the image much reduces
the number of possible ambiguities but, whereas N is com-
pletely known at a singular point, only its vertical compo-
nent Nz = 〈N, ez〉 is known at other points. For this reason,
SFS is traditionally considered as an ill-posed problem.

Bruss uses a Taylor series expansion at a singular point
in order to characterize the solutions [5], and states the first
proof of uniqueness, which requires the presence of a closed
“occluding contour” i.e., of a contour on which I(x, y) = 0
or, equivalently, p(x, y)2 +q(x, y)2 = +∞. On such a con-
tour, as well as at a singular point, the normal is computable
[15], which is of great importance to constrain the problem.
Blake et al. state another uniqueness result [2] in the case
where u is known on a closed contour (Dirichlet boundary
condition).

Oliensis concentrates on the occluding contours. He
claims that, in many situations, regularization techniques
(see [13]) should be avoided in SFS, since the problem is
well-posed and regularization may distort the solution. He
states a uniqueness theorem which is more generic than
Bruss’ one [19], and partially extends it to the case of any

direction of illumination [18], a situation which is also ex-
plored by Saxberg in [23].

Brooks et al. exhibit a counterexample to Bruss’ theo-
rem in [3] and address the problem of radially-symmetric
eikonal equations. Finally, most of these contributions,
which generally use the “characteristic strips method” (see
[12] and Section 3.3.1), are updated by Kozera in [16].

The problem of uniqueness in SFS has also been ad-
dressed in the framework of “viscosity solutions”, which
are solutions in a weak sense [17]. Of course, SFS should
be less-constrained if u is a viscosity solution than if it is
differentiable. Indeed, uniqueness of the viscosity solution
requires, most of the time, Dirichlet boundary conditions as
well as the knowledge of u at each singular point [17], since
precisely a singular point improves the number of viscosity
solutions!

Therefore, the concept of “maximal viscosity solution”
[10, 6] eliminates the need for a priori additional informa-
tion. More recently, Prados et al. prove an existence and
uniqueness result for the perspective SFS problem coupled
to state constraint boundary condition, in the case where the
light source is located at the center of projection [22, 21].

2.3. Invisible Continuous Deformations
A somewhat different problem is the search for invisible

continuous deformations i.e., manifolds of surfaces which
are solutions to the same eikonal equation, and which can
therefore be continuously distorted without any change in
the image. More precisely, an invisible continuous defor-
mation is a family {uc}c∈R of functions Ω → R, depending
on a real parameter c, which all are solutions to Eq. (4).
Differentiating (4) w.r.t. c, it comes:

∂c‖∇uc(x, y)‖2 = 0, (5)

or:
〈∇uc(x, y),∇∂cuc(x, y)〉 = 0. (6)

Nevertheless, this equation does not prove that invisible
continuous deformations exist.

Starting from a solution u0, a construction of an invisible
deformation could proceed as follows. Consider the family
of curves of equations uc(·) = h, for all h ∈ R, and the
family of curves of equations ∂cuc(·) = h, for all h ∈ R.
Assume that these two families are orthogonal, as required
by Eq. (6). This ensures that each uc is a solution to Eq. (4).
Of course, in order to make a proof from this heuristics, one
would still have to show that the differential equation (6)
could indeed be integrated, especially at a singular point
where all the lines ∂cuc(·) = h, h ∈ R, converge. Further-
more, all the solutions which are built with this procedure
could represent surfaces without real deformation. Consider
for instance f(x, y) = 1 and u0(x, y) = x. From (6), one



can get uc(x, y) = x cos c− y sin c, but uc is the composi-
tion of u0 and of a rotation.

Nevertheless, although this might seem to be almost im-
possible, the existence of an invisible continuous deforma-
tion in presence of a singular point is proved in [9]. In the
next section, we will focus on the existence of invisible con-
tinuous deformations of applicable surfaces.

3. Invisible Continuous Deformations of Appli-
cable Surfaces

3.1. Basic Equations
We deal hereafter with some classical tools of differen-

tial geometry. We refer the interested reader, e.g., to [24, 7].
Let S ⊂ R

3 be an applicable surface. It is well known
that S is ruled. As a simplification we suppose that through
each point x ∈ S goes exactly one line Dx contained in S
(there might also be flat pieces in S). The lines Dx project
on H to lines ∆x which foliate Ω. The surface S can be
locally parameterized as follows:

x(s, t) = t v(s) + a(s), (7)

where v(s) is a unit vector (along Dx). We can suppose
additionally that a′(s) is orthogonal to v(s). Let w(s) be
the orthogonal projection of v(s) on H.

Under the simple SFS model presented in Section 2.1,
the vertical component Nz of N follows from the shading.
Let II be the second fundamental form of S.

Remark At all x ∈ S, the kernel of II is the set of vectors
parallel to Dx. It follows that N is constant along the lines
Dx. Thus, N is a function of s only, and ∂sN is orthogonal
to v at each point.

To sum up, at each point:

• N′(s) is orthogonal to N(s) and to v(s), so that it can
be expressed in terms of N ′

z(s):

N′(s) =
N ′

z(s)

〈N(s) × v(s), ez〉
N(s) × v(s). (8)

Note that the denominator in the second member of
Eq. (8) vanishes if N is parallel to ez i.e., at a singular
point.

• v(s) is orthogonal to N(s) and its projection w(s) to
H is known, so that it can be recovered from N(s) and
w(s):

v(s) =
iw(s) × N(s)

‖iw(s) × N(s)‖
. (9)

Here iw(s) means that we consider the complex struc-
ture on H identified with R

2 and with C.

3.2. Deformations with Constant Shading
Our main claim is that many applicable surfaces can be

deformed without changing the shading.

Theorem 1 Suppose that S is an applicable surface which
is a graph over Ω, that Ω is bounded, and that N is nowhere
vertical. Then S has a 1-parameter deformation as an ap-
plicable surface such that Nz , considered as a function over
Ω, is constant.

The proof rests on a converse of the remarks in section
3.1.
Remark Suppose given w, Nz and let v, N be functions
of s satisfying equations (8) and (9). Then there exists a
(unique) applicable surface S, going through a given point
m ∈ R

3 over Ω, such that the projection of v is w and that
the z-component of N is Nz .

The condition that the surface goes through a given point
m is necessary to choose one solution among a 1-parameter
family invariant under vertical translation.
Proof of Theorem 1 The starting point is a classical re-
sult from differential geometry: given two vector fields u, v
in R

3, linearly independent at each point, there exists a fo-
liation of R

3 by surfaces to which u and v are everywhere
tangent if and only if [u, v] ∈ vect(u, v) at each point, where
[·, ·] is the Lie bracket.

Let v⊥ = N × v. Then v⊥ is constant along the integral
lines of v i.e.:

Dvv⊥ = 0, (10)

where D is the flat connection of R
3 (directional deriva-

tive). It is possible to suppose (in the parametrization of S
described above) that a′(s) is orthogonal to v. It follows
that a′(s) is parallel to v⊥.

Consider v, N as two vector fields defined on R
3, invari-

ant by vertical translation. Note now that N′(s) is orthogo-
nal to v(s) by Eq. (8). Since 〈N(s), v(s)〉 = 0:

〈N′(s), v(s)〉 + 〈N(s), v′(s)〉 = 0, (11)

so that v′(s) is orthogonal to N(s). Thus, the Lie bracket:

[v, v⊥] = Dvv⊥ − Dv⊥v = −Dv⊥v (12)

is orthogonal to N. This means that the distribution of 2-
planes spanned by v and v⊥ is integrable. Integrating it
yields a foliation of the union of vertical lines intersecting Ω
by surfaces. This foliation is invariant under vertical trans-
lation.

Moreover the definition shows that the vector field w lifts
to those surfaces as vector fields v so that the integral curves
of v are straight lines, and the vector field N considered in
the construction is orthogonal to those surfaces. This im-
plies that the second fundamental form of those surfaces
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Figure 1. Image associated to the eikonal equation (13).

has non-trivial kernel – the kernel is generated by v – and
so the surfaces are applicable, by the Gauss equation. �

3.3. Examples
Let us consider the following eikonal equation:

p(x, y)2 + q(x, y)2 = 1 + x2. (13)

The lines ∆x are parallel to Oy. Let us solve Eq. (13) using
a classical method of resolution of the first order non-linear
PDEs.

3.3.1 Characteristic Strips Method

Since p2 + q2 > 0 everywhere, there is no singular point in
the image (cf. Fig. 1) associated to Eq. (13). The five or-
dinary differential equations of the so-called “characteristic
strips method” [12] are, in our case:

ẋ = 2 p, (14a)
ẏ = 2 q, (14b)

ż = 2 (1 + x2), (14c)
ṗ = 2x, (14d)
q̇ = 0, (14e)

where the dot denotes differentiation w.r.t. a real parame-
ter s which could be, for example, an arc-length. In fact,
the five unknowns (x, y, z, p, q) depend on another param-
eter than s, but Eqs. (14a)-(14e) suppose that this second
parameter t is constant along each characteristic strip. In-
tegrating this system, we can reconstruct the whole shape

from an “initial curve” on which the 5-tuple (x, y, z, p, q)
is known. Moreover, at any “starting point” on the initial
curve, the vector (ẋ, ẏ), which by definition is tangent to the
current characteristic strip, must be non-tangent to the ini-
tial curve. Finally, this last vector must be everywhere non-
null, which here is guaranteed by the form (13) of p2 + q2.
Let us use, for instance, the axis Oy as initial curve. We can
thus define t as the y-component of the starting point. For
a given starting point (x, y) = (0, t), the 2-tuple (p, q) can-
not be uniquely determined from Eq. (13). Let us choose
(p(0, t), q(0, t)) = (f(t), g(t)), with f(t)2 + g(t)2 = 1 and
f(t) 6= 0, so that (p, q) is not parallel to Oy. On the one
hand, Eqs. (14a) and (14d) give:

∂2

s x(s, t) − 4x(s, t) = 0, (15)

with the initial conditions x(0, t) = 0 and ∂s x(0, t) =
2 f(t). Then:

x(s, t) = f(t) sinh(2 s). (16)

On the other hand, Eqs. (14b) and (14e) give:

∂2

s y(s, t) = 0, (17)

with the initial conditions y(0, t) = t and ∂s y(0, t) =
2 g(t). Then:

y(s, t) = 2 s g(t) + t. (18)
Finally, Eqs. (14c) and (16) give:

∂s z(s, t) = 2 − f(t)2 + f(t)2 cosh(4 s), (19)

with the following initial condition:

z(0, t) =

∫ t

0

g(u) du + z(0, 0). (20)

Because z has to be fixed at some point, we set z(0, 0) = 0.
Therefore, from (19) and (20):

z(s, t) =
(

2 − f(t)2
)

s + f(t)2
sinh(4 s)

4
+

∫ t

0

g(u) du.

(21)

3.3.2 Applicable Solutions

For any applicable solution to Eq. (13), it has been proved
in Section 3.1 that the normal is uniform along Oy, and so
are f and g as well. Knowing that f(t)2 + g(t)2 = 1, there
exists a real θ 6= 0 such that f(t) = cos θ and g(t) = sin θ.
Eqs. (16), (18) and (21) can thus be rewritten:

x(s, t) = cos θ sinh(2 s), (22a)
y(s, t) = 2 s sin θ + t, (22b)

z(s, t) = (2 − cos2 θ) s + cos2 θ
sinh(4 s)

4
+ t sin θ.

(22c)



This is a parametric representation of the solution Sθ, which
is parameterized by θ. Its explicit equation is straightfor-
ward, since s and t can be expressed from (22a) and (22b):

s =
1

2
argsh

x(s, t)

cos θ
, (23a)

t = y(s, t) − sin θ argsh
x(s, t)

cos θ
. (23b)

Replacing s and t by these expressions in (22c), the explicit
equation of Sθ is:

z =
cos2 θ

2
argsh

x

cos θ
+

x

2

√

x2 + cos2 θ+y sin θ. (24)

from which it arises that all surfaces Sθ are cylinders, whose
generatrices are parallel to the plane Oyz. Therefore, a con-
tinuous modification of θ in ] − π/2, π/2[ gives rise to an
invisible continuous deformation of the surface Sθ. In Fig.
2, three cylinders among this 1-dimensional manifold are
shown, for s ∈ [−0.9, 0.9] and t ∈ [−5, 5].

3.3.3 Other Solutions

Of course, other solutions to Eq. (13) exist, that are not
applicable. For instance, for a given real T 6= 0, let
us choose f(t) = cos(t/T ) and g(t) = sin(t/T ), with
t/T ∈ ]−π/2, π/2[. Eqs. (16), (18) and (21) can be rewrit-
ten:

x(s, t) = cos
t

T
sinh(2 s), (25a)

y(s, t) = 2 s sin
t

T
+ t, (25b)

z(s, t) = (2 − cos2
t

T
)s + cos2

t

T

sinh(4 s)

4
+ T (1 − cos

t

T
).

(25c)

This is a parametric definition of non-applicable solutions
which we call TT . In Fig. 3, three of these non-applicable
solutions are shown, for s ∈ [−0.9, 0.9] and t/T ∈
[−π/4, π/4].

On the one hand, the parametric definition (25a)-(25b)-
(25c) is not as easy to transforme in an explicit equation
as for the applicable solutions. On the other hand, if the
surfaces TT form a 1-dimensional manifold of solutions,
parameterized by T , they do not constitute all the non-
applicable solutions to Eq. (13).

3.4. Presence of an Occluding Contour
Now let us consider the following eikonal equation:

p(x, y)2 + q(x, y)2 =
1

x2
, for x 6= 0. (26)

This case is interesting because p2 + q2 → +∞ when
x → 0, which means that each solution to Eq. (26) has Ox

as occluding contour. Therefore, N → ±ex when x → 0.
Nevertheless, this knowledge on N does not constrain the
applicable solutions. As a proof, here is the explicit equa-
tion of a 1-dimensional manifold of applicable solutions to
Eq. (26), which are parameterized by a parameter c:

z =
√

1 − c2 x2 − argch
1

c x
+ c y. (27)

In Eq. (27), however, one has to impose 1/(c x) ≥ 1, since
argch is defined on [1,+∞[.

4. Application to Document Image Analysis
Theorem 1 can be straightforwardly applied to document

image analysis and, for example, to the simulation of docu-
ment flattening.

4.1. Simulation of Document Flattening
The digitization of documents currently knows an in-

creasing popularity, because of the expansion of Internet
browsing. The traditional process, which uses a flatbed
scanner, is satisfactory for flat documents, but is unsuitable
for curved documents like for example a thick book, since
some defects will appear in the digitized image. Several
specific systems have been designed, but such systems are
sometimes intrusive with regard to the documents and, be-
fore all, they cannot be referred to as consumer equipments.
An alternative consists in simulating the flattening of curved
documents i.e., in correcting the defects of images provided
by a flatbed scanner or a digital camera. In order to suc-
cessfully simulate the document flattening, it is necessary
to compute its surface shape.

Among many papers dealing with this problem, two only
deal with the most general case of applicable surfaces [20,
11] and, moreover, none of both relies on SFS. Our result
could potentially lead us to a new algorithm of flattening
simulation.

4.2. A New Method of 3D-reconstruction
As a concrete application of Theorem 1, we can design

a new method of 3D-reconstruction from one shaded im-
age of a document. Given the normal along an “initial
curve”, which should be one of the straight lines ∆x, 3D-
reconstruction could of course be carried out through using
the characteristic strips method (cf. Section 3.3.1), but the
implementation would be tedious: new characteristic strips
would have to be created when they separate too much, or
deleted when they approach each other too closely [12].

We propose a new method of 3D-reconstruction of a doc-
ument shape that is much easier to implement, because the
choice of an integration path is free. Once the normal is
fixed at some point in the image, and knowing that the nor-
mal is uniform on each line ∆x and that these lines foliate Ω,
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Figure 2. Three cylinders giving the same image as Fig. 1: S0 (left), Sπ/6 (middle); Sπ/3 (right).
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Figure 3. Three non-applicable surfaces giving the same image as Fig. 1: T5 (left), T7.5 (middle); T10 (right).

the integration of Eqs. (8) and (9) can be carried out along
any path in Ω, provided this path crosses all the ∆x. Af-
ter that, the integration of the computed normal field is very
simple, since Theorem 1 tells us that the normal field of any
applicable surface is integrable.

4.3. Example
We print a regular black grid on a square sheet (cf. Fig.

4), and we simulate the 3D-warping of this sheet on the
three cylinders of Fig. 2, as shown in Fig. 5. It could seem
that the three shapes of Fig. 5 are not those of Fig. 2. It
happens that, among the three surfaces viewed in Fig. 2,
only that on the left would be rectangular after flattening.
The others would not, and this is why our appreciation of
these shapes in erroneous. The images of the three shapes
of Fig. 5, seen from above under the classical assumptions
of SFS, are shown in Fig. 6. In the images of Fig.6, the
sheet contour, as well as the deformation of the grid, tell us
much about the shape of the sheet, but this information may
lead us to an erroneous interpretation of the shape, as in the
case of Fig. 2!

Using only the shading information in the images of Fig.
6, we cannot avoid the ambiguity expressed in Theorem 1.
Moreover, the non-uniform albedo of these scenes requires

y

x
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0

3

6

Figure 4. Regular black grid printed on a square sheet.

a pretreatment in which the inked points, whose albedo is
equal to 0, have to be separated from the non-inked points,
whose albedo is equal to 1. This could be done, e.g., through



Figure 5. Warping of the sheet of Fig. 4 on the three cylinders of Fig. 2: S0 (left), Sπ/6 (middle); Sπ/3 (right).
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Figure 6. Images of the three scenes of Fig. 5, seen from above under the classical assumptions of SFS.

adaptive thresholding but, since this is out of scope, we use
in fact the non-textured image of Fig. 1 instead of the im-
ages of Fig. 6. The simplest integration path is Ox. Three
profiles obtained from three possible normals at (0, 0) are
shown in Fig. 7. This simple example shows, if necessary,
that SFS remains ill-posed in many situations since, even in
the framework of the applicable surfaces, one cannot decide
between the three shapes of Fig. 7 and many others.

5. Conclusion and Perspectives
In this paper, we show that SFS is ill-posed, under the

simple model of the eikonal equation, even if the scene
surface is supposed to be applicable to a plane. If no sin-
gular point is visible, the applicable solutions form a 1-
dimensional manifold. The knowledge of one normal thus
suffices to render the problem well-posed. A straightfor-
ward application of this theoretical result is document im-
age analysis, and especially the simulation of document flat-
tening.

Many prospects remain open. First of all, we should ex-
amine how much a singular point constrains the problem.
We must extend Theorem 1 to applicable surfaces with flat

pieces. It is also necessary to address more realistic SFS
models: perspective projection, as well as various direc-
tions of illumination, should be explored. It could happen
that another model better constrains the problem (see [22]).

A remaining problem of our new method of 3D-
reconstruction is that the knowledge of one normal is re-
quired, at some point that can be neither a singular point
nor a point lying on an occluding contour. In order to ren-
der the 3D-reconstruction well-posed, we now address the
information given by the contour, as mentioned in Section
4.3. Moreover, we already proved the following interest-
ing result (which is not detailed in this paper, due to lack of
space): knowing the image of a straight line on the flattened
surface (which is a “geodesic segment” on S) can be used to
recover S without ambiguity from its shading information.
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