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Abstract: This article proposes a rigorous and realistic solution of the Lambertian Shape From
Shading (SFS) problem. The power of our approach is threefolds. First, our work is based on a
rigorous mathematical method: we define a new notion of weak solutions (in the viscosity sense)
which does not necessarily requires boundary data (contrary to the work of [28, 27, 26, 4, 11]) and
which allows to define a solution as soon as the image is (Lipschitz) continuous (contrary to the
work of [22, 9]). We prove the existence and uniqueness of this (new) solution and we approximate
it by using a provably convergent algorithm. Second, it improves the applicability of the SFS to
real images: we complete the realistic work of [26, 30], by modeling the problem with a pinhole
camera and with a single point light source located at the optical center. This new modelization
appears very relevant for applications. Moreover, our algorithm can deal with images containing
discontinuities and black shadows. It is very robust to pixel noise and to errors on parameters.
It is also generic: i.e. we propose a unique algorithm which can compute numerical solutions of
the various perspective and orthographic SFS models. Finally, our algorithm seems to be the most
efficient iterative algorithm of the SFS literature. Third, we propose three applications (in three
different areas) based on our SFS method.

Key-words: Applications of Shape from Shading; real images; Shape from Shading without bound-
ary data, viscosity solutions with state constraints; black shadows; light source located at the optical
center; perspective Shape From Shading; “generic” Hamiltonian.
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“Shape-From-Shading”: Une approche réaliste et rigoureuse;
exemples d’applications.

Résumé : Cet article propose une solution réaliste et rigoureuse du problème du “Shape-From-
Shading” Lambertien. La puissance de notre approche est triple. Tout d’abord, celle-ci est basée
sur une méthode mathématique rigoureuse: nous définissons une nouvelle notion de solutions faibles
(au sens des solutions de viscosité) qui ne requiert pas nécessairement de données au bord (contrai-
rement aux travaux de [28, 27, 26, 4, 11]) et qui permet de définir une solution dès que l’image est
Lipschitzienne (contrairement aux travaux de [22, 9]). Nous prouvons l’existence et l’unicité de cette
(nouvelle) solution et nous l’approximons en utilisant un algorithme dont nous prouvons la conver-
gence. Deuxièmement, notre approche augmente l’applicabilité du “Shape-From-Shading”. Nous
complétons la modélisation réaliste proposée par [26, 30], en considérant une caméra de type sté-
nopé et une source de lumière ponctuelle disposée au centre optique: cette nouvelle modélisation est
très pertinente pour les applications et permet d’obtenir d’excellents résultats sur des images réelles.
Notre algorithme permet de plus de traiter des images contenant des discontinuités et des ombres
portées. Celui-ci est très robuste aux bruits pixéliques et aux erreurs faites sur les paramètres. Il
est aussi générique: i.e. nous proposons un unique algorithme qui peut calculer des solutions nu-
mériques des divers modèles de “Shape-From-Shading” orthographiques et perspectifs. Enfin, notre
algorithme semble être l’algorithme itératif le plus “performant” de la littérature du “Shape-From-
Shading”. Troisièmement, nous proposons trois applications (dans trois domaines différents)
basées sur notre méthode.

Mots-clés : Applications du Shape from Shading; images réelles; Shape from Shading “sans”
condition aux limites, solutions de viscosité avec contraintes d’état; ombres portées; source de lu-
mière au centre optique; Shape From Shading perspectif; Hamiltonien “générique”.
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1 Introduction

The Shape From Shading (SFS) problem consists in computing the three-dimensional shape of a
surface from the brightness variations in a black and white image of that surface. Pioneered by
Horn [13] in the 70s, this problem has been central in the field of computer vision since the early
days. Nevertheless, because of several reasons, the interest in this problem has slightly decreased
at the end of the 90s. First, due to the difficulty of the problem, progress in SFS research is very
slow. Second, until recently, the results obtained on real images have been very disappointing. For
example, in [34], Zhang et al. acknowledge failure. Third, the various constraints imposed by the
existing solutions to the SFS problem limit its applications. In this article, we attempt to change this
situation completely and hope to revive the interest of the community for this old problem and its
applications.

1. We propose a new mathematical framework really adapted to SFS, and allowing to tackle the
difficulties of this ill-posed problem (see section 4). It does not necessarily require boundary
data (as opposed to the somewhat unrealistic work of [28, 27, 26, 4, 11]) and allows to define a
solution as soon as the image is only (Lipschitz) continuous (in contrast to the work of Oliensis
and Dupuis [22, 9]). Also, in order to approximate these new solutions, we propose a provably
convergent algorithm, in section 5.

2. We improve the applicability of SFS. In section 2, we propose a new equation realistically
modeling a simple camera equipped with a flash, or such medical imaging systems as en-
doscopy. Our algorithm is generic (unifying perspective and orthographic SFS, see section
3). It is very robust to pixel noise and errors on the focal length and the position of the light
source, and seems to be the most efficient SFS (iterative) algorithm so far (see section 5). Also,
it can deal with discontinuous images and black shadows (see section 6).

3. We successfully apply our SFS method to real images and we propose three applications in
three differents fields (medical images, document restoration, face reconstruction); see section
7.

2 New modeling of the “perspective SFS” problem with a point
light source located at the optical center

In this section, we present a new formulation of the “perspective SFS” problem. Among all ap-
proaches dealing with “perspective SFS”, only the work of Prados and Faugeras [26], and Tankus
et al. [30] proposes a formalism completely based on Partial Differential Equations (PDEs). In this
work, the authors assume that the camera performs a perspective projection and that the scene is
illuminated by a single point light source located at infinity. In this paper, we also model the camera
as a pinhole, but we assume that the light source is located at the optical center. This model corre-
sponds nicely to the situation encountered in some medical protocols like endoscopy or colposcopy,
in which the (point) light source is located very close to the camera, because of space constraints,
see section 7.3 for a SFS application in this area. This modeling also corresponds approximately to
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4 Prados & Faugeras

the situation encountered when we use a simple camera equiped with a flash; see sections 7.1 and
7.2 for two applications (face reconstruction and page restoration).

We deal with Lambertian scenes and suppose that the albedo is constant and equal to 1. Let � ,
the image domain, be the rectangle �������	��
��������� . We represent the scene by a surface � which can
be explicitly parameterized by using the function ��� ������� :�������! #"%$�&'")( �+*,&
where, �! #"%$�� f -/.0213 4 0 4 576 f

5  �"8�:9 f $�&
and where f ;	� denote the focal length; see figure 1.

Optical center

<,=?> f@ A BCA DFE
f
D <0

Retinal plane

Surface

<�>HGJI�K�L f MN >POQGRI M < =

f SUT

Figure 1: The intensity of the “pixel” V�WYXCZ f [ is the intensity of the point \YV�W�[ f] ^ _2^ 57`
f
5 V�WYXCZ f [ on the

surface a .

For such a surface � , a normal vector b  �"c$ at the point �! �"c$ is given by1:b  �"%$d�e f fhg 9 f -i.�0j14 0 4 576 f
5 "U� fhglk "hm f -/.0214 0 4 576 f

5on $�p
The unit light vector q at point �! #"%$ is the vector2q  r�! �"c$7$d�es2t�u v "wv xym f x  �9z"c� f $Cp
With all these hypotheses, the Lambertian irradiance equation {  �"c$|� b  #"%$ k/q  }�| �"%$�$rt�v b  �"c$~v can
be rewritten: �?������ �

f �2� �!� ����� � ��� � �y� ���������� ���R��� ����� ��� � ���� �8� � ������P�j� (1)

where �  �"c$���� f x t� Cv "wv xym f x $ . Let us assume that the surface � is “visible” (i.e. in front of the
retinal plane). Hence g verifiesg  #"%$�� u v "wv x m f x t f ��s�p
Equation (1) being homogeneous, we can simplify it by using the change of variables � �e���d g $
( � ��� ):

1 The two columns of the Jacobian �z  ���� are tangent vectors to ¡ at the point   ���� . Their cross product is a normal
vector.

2 Because the light source is located at the optical center.

INRIA



A rigorous and realistic Shape From Shading method 5

� V�W�[ � f ��� ����V�W�[�� �	� V
����V�W�[��W�[ �	��� V�W�[ � Z � V�W�[������ (2)

To this equation, we associate the Hamiltonian

���  #"c����$�� {  #"%$ u f x v �8v x m  �� k "c$ x|m �  #"%$}xz9 �  �"%$Cp
3 Unification of the “perspective” and “orthographic SFS”

In this section, we unify various formulations of the SFS problem.

3.1 “Orthographic SFS” with a point light source at infinity

This is the traditional setup for the SFS problem. We denote by q �  ��y�����! c$ the unit vector
representing the direction of the light source (  ;�� ), "c�e �� �!�d$ . The function � parameterizing the
surface � is given by �! �"c$d�  �"8� g  �"c$7$�p The SFS problem is then, given { and q , to find a functiong � � 9 � � satisfying the following brightness equation:

# " ( �o� {  �"c$��� 79 fhg  #"%$ k "�m� 8$rt � sym v fhg  �"c$ v x��
This classical equation has been associated to various Hamiltonians:
1) In [28], Rouy and Tourin introduce�%$'&�(  �"8����$d� {  �"c$ � sym v �8v x m)� k " 9* 8p
2) In [9], Dupuis and Oliensis consider��+,&!-  �"8����$w� {  �"%$ � sym v �8v xz9�./� k "�m)� k "Y9�s�p
3) For q �� #�������?s/$ , Lions et al. [18] deal with:

�10'243/5  �"c����$w� v �wv29 u 67 .021 5 9�s (eikonal

equation).

3.2 “Perspective SFS” with a point light source at infinity

In [26], Prados and Faugeras parameterize the surface � by defining �! �"c$ � g  �"c$y �"8�:9 f $�p Com-
bining the expression of b  �"c$ and the change of variables � � ���d g $ , they obtain from the irradiance
equation the following Hamiltonian:

�%89& �  �"8���%$�� {  �"c$ u f x v �wv x!m  #" k � m s/$ x 9� f "�m: Y"%$ k � 9; w&
3.3 A generic Hamiltonian

In [25], we prove that all the previous SFS Hamiltonians (
� �

,
��$'&!(

,
�%+<&�-

,
� 0'243/5

, and
�%89& �

)
are special cases of the following “generic” Hamiltonian:

�>=  #"c����$w�@?�A=  #"c�!B 0 �hm 9�� 0 $Ym 9 �C 0 k � m:D 0 �

RR n° 5133



6 Prados & Faugeras

with ?� =  �"8��� $���� 0 � v ��v x!m�� x0 �� 0 ��� 0 �	� , B 0 ��� 0
	 0 , � 0 � ���� �� � �� , 	 0 is the rotation matrix �� � � � 0 5�� 0 �0 � 0 5 � if "��� � ,

	o0 � {�� x if "U� � , � 0 ��� 0 (U��� ( � 0 ��� 0 �� � ), 9�� 0 � 9 �C 0 ( � x and D 0 (U� .

By using the Legendre transform, we rewrite this ”generic” Hamiltonian as a supremum:
�>=  #"c����$�� �� "!#%$'& 5 . �)( 6 1+* 9

n =  �"8��, $ k �l9 � =  �"8��, $.- p
In [25], we detail the exact expressions of

n =
and � = . This generic formulation considerably simplifies

the analysis of the problem. All theorems about the characterization and the approximation of the
solutions are proved for this generic SFS Hamiltonian. In particular, this formulation unifies the
orthographic and perspective3 SFS problems. Also, from a practical point of view, a unique code
can be used to numerically solve these various problems.

4 A new mathematical framework for SFS without boundary
data

It is well-known that the SFS problem is an ill-posed problem. For example, in general, the solution
is not unique: several surfaces can yield the same image [10]. So before computing a numerical
solution, it is very important to answer the following questions:
Does there exist a solution? If yes, in what sense is it a solution (classical or weak)? Is the solution
unique?
The various approaches for providing answers to these questions can be classified in two categories.
First, Dupuis and Oliensis [9] characterize the / 6 solutions and Kozera works with hemi-spheres
and planes [16]. Nevertheless, we can design smooth images “without (smooth) shape” [2, 17]. This
leads to consider the problem in a weaker framework.
Second, in the 90s, Lions, Rouy and Tourin [28, 18] propose to solve the SFS problem by using the
notion of viscosity solutions. Recently, their approach has been extended by Prados and Faugeras
[27, 26] and by Falcone [4, 11].
The theory of viscosity solutions is interesting for a variety of reasons: 1) it ensures the existence of
weak solutions as soon as the intensity image is (Lipschitz) continuous; 2) it allows to characterize
all solutions; 3) any particular solution is effectively computable. Nevertheless, the work of Lions
et al. , Prados and Faugeras, Falcone et al. [28, 18, 27, 26, 4, 11] has a very important weakness: the
characterization of a viscosity solution and its computation require the knowledge of its values on
the boundary of the image. This is quite unrealistic because in practice such values are not known.

At the opposite of the work based on the viscosity solutions, Dupuis and Oliensis [9] characterize
a / 6 solution by specifying only its values at the “minimal” critical points. They do not specify the
values of the solution on the boundary of the image.

Considering the advantages and the drawbacks of all these methods, we propose a new class of
weak solutions which guarantees the existence of a solution4 in a large class of situations including

3 Including our new model with the light source located at the optical center.
4Corresponding to Dupuis and Oliensis’ 021 solution, if one exists.

INRIA



A rigorous and realistic Shape From Shading method 7

some where there do not exist smooth solutions. We call these new solutions: “singular discontinu-
ous viscosity solutions with Dirichlet boundary conditions and state constraints” (SDVS). This
new notion allows to fix the “height” of the solution at the critical points ��� * " v {  #"%$ � s�- and
on the boundary of the image, when we know it, and allows to “send” these values to infinity when
this information is not available (we say that we impose a state constraint). Because of space, refer
to [24] for more details. In [24], we prove the existence and the uniqueness of the SDVS of the SFS
equations as soon as the intensity image { is Lipschitz continuous and the Hamiltonian is coercive
(e.g. ������� and �����
	 are coercive iff

� V�W�[�� � �� ) . We also prove the robustness of the SDVS solution
to pixel noise and to errors in the illumination or focal length parameters.

5 Numerical approximation of the SDVS for the generic SFS
problem

This section explains how to compute a numerical approximation of the SDVS of the generic SFS
equation. This requires three steps. First we “regularize” the equation. Second, we approximate the
“regularized” SFS equation by an approximation scheme. Finally, from the approximation scheme,
we design a numerical algorithm.

5.1 Regularisation of the generic SFS equation

Given an image { and �	; � , we note {�� the image5 {�� �����}�d { �:s 9���$ . By using a stability
result, we prove in [24] that for the generic SFS Hamiltonian, the SDVS associated with the image{ � converges uniformly toward the SDVS associated with the image { , when � � � . Also,

# �h; � ,
the generic SFS equation associated with { � isnot degenerate anymore. Thus for approximating its
solution, we can use the classical tools developed by Barles and Souganidis [1].

5.2 An Approximation scheme for the nondegenerate generic SFS equations

Let us consider the “regularised” generic SFS equation. In [1] Barles and Souganidis suggest to con-
sider monotonous schemes. So, we construct the following monotonous scheme �! ��Y�7"8� g  �"c$�� g $ �� with �! ��Y�7"8��� � g $w� ����� � (  5"!$# 6 �  � (  5  %� ��"c�"� � g $��
where � �e '&h" 6 �"&h" x $ is the mesh size and where we choose �  � (  5  %� ��"c�"� � g $ �

�� "!#%$'&)( �"* ( 5
+ 9 n =  �"8��, $ k-,/. � -/.0 6  ��0 0 � �1 2 � 1�  �
0 0 �. � -/.0 6  5 0 0 5 �1 2 5 1�  5 0 0 5 3 9 � =  �"c��, $54Hp687 �"9 7 5 �;:=<?> 6 V �/X=@:[	��A=B 1 V�WYX'< ['C 1ED � and AFB � V�W XG< ['C � D �IH �

(reminder:
n =

and � = are defined in section 3.3).

5We assume that the intensity is between 0 and 1.
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8 Prados & Faugeras

Using Barles and Souganidis definitions [1], we prove that this scheme is always monotonous and
stable. Also, it is consistent with the genereric SFS Hamiltonian as soon as the image is Lipschitz
continuous. Finally we prove that, if furthermore the Hamiltonian is coercive in � , then the solu-
tion of the scheme, noted g�� , converge toward the unique SDVS of the “regularized” generic SFS
equation, when the mesh size vanishes to zero.

5.3 Numerical algorithms for the generic SFS problem

In the previous section, we have proposed a scheme whose solutions converge toward the unique
SDVS of the “regularized” generic SFS equation. We now describe an algorithm that computes a
numerical approximation of the solution of the scheme.
For a fixed mesh size �l�� '&h" 6 �"&h" x $ , let us denote " 2�� � �  ��
&h" 6 ��� &h" x $ . The algorithm consists
of the following computation of the sequence of values ���2	� ��� � � ( �
�2	� being an approximation ofg��  �" 2	� $ ).
Algorithm : 1) Initialisation ( � � � ): �

�2	� � g �  �" 2�� $�p
2) Choice of a pixel " 2	� ( � and modification of � �2	� :

We choose � �
6
6 such that

#  ����C�}$ ��� �� ����$ ,
� �

6
63� ���
�3� and �| ��Y�7" 2�� ��� � 6 62	� ���
�Y$w� ��p

3) Choose the next pixel " 2�� ( � in such a way that all pix-
els of the image are regularly visited and go back to 2.

We prove in [25] that if g � is a supersolution, then the computed numerical approximations con-
verge toward a solution of the scheme. In [26], Prados and Faugeras use the same algorithm (for the
particular Hamiltonian

� 89& �
), starting from a subsolution. When we start from a supersolution, we

reduce the number of iterations by 3 orders of magnitude! In [26], the authors need around 4000
iterations for computing the surface of the classical Mozart’s face [34]. Starting from a supersolu-
tion (in practice, a large constant function \�� with the appropriate boundary data does the trick!), only four
iterations are sufficient for obtaining a good result, see figure 2. Moreover, in [25], we show some
comparisons of our results with those of what we consider to be the most efficient (orthographic)
iterative algorithm of the SFS literature [9]. After the same number of iterations, the results obtained
with our algorithm are slightly better visually than those obtained by the algorithm of [9]. This is
confirmed quantitatively by the computation of the classical � 6 ��� x and ��� errors. Nevertheless
let us note that the cost of one update is slightly larger for our (implicit) algorithm than for the
(semi-implicit) algorithm of [9]. This may also be because we have not optimized our code for this
special case. Because of space, we do not detail and display the results of these comparisons. Let us
emphasize again that the SDVS method does not necessarily require boundary data. For example,
figure 2 shows some reconstructions of the Mozart face with no boundary data, except for the tip of
the nose. Moreover, as predicted by the theory, our algorithm shows an exceptional robustness to
noise and errors on the parameters. This robustness is even bigger when we send the boundary to
infinity (apply the state constraints). Figure 2-d) displays a reconstruction of Mozart’s face from the
noisy image c) (additive uniformly distributed white noise [SNR ��� ]) with our generic algorithm

INRIA



A rigorous and realistic Shape From Shading method 9

a) b)

c) d)

Figure 2: a) Perspective synthetic image generated from the classical Mozart’s face [34] [size � @ � ��� @�� � ,� ��V � � @?X���� � X�� � �	�2[ , f �
� ]; b) reconstructed surface from a) by our generic algorithm after 4 iterations; c)
noisy image ( ������ � ); d) reconstructed surface from c) by our generic algorithm after 4 iterations with the
wrong pararmeters

��� ��V ��� �/X�� � �iX���� ���2[ , f
� � @ � (the error angle V ��� X � [ is � ��� ).

provided with wrong parameters for the focal length and for the light direction. Finally, let us remark
that our algorithm computes numerical approximations of the SDVS generic SFS problem. Thus, we
only need to implement a single algorithm for all SFS models (at the cost of a small decrease in
efficiency).
More details can be found in [25, 24] which also contains the proofs of all our statements.

6 A SFS method dealing with discontinuous images and black
shadows

Among all the difficulties encountered when attempting to solve the SFS problem, the intensity
discontinuities such as those caused by black shadows are among the most difficult to deal with.

The discontinuities of an image6 are generally caused by edges, black shadows and occluding
contours. At the opposite of the classical point of view (see e.g. the work of Malik and Maydan
[19]), the notion of viscosity solutions provides a natural framework for dealing with non smooth
surfaces7 (and with edges). Nevertheless, the theory of the viscosity solutions does not yet apply to
discontinuous images8 (and hence to black shadows). So, for dealing with black shadows, Lions
et al. [18] do not “recover” surfaces in the areas of � intensity and pose the problem in terms of
boundary conditions. Recently, Falcone et al. [11] noted that, in the black shadows areas, the surface
formed by the rays of light grazing the solution, verify the irradiance equation. Thus, for recovering

6generated from a scene with a constant albedo.
7 Viscosity solutions are weak (i.e. non differentiable) solutions.
8 Most probably, some recent work [23, 15, 29] on the Eikonal equation will shortly allow to extend the theory.

RR n° 5133



10 Prados & Faugeras

a solution, we do not need to separate the “shading areas” and the “shadow areas”. Also, in general9,
our generic algorithm returns approximations of the exact solutions in shading areas and returns the
grazing rays of light in the black shadows areas (as does the algorithm proposed by Falcone [11]
for the “orthographic SFS”), thereby providing a satisfying numerical solution. Moreover10, we
prove that our generic approximation scheme is stable and that the numerical solutions computed by
our generic algorithm converge, even when the image contains discontinuities and black shadows.
Figure 3 illustrates the ability of our generic numerical algorithm to deal with black shadows.

a) b)

c) d)

Figure 3: Example of a reconstruction from a synthetic image with black shadows. a) Original surface
(illuminated by a vertical light); b) Synthetic image computed from the surface a) with

� � V ��� ��X!� � �/X���� �i[� ���8���
���
� ���
	

� ]; c) Solution recovered by our algorithm from the image b) (illuminated by a vertical light); d)
Surface c) illuminated by the light used for image b).

7 Toward applications of Shape from Shading

In this section, we suggest some applications of our SFS method. Because of space, we do not pro-
vide complete descriptions, but we hope that the results will convince the reader of the applicability
of our SFS method to real problems. Let us emphasize that all the results we present in this section
are obtained from real images:

Note: When we apply SFS methods to real images we assume that the camera is geometrically

9 If we assume that the critical points and the boundary of the image are not covered by the shadows.
10 although the theory of viscosity solutions does not yet apply,

INRIA



A rigorous and realistic Shape From Shading method 11

and photometrically calibrated. In our experiments of sections 7.1 and 7.2 we know the focal length
(5.8 mm) and approximately the pixel size (0.0045 mm; CCD size = 1/2.7") of our cheap digital cam-
era (Pentax Optio 330GS). In section 7.3, we choose some arbitrary reasonable parameters. Also,
note that there exist classical methods to calibrate photometrically a camera [20, 21]. In our tests, we
do not use them, but we make some educated guesses for gamma correction (when the photometric
properties of the images seem incorrect).

7.1 Document restoration using SFS

In this section, we propose a reprographic system11 to remove the geometric and photometric dis-
tortions generated by the classical photocopy of a bulky book. A first solution has been proposed by
Wada and coworkers [32] who deal with scanner images involving a complex optical system (with a
moving light). Here, the acquisition process we use is a classical camera12. The book is illuminated
by a single light source located at infinity or close to the optical center (following the models we
describe in sections 2 and 3). Note that Cho et al. [5] propose a similar system but they use two
light sources13. The acquired inages are then processed using our SFS method to obtain the shape
of the photographed page. Let us emphasize that, for obtaining a compact experimental system, the
camera must be located relatively close to the book. Therefore the perspective model is especially
relevant for this application. Also, the distortion due to the perspective clearly appears in the image
c) of figure 4.
In our SFS method we assume that the albedo is constant. In this application, this does not hold
because of the printed parts. Before recovering the surface of the page, we therefore localize the
printed parts by using image statistic (similar to Cho’s [5]) and we erase them automatically by
using e.g. the inpainting algorithm of Tschumperle and Deriche [31]. This step can produce an im-
portant pixel noise. Nevertheless, this is not a problem for us because, as figure 4-b) shows, our SFS
method is extremely robust to pixel noise: figure 4-b) displays the result produced by our algorithm
(after 10 iterations) using the image of a text page with its pigmented parts, Fig.4-a). In this test,
characters are considered as noise. Note that one could say that such a restoration system (based on
SFS) is flawed because it does not use the information provided by the rows of characters. This is
partially true but nevertheless, for pages containing few rows of characters but a lot of graphics and
pictures (separated by large white bands14), such a SFS method could provide a simple and efficient
solutions.
Once we have recovered the three-dimensional shape of the page, we can flatten the surface by using
e.g. the algorithm of Brown and Seales15 [3]. Note that at each step of this restoration process (3D
reconstruction and flattening) we keep the correspondences with the pixels in the image. Thus, at
the final step, we can restore the printed parts.
To prove the applicability of this method, we have tested it on a page mapped on a cylindric sur-

11Suggested to us by Durou (private communication, [7]).
12Note that a camera snapshot is practically instantaneous, whereas a scan takes several seconds.
13 We can also note that the numerical method proposed by [5] requires that global variations of depth only exist along one

direction. Our method does not require this hypothesis.
14This is often the case for scientific documents.
15 Not yet implemented, because of time.
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a) b)

c) d) e)

Figure 4: a) Real image of a page of text [size � � � � � � � � ]; b) Surface recovered from a) by our generic
algorithm (without removing the printed parts of a)), c) real image of a page containing pictures and graphics
[size � � � � � � @ � � � ], d) surface (textured by the printed parts of c)) recovered from c) by our generic algorithm
(after having removed and inpainted the ink parts of c)). e) An orthographic projection of the surface d): the
geometric (and photometric) distorsions are significantly reduced.

face16 (we have used our cheap camera and flash in an approximately dark room). Figure 4 shows
the original image in c), the reconstructed surface (after 10 iterations) (textured by the ink parts of
c)) in d) and an orthographic projection of the reconstructed surface, in e). Figure 4-e) indicates that
our method allows to remove the perspective and photometric distortions.

7.2 Face reconstruction from SFS

The interest of the SFS methods for some applications dealing with faces has been demonstrated in
e.g. the work of Zhao and Chellappa [35] (who use symmetric SFS for illumination-insensitive face recog-

16For emphasizing the perspective effect.
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a) b)

a) Critical points (6)
for a homogeneous
horizontal light;

b) Critical point for
a point light source
at the optical center.

Figure 5: Critical points of the profile of a face.

nition), and by Choi and coworkers [6] (who use SFS for determining the face pose). In this section we
propose a very simple protocol based on SFS for face reconstruction. We use one camera equipped
with a basic flash in an approximately dark place. As shown in figure 5, the interest of this method
lies in the fact that, with such a protocol, the generated image should contain a unique critical point
(if the distance of the face to the camera and the focal length are sufficiently small). Therefore, the
propagation of the height information starts from this unique critical point.

We have tested our generic algorithm on a real image of a face17 located at � 700 mm of the
camera in an approximately dark place (see Fig.6-a)). Figure 6-b,c,d) shows the surfaces recovered
by our generic algorithm (after 5 iterations) with the orthographic model (

� � V ��X��/XF@:[ ), with the
perspective model using a point light source at infinity in the direction (

� ��V �/X ��X=@~[ ), and with the
perspective model with a point light source at the optical center, respectively18.
As in the previous application, the albedo is not constant over the whole image. Therefore we
removed the eyes and the eyebrows in the image by using e.g. the inpaiting algorithm of Tschumperle
and Deriche [31]. Moreover, note that this step can be automated by matching the image19 to a model
image already segmented. Figure 6 shows in e) the surface recovered from the image obtained after
the inpainting process.

7.3 Potential applications to medical images

In this section, we are interested in applying our SFS method to some medical images. Our interest
is motivated by the work of Craine et al. [8] (who use SFS for correcting some errors on the quantitative
measurement of areas in the cervix, from colposcopy images) and by the work of Yamany et al. [33] (who
propose a system based on SFS for human jaw modeling using intra-oral images). For illustrating the rele-
vance of the “perspective SFS” modeling with the light source located at the optical center, we apply
our algorithm to an endoscopic image of a normal stomach20 (see figure 7-a)). In fact, for producing
such an image, the light source must be very close to the camera, because of space constraints. In
figure 7-b-c-d), we show the results obtained (after 3 iterations) by our generic algorithm in the or-
thographic case (

� � V �/X ��X=@~[ ), in the perspective case with the light source at infinity (
� � V �/X ��X=@~[ )

and in the perspective case with the light source at the optical center, respectively 1�� . In figure 7-

17Slightly made-up to be more Lambertian.
18The parameters used for the focal length and the pixel size are the same in the three cases.
19We can use for example the very robust multi-modal and non-rigid matching method proposed by Hermosillo and

Faugeras in [12].
20Suggested by Tankus and Sochen (private communication) and downloaded from http://www.gastrolab.net/.
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b)

c)

a) d)

e)

Figure 6: a) Real face image [size � � � � � � � � ]; b) surface recovered from a) by our generic algorithm
with the orthographic model (

� � V ��X �/X=@:[ ); c) surface recovered from a) by our generic algorithm with the
perspective model with the light source at infinity (

� � V ��X���X"@:[ ); d) surface recovered from a) by our generic
algorithm with the perspective model with the light source located at the optical center; e) surface recovered by
our generic algorithm with the same modeling hypotheses as d) after the inpainting process.
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b-c-d), the surfaces are visualized from the same point of view with a light source located at the
optical center. These three reconstructions look quite good. To further show the quality of the last
reconstruction, we display the surface d) with a different illumination. Let us emphasize that the re-
construction d) based on the perspective model with the light source at the optical center, is globally
convex. Therefore it is more realistic than the other two reconstructions (based on incorrect models)
which are globally concave.
Finally, notice that the stomach wall is not perfectly Lambertian (see Fig.7-a)). This suggests the
robustness of our SFS method to departures from the Lambertian hypothesis.

8 Conclusion

We have proposed a new method, firmly grounded in mathematics, for solving the SFS problem
under much more realistic hypotheses than in previous work. This method allows us to prove the
existence and uniqueness of a solution of the SFS problem. This solution does not have to be smooth
everywhere, in agreement with the shapes of many real objects and their images which can contain
strong shadows. Its existence does not require the knowledge of unrealistic boundary conditions but
this knowledge can be used, when available. We have designed a provably convergent algorithm for
computing these solutions which is very robust to pixel noise and errors on such parameters as light
source position, focal length and albedo. This algorithm is generic, and deals with discontinuous
images and black shadows. We have successfully applied our SFS method to real images and we
have suggested that it may be useful in a number of real-life applications.
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a)

b) c) d)

e)

Figure 7: Reconstruction of a normal stomach: a) Original image of a normal stomach [size �
.���� 
 .���� ]; b) surface recovered from a) by our generic algorithm with the orthographic model
( q �  #�������:s/$ ); c) surface recovered from a) by our generic algorithm with the perspective model
with the light source at infinity ( q �� #���C���?s/$ ); d) surface recovered from a) by our generic algorithm
with the perspective model and with the light source located at the optical center; e) surface d)
visualized with a different illumination.
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