12 research outputs found

    Analysis of dielectric photonic-crystal problems with MLFMA and Schur-complement preconditioners

    Get PDF
    Cataloged from PDF version of article.We present rigorous solutions of electromagnetics problems involving 3-D dielectric photonic crystals (PhCs). Problems are formulated with recently developed surface integral equations and solved iteratively using the multilevel fast multipole algorithm (MLFMA). For efficient solutions, iterations are accelerated via robust Schur-complement preconditioners. We show that complicated PhC structures can be analyzed with unprecedented efficiency and accuracy by an effective solver based on the combined tangential formulation, MLFMA, and Schur-complement preconditioners. © 2006 IEEE

    Analysis of dielectric photonic-crystal problems with MLFMA and Schur-complement preconditioners

    Get PDF
    We present rigorous solutions of electromagnetics problems involving 3-D dielectric photonic crystals (PhCs). Problems are formulated with recently developed surface integral equations and solved iteratively using the multilevel fast multipole algorithm (MLFMA). For efficient solutions, iterations are accelerated via robust Schur-complement preconditioners. We show that complicated PhC structures can be analyzed with unprecedented efficiency and accuracy by an effective solver based on the combined tangential formulation, MLFMA, and Schur-complement preconditioners. © 2006 IEEE

    Block triangular and skew-Hermitian splitting methods for positive-definite linear systems

    Get PDF
    By further generalizing the concept of Hermitian (or normal) and skew-Hermitian splitting for a non-Hermitian and positive-definite matrix, we introduce a new splitting, called positive-definite and skew-Hermitian splitting (PSS), and then establish a class of PSS methods similar to the Hermitian (or normal) and skew-Hermitian splitting (HSS or NSS) method for iteratively solving the positive-definite systems of linear equations. Theoretical analysis shows that the PSS method converges unconditionally to the exact solution of the linear system, with the upper bound of its convergence factor dependent only on the spectrum of the positive-definite splitting matrix and independent of the spectrum of the skew-Hermitian splitting matrix as well as the eigenvectors of all matrices involved. When we specialize the PSS to block triangular ( or triangular) and skew-Hermitian splitting (BTSS or TSS), the PSS method naturally leads to a BTSS or TSS iteration method, which may be more practical and efficient than the HSS and NSS iteration methods. Applications of the BTSS method to the linear systems of block two-by-two structures are discussed in detail. Numerical experiments further show the effectiveness of our new methods
    corecore