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Abstract
For singular nonsymmetric saddle-point problems, a shift-splitting preconditioner
was studied in (Appl. Math. Comput. 269:947-955, 2015). To further show the
efficiency of the shift-splitting preconditioner, we provide eigenvalue bounds for the
nonzero eigenvalues of the shift-splitting preconditioned singular nonsymmetric
saddle-point matrices. For real parts of the eigenvalues, the bound is provided by
valid inequalities. For eigenvalues having nonzero imaginary parts, the bound is a
combination of two inequalities proving their clustering in a confined region of the
complex plane. Finally, two numerical examples are presented to verify the theoretical
results.
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1 Introduction
Consider the large and sparse nonsymmetric saddle point problems

Au ≡
[

A BT

–B 

][
x
y

]
=

[
f
g

]
≡ b, (.)

where A = AT ∈R
n×n is positive definite, B ∈R

m×n is a rectangular matrix with m ≤ n, and
u = [xT , yT ]T and b = [f T , gT ]T with x, f ∈ R

n and y, g ∈ R
m are the unknown and given

right-hand side vectors, respectively. The system of linear equations (.) arises from many
scientific computing and engineering applications, for example, the mixed finite element
discretization of the Stokes equation [], the Lagrange-type methods for constrained opti-
mization problems [], the meshfree discretization of elastic mechanics equation [], and
so on. For more background information on the applications of saddle-point problems, see
[, ] and references therein. According to the algebraic properties of the saddle-point ma-
trix A [, ], we know that the linear system (.) is nonsingular if the matrix B is of full row
rank (i.e., rank(B) = m) and is singular if the matrix B is rank deficient (i.e., rank(B) < m). In
this paper, we consider the singular case and always assume that rank(B) = r < m and that
the singular nonsymmetric saddle-point problem (.) is consistent, that is, b ∈ range(A).
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Due to its property of large sparsity, the nonsymmetric saddle-point problem (.) is suit-
able for solving by iterative methods. To get fast convergence rate of the iterative methods,
preconditioning techniques are often used []. The term preconditioning is simply a means
of transforming the original linear system into one that has the same solution, but which
is likely to be easier to solve with an iterative solver. A lot of efficient preconditioning
techniques have been studied in the past few decades; see [] for a good survey of effi-
cient preconditioners for saddle-point problems. In this paper, we focus on the following
shift-splitting (SS) preconditioner [, ]:

P̂SS =



[
αIn + A BT

–B βIm

]
, (.)

where α and β are two positive parameters, and In and Im are the n × n and m × m iden-
tity matrices, respectively. In fact, the shift-splitting preconditioner can be induced by the
following shift-splitting iteration method:




[
αIn + A BT

–B βIm

][
xk+

yk+

]
=




[
αIn – A –BT

B βIm

][
xk

yk

]
+

[
f
g

]
. (.)

Theoretical results in [] and [] show that the shift-splitting iteration method (.) is
convergent and semiconvergent unconditionally for solving nonsingular and singular non-
symmetric saddle-point problems, respectively. In the particular case α = , the eigenvalue
distribution of the shift-splitting preconditioned nonsingular saddle-point matrix P̂–

SSA
was studied in []. Note that, as a preconditioner, the prefactor 

 in the matrix P̂SS has
no effect on the preconditioned system. Thus, generally, we can use

PSS = P̂SS =

[
αIn + A BT

–B βIm

]
(.)

instead of the original shift-splitting preconditioner P̂SS (.). Although PSS is not induced
by the iteration scheme (.), the computational complexities of the preconditioners PSS

and P̂SS are almost the same. Numerical results in [, ] show that the shift-splitting pre-
conditioner (.) or (.) is very efficient. For an overview of the shift-splitting precondi-
tioner (.) and the corresponding shift-splitting iteration method (.), see recent papers
[, ] and references [–].

Since the spectral distribution of the preconditioned matrix is closely related to the con-
vergence rate of Krylov subspace iteration methods [], we hope that the resulting pre-
conditioned saddle-point matrices have desired eigenvalue distributions, that is, tightly
clustered spectra or positive real spectra, and so on; see, for example, [, –]. To fur-
ther show the efficiency of the shift-splitting preconditioner (.) and (.), in this paper,
we provide eigenvalue bounds for the nonzero eigenvalues of the shift-splitting precon-
ditioned singular nonsymmetric saddle-point matrices P–

SSA that depend only on the ex-
tremal eigenvalues of A and nonzero extremal singular values of B. We show that all eigen-
values having nonzero imaginary parts are located in an intersection of two circles and all
nonzero real eigenvalues are located in a positive interval. Although the analysis is done
for the singular case, the theoretical results of the nonsingular case can be obtained as
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a particular case. These theoretical results are presented in Section . In Section , we
present two numerical examples to verify our theoretical results. Finally, in Section , we
end this paper with a few concluding remarks.

2 Eigenvalue bounds of the shift-splitting preconditioned matrix P–1
SS A

In this section, we study eigenvalue bounds of the shift-splitting preconditioned saddle-
point matrix P–

SSA. For convenience, we first present some notation. For square matrices
M and N , M(�) ≺ N means that N – M is symmetric positive (semi)definite; (·)∗ denotes
the conjugate transpose of either a vector or a matrix; θ̄ stands for the conjugate of a
complex number θ ; Re(θ ) and Im(θ ) stand for the real and imaginary parts of a complex
number θ ; ρ(M) and null(M) denote the spectral radius and the null space of the matrix
M, respectively. Let the eigenvalues of the symmetric positive definite matrix A be

η ≥ η ≥ · · · ≥ ηn > , (.)

and the singular values of the matrix B be

σ ≥ σ ≥ · · · ≥ σr > σr+ = · · · = σm = . (.)

We first present the eigenvalue distribution of the shift-splitting preconditioned matrix
P–

SSA and give a bound for its nonzero eigenvalues. To this end, we first give a useful
lemma.

Lemma . ([]) Assume that A ∈R
n×n is positive definite and B ∈R

m×n (m ≤ n) has full
row rank. Let the iteration matrix � of the shift-splitting iteration (.) be

� =

[
αIn + A BT

–B βIm

]– [
αIn – A –BT

B βIm

]
. (.)

Then

ρ(�) < , ∀α,β > .

Theorem . Assume that A ∈R
n×n is symmetric positive definite and B ∈R

m×n (m ≤ n)
is rank deficient with rank(B) = r < m. Let the shift-splitting preconditioner PSS be defined
as in (.), and α,β > . Then the shift-splitting preconditioned matrix P–

SSA has m – r
zero eigenvalue values and n + r nonzero eigenvalues. Let λ be a nonzero eigenvalue of the
shift-splitting preconditioned matrix P–

SSA. Then it satisfies

∣∣∣∣λ –



∣∣∣∣ <



,

that is, all nonzero eigenvalues are located inside the circle centered at ( 
 , ) with radius 

 .

Proof From (.) we assume that the singular value decomposition of the matrix B is

B = U

[
B̃


]
V T , (.)
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where U ∈ R
m×m and V ∈ R

n×n are orthogonal matrices, and B̃ = [
r ] ∈ R
r×n is of full

row rank with 
r = diag(σ,σ, . . . ,σr) ∈R
r×r .

By the definition of the shift-splitting preconditioner we have

P–
SSA =



P̂–

SSA

=



(In+m – �)

=



In+m –



[
αIn + A BT

–B βIm

]– [
αIn – A –BT

B βIm

]

=



In+m –



[
V 
 U

]⎡
⎢⎣

αIn + V T AV B̃T 
–B̃ βIr 
  βIm–r

⎤
⎥⎦

–

×
⎡
⎢⎣

αIn – V T AV –B̃T 
B̃ βIr 
  βIm–r

⎤
⎥⎦

[
V T 
 UT

]
,

which is similar to[

 In+r – 

 �̃ 
 

]
, (.)

where

�̃ =

[
αIn + V T AV B̃T

–B̃ βIr

]– [
αIn – V T AV –B̃T

B̃ βIr

]
.

Since V is an orthogonal matrix and A is symmetric positive definite, V T AV is symmetric
positive definite, too. From (.) we know that B̃ is of full row rank. Thus, by Lemma .
we have ρ(�̃) < . Therefore, from (.) we obtain that the shift-splitting preconditioned
matrix P–

SSA has m – r zero eigenvalue values and n + r nonzero eigenvalues.
Now, we study a bound for the nonzero eigenvalues of the preconditioned matrix P–

SSA.
Let λ and θ be nonzero eigenvalues of the shift-splitting preconditioned matrix P–

SSA and
�̃, respectively. Then we have

λ =



–


θ and |θ | < .

By direct computation we obtain
∣∣∣∣λ –




∣∣∣∣ <



,

that is, all nonzero eigenvalues of the shift-splitting preconditioned matrix P–
SSA are lo-

cated inside the circle centered at ( 
 , ) with radius 

 . �

In the following, we further derive bounds for the nonreal and real eigenvalues of the
shift-splitting preconditioned matrix P–

SSA. Based on the singular value decomposition
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(.) and the techniques used in Theorem ., we can see that the shift-splitting precon-
ditioned matrix P–

SSA can be rewritten as

P–
SSA =

[
αIn + A BT

–B βIm

]– [
A BT

–B 

]

=

[
V 
 U

][[
αIn+Ã B̃T

–B̃ βIr

]–[ Ã B̃T

–B̃ 

]


 

][
V T 
 UT

]
, (.)

where Ã = V T AV , and B̃ is defined as in (.). Let

P̃–
SS Ã =

[
αIn + Ã B̃T

–B̃ βIr

]– [
Ã B̃T

–B̃ 

]
. (.)

Equality (.) indicates that the nonzero eigenvalues of the shift-splitting preconditioned
matrix P–

SSA are the eigenvalues of P̃–
SS Ã.

To further derive a bound for the nonreal eigenvalues of the shift-splitting precondi-
tioned matrix P–

SSA, we use the following lemma. Note that the conclusion of the lemma
is a particular case of [], Theorem .

Lemma . ([]) Assume that A ∈ R
n×n is positive definite and B ∈ R

m×n (m ≤ n) has
full row rank. Let

A+ =

[
A BT

B 

]
,

and let

PBT =

[
Â BT

 –Ĉ

]

be a block triangular preconditioner to A+, where Â ∈ R
n×n and Ĉ ∈ R

m×m are symmetric
positive definite matrices. Let θ be an eigenvalue of the block triangular preconditioned
matrix P–

BTA+, and τn be the smallest eigenvalue of the symmetric positive definite matrix
Â– 

 AÂ– 
 . If  – τn ≥ , then

|θ – | ≤ √
 – τn.

If  – τn < , then all eigenvalues of the block triangular preconditioned matrix P–
BTA+ are

real.

Theorem . Assume that A ∈R
n×n is symmetric positive definite and B ∈R

m×n (m ≤ n)
is rank deficient with rank(B) = r < m. Let the shift-splitting preconditioner PSS be defined
as in (.), and α,β > . Let λ be a nonzero eigenvalue having nonzero imaginary part of
the shift-splitting preconditioned matrix P–

SSA. Then it satisfies

|λ – | ≤
√

α

α + ηn
,

where ηn is the smallest eigenvalue of the matrix A.



Shi et al. Journal of Inequalities and Applications  (2016) 2016:256 Page 6 of 13

Proof By the preceding discussions, only the eigenvalues of the matrix P̃–
SS Ã (.) need to

be studied. Consider the additional auxiliary block diagonal symmetric positive definite
matrix

F̃ =

[
αIn + Ã T

 βIr

]
.

Then the matrix P̃–
SS Ã is similar to

(
F̃– 

 P̃SSF̃– 

)–F̃– 

 ÃF̃– 
 =

[
In B̄T

–B̄ Ir

]– [
Ā B̄T

–B̄ 

]

=

[
In B̄T

B̄ –Ir

]– [
Ā B̄T

B̄ 

]
, (.)

where Ā = (αIn + Ã)– 
 Ã(αIn + Ã)– 

 and B̄ = √
β

B̃(αIn + Ã)– 
 . Since

[
In B̄T

B̄ –Ir

]
=

[
In + B̄T B̄ B̄T

 –Ir

][
In 
–B̄ Ir

]
,

we can rewrite the right-hand side of (.) as

[
In 
–B̄ Ir

]– [
In + B̄T B̄ B̄T

 –Ir

]– [
Ā B̄T

B̄ 

]
,

which is similar to
[

In + B̄T B̄ B̄T

 –Ir

]– [
Ā B̄T

B̄ 

][
In 
–B̄ Ir

]–

=

[
In + B̄T B̄ B̄T

 –Ir

]– [
Ā + B̄T B̄ B̄T

B̄ 

]

� P̄–
SS Ā.

Therefore, the preconditioned matrix P̃–
SS Ã is similar to the matrix P̄–

SS Ā, and we only
need to provide the eigenvalue bounds for P̄–

SS Ā.
By Lemma . we need to study the smallest eigenvalue of the matrix (In + B̄T B̄)– 

 (Ā +
B̄T B̄)(In + B̄T B̄)– 

 , which is similar to (αIn + Ã+ 
β

B̃T B̃)–(Ã+ 
β

B̃T B̃). Let τ̃ be an eigenvalue
of the matrix (αIn + Ã + 

β
B̃T B̃)–(Ã + 

β
B̃T B̃), and ṽ be the corresponding eigenvector. Then

we have(
Ã +


β

B̃T B̃
)

ṽ = τ̃

(
αIn + Ã +


β

B̃T B̃
)

ṽ,

from which we obtain

 <
ηn

α + ηn
≤ ṽ∗Ãṽ

αṽ∗ṽ + ṽ∗Ãṽ
≤ τ̃ =

ṽ∗Ãṽ + 
β

ṽ∗B̃T B̃ṽ

αṽ∗ṽ + ṽ∗Ãṽ + 
β

ṽ∗B̃T B̃ṽ
≤ βη + σ 


αβ + βη + σ 


< . (.)
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Let λ be a nonzero eigenvalue of the shift-splitting preconditioned matrix P–
SSA. Then by

Lemma . we have

|λ – | ≤
√

 –
ηn

α + ηn
=

√
α

α + ηn
,

which shows that all eigenvalues having nonzero imaginary parts of the preconditioned
matrix P–

SSA are located in the circle centered at (, ) with radius
√

α
α+ηn

strictly less than
one. �

Theorem . shows that the bound for the eigenvalues having nonzero imaginary parts
of the shift-splitting preconditioned matrix P–

SSA only depends on the parameter α and
the smallest eigenvalue of the matrix A. Combining Theorem . with Theorem ., we
can obtain some refined bounds for the nonreal eigenvalues of the shift-splitting precon-
ditioned matrix P–

SSA in the following theorem.

Theorem . Assume that A ∈R
n×n is symmetric positive definite and B ∈R

m×n (m ≤ n)
is rank deficient with rank(B) = r < m. Let the shift-splitting preconditioner PSS be defined
as in (.), and α,β > . Then all eigenvalues λ having nonzero imaginary parts of the shift-
splitting preconditioned matrix P–

SSA are located in the domain

{
λ

∣∣∣
∣∣∣∣λ –




∣∣∣∣ <



∩ |λ – | ≤
√

α

α + ηn
,λ ∈C

}
,

where ηn is the smallest eigenvalue of the matrix A.

Theorem . Assume that A ∈R
n×n is symmetric positive definite and B ∈R

m×n (m ≤ n)
is rank deficient with rank(B) = r < m. Let the shift-splitting preconditionerPSS be defined as
in (.), and α,β > . The nonzero eigenvalues λ of the shift-splitting preconditioned matrix
P–

SSA satisfy

min

{
ηn

α + ηn
,

σ 
r

αβ + βη + σ 
r

}
≤ Re(λ) ≤ βη + σ 


αβ + βη + σ 


,

where η and ηn are the largest and the smallest eigenvalues of the matrix A, and σ and σr

are the largest and smallest nonzero singular values of the matrix B, respectively.

Proof According to the proof of Theorem ., we only need to provide bounds for the real
eigenvalues of the matrix P̄–

SS Ā, which is similar to ĀP̄–
SS . Consider additionally the block

diagonal symmetric positive definite matrix

F̌ =

[
In + B̄T B̄ 

 Ir

]
.

Then the matrix ĀP̄–
SS is similar to

F̌– 
 ĀF̌– 


(
F̌– 

 P̄SSF̌– 

)– =

[
Ǎ B̌T

B̌ 

][
In B̌T

 –Ir

]–

=

[
Ǎ (Ǎ – In)B̌T

B̌ B̌B̌T

]
, (.)

where Ǎ = (In + B̄T B̄)– 
 (Ā + B̄T B̄)(In + B̄T B̄)– 

 and B̌ = B̄(In + B̄T B̄)– 
 .
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Let Ǎ = X�XT be the eigenvalue decomposition of Ǎ with X being orthogonal and �

being diagonal. By the proof of Theorem . we know that  ≺ � < In. Thus, the right-hand
side matrix of (.) is orthogonal similar to

[
X 
 Ir

]T [
Ǎ (Ǎ – In)B̌T

B̌ B̌B̌T

][
X 
 Ir

]

=

[
� (� – In)XT B̌T

B̌X B̌B̌T

]

=

[
�(In – �) (� – In)XT B̌T

B̌X(In – �) B̌B̌T

][
In – � 

 Ir

]–

,

which is further similar to

[
In – � 

 Ir

]– 

[

�(In – �) (� – In)XT B̌T

B̌X(In – �) B̌B̌T

][
In – � 

 Ir

]– 


=

[
� –QT

Q S

]
,

where Q = B̌X(In – �) 
 and S = B̌B̌T .

Let λ be a nonzero eigenvalue of the shift-splitting matrix P–
SSA. Then by similarity we

know that λ is also an eigenvalue of the matrix
[

� –QT

Q S

]
. From [], Proposition ., we

have

min
{
λmin(�),λmin(S)

} ≤ Re(λ) ≤ max
{
λmax(�),λmax(S)

}
. (.)

Inequalities (.) indicate that

ηn

α + ηn
In � � � βη + σ 


αβ + βη + σ 


In. (.)

Now, we study the extreme eigenvalues of the symmetric positive definite matrix

S = B̌B̌T = B̄
(
In + B̄T B̄

)–B̄T .

Let the singular value decomposition of the matrix B̄ be

B̄ = Ū
[

̄r 

]
V̄ T ,

where Ū ∈R
r×r and V̄ ∈R

n×n are orthogonal matrices, and 
̄r = diag(σ̄, σ̄, . . . , σ̄r) ∈ R
r×r

is a diagonal matrix with σ̄ ≥ σ̄ ≥ · · · ≥ σ̄r >  being the singular values of B̄. Then

S = Ū
[

̄r 

][
Ir + 
̄

r 
 In–r

]– [

̄r



]
ŪT = Ū diag

(
σ̄ 


 + σ̄ 


, . . . ,

σ̄ 
r

 + σ̄ 
r

)
ŪT

and

σ̄ 
r

 + σ̄ 
r

Ir � S � σ̄ 


 + σ̄ 


Ir , (.)
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where σ̄ 
 and σ̄ 

r are the largest and smallest eigenvalues of the matrix B̄B̄T = 
β

B̃(αIn +
Ã)–B̃T , respectively. By [], Theorem ., we have

σ 
r

β(α + η)
≤ σ̄ 

r ≤ σ̄ 
 ≤ σ 


β(α + ηn)

.

Then from (.) we obtain the inequalities

σ 
r

αβ + βη + σ 
r

Ir � S � σ 


αβ + βηn + σ 


Ir . (.)

From inequalities (.), (.) and (.), the nonzero eigenvalues of the shift-splitting
preconditioned matrix P–

SSA satisfy

min

{
ηn

α + ηn
,

σ 
r

αβ + βη + σ 
r

}
≤ Re(λ) ≤ max

{
βη + σ 


αβ + βη + σ 


,

σ 


αβ + βηn + σ 


}
.

(.)

Since

βη + σ 


αβ + βη + σ 


>
σ 


αβ + βηn + σ 


,

equalities (.) can be further simplified:

min

{
ηn

α + ηn
,

σ 
r

αβ + βη + σ 
r

}
≤ Re(λ) ≤ βη + σ 


αβ + βη + σ 


.

Thus, we complete the proof. �

Remark . We give some remarks on the obtained theoretical results.
() Theorem . also presents a bound for the real eigenvalues of the shift-splitting

preconditioned matrix P–
SSA. Besides, the bound given in Theorem . is much

tighter than that in Theorem ..
() Obviously, if r = m, then the nonsymmetric saddle-point matrix A is nonsingular.

Then, the theoretical results presented in Theorems .-. can be extended to the
nonsingular case.

3 Numerical experiments
In this section, we use two numerical examples to verify the estimated eigenvalue bounds
of the shift-splitting preconditioned matrices P–

SSA shown in Section .

Example . ([]) The first test singular nonsymmetric saddle-point problem has the fol-
lowing coefficient submatrices:

A =

[
I ⊗ T + T ⊗ I 

 I ⊗ T + T ⊗ I

]
∈R

q×q
,

BT =
[
B̂T b b

]
∈R

q×(q+)
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Table 1 Bounds of nonzero real eigenvalues of the preconditioned matrix P–1
SS A for

Example 3.1

(α, β) The estimated bound The exact bound

(1.9683, 6.6748) [3.4169e–4, 0.9993] [0.0536, 0.9991]
(7.8732, 6.6572) [3.4172e–4, 0.9970] [0.0541, 0.9966]
(13.7782, 6.6397) [3.4174e–4, 0.9948] [0.0545, 0.9940]
(19.6831, 6.6223) [3.4176e–4, 0.9926] [0.0550, 0.9915]

with

B̂T =

[
I ⊗ F
F ⊗ I

]
∈R

q×q , b = B̂T

[
e


]
,

b = B̂T

[

e

]
, e = [, , . . . , ] ∈R

q/

and

T =


h · tridiag(–, , –) ∈R
q×q, F =


h

· tridiag(–, , ) ∈R
q×q.

Here, ⊗ denotes the Kronecker product symbol, ν is a parameter, and h = 
q+ is the dis-

cretization meshsize.

For this example, we have n = p, m = p + , and the total number of variables is m +
n = p + . The matrix B is an augmentation of the full rank matrix B̂ with two linearly
independent vectors b and b. Since b and b are linear combinations of the columns of
the matrix B̂, B is a rank-deficient matrix. Thus, the corresponding nonsymmetric saddle-
point matrixA is singular. In order to verify the theoretical results, we only choose the case
q =  and vary the parameters α and β . We choose four cases for the parameter α, that
is, α = .ηn, .ηn, .ηn,ηn. The parameter β is obtained by the formula β = ‖B‖

/‖αIn +
A‖, which is often used in the shift-splitting preconditioners [, ].

The parameters α and β , the estimated bounds, and the exact bounds of nonzero real
eigenvalues of the shift-splitting preconditioned matrices P–

SSA are listed in Table . In
Figure , we plot all eigenvalues of the shift-splitting preconditioned matrix P–

SSA for Ex-
ample .. In particular, the nonreal eigenvalues are plotted by ‘∗’, and the real eigenvalues
are plotted by ‘·’.

By actual computation we know that two eigenvalues of the shift-splitting precondi-
tioned matrix P–

SSA are zero, which confirms Theorem .. From Table  and Figure  we
can see that the estimated bounds sharply contain the exact bounds of real eigenvalues
of P–

GSSA and all eigenvalues having nonzero imaginary parts are located in an intersec-
tion of two circles. These results are in good agreement with our theoretical results in
Theorem . and Theorem ..

Example . ([, ]) The second test singular nonsymmetric saddle-point problem
arises from the following Stokes equation with suitable boundary conditions:

⎧⎨
⎩–ν�u + �p = f ,

� · u = ,
in �, (.)
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Figure 1 Eigenvalue distribution the shift-splitting preconditioned matrix P–1
SS A for Example 3.1.

Table 2 Bounds of nonzero real eigenvalues of the preconditioned matrix P–1
SS A for

Example 3.2

(α, β) The estimated bound The exact bound

(0.0077, 0.0072) [1.1108e–3, 0.9995] [0.1356, 0.9990]
(0.0307, 0.0071) [1.1108e–3, 0.9981] [0.1361, 0.9960]
(0.0538, 0.0071) [1.1108e–3, 0.9966] [0.1365, 0.9930]
(0.0768, 0.0071) [1.1108e–3, 0.9952] [0.1370, 0.9900]

where � is a bounded domain, ν >  is the viscosity, the vector field u stands for the ve-
locity, and p represents the pressure.

The IFISS software package developed by Elman et al. [] is used to discretize the two-
dimensional Stokes equation (.) on the unit square domain. In actual computation, the
Q-Q mixed finite element method on uniform grid is used to generate discretizations.
For simplicity, we set the viscosity values ν =  and take  ×  grids to obtain the test
matrix. Note that the rank of the matrix B in the test nonsymmetric saddle-point matrix
is m–, which means that the discretized nonsymmetric saddle-point matrix A is singular.

For the second example, the parameters α and β are chosen by the same method as
in Example .. That is, we consider α = .ηn, .ηn, .ηn, ηn, and the parameters β

are obtained by the formula β = ‖B‖
/‖αIn + A‖. By computation we obtain that only

one eigenvalue of the shift-splitting preconditioned matrix P–
SSA is zero, which further

confirms Theorem .. In Table , we list the parameters α and β for the shift-splitting
preconditioner PSS , the estimated bounds, and the exact bounds of real eigenvalues of the
shift-splitting preconditioned matrix P–

SSA for Example .. Figure  depicts the eigenval-
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Figure 2 Eigenvalue distribution the shift-splitting preconditioned matrix P–1
SS A for Example 3.2.

ues of the shift-splitting preconditioned matrix P–
SSA together with the estimated circle.

The numerical results presented in Table  and Figure  also coincide with our theoretical
results in Theorem . and Theorem ..

4 Conclusion
To further show the efficiency of the shift-splitting preconditioner for singular nonsym-
metric saddle-point problems (.), the eigenvalue bounds of the shift-splitting precondi-
tioned saddle-point matrix are studied in detail in this paper. Theoretical analysis shows
that all eigenvalues having nonzero imaginary parts are located in an intersection of two
circles and all nonzero real eigenvalues are located in a positive interval. Two numerical
examples are presented to confirm the theoretical results. The numerical results show that
the eigenvalue bounds are very sharp.
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