
BLOCK TRIANGULAR AND SKEW-HERMITIAN
SPLITTING METHODS FOR

POSITIVE-DEFINITE LINEAR SYSTEMS∗

ZHONG-ZHI BAI† , GENE H. GOLUB‡ , LIN-ZHANG LU§ , AND JUN-FENG YIN†

SIAM J. SCI. COMPUT. c© 2005 Society for Industrial and Applied Mathematics
Vol. 26, No. 3, pp. 844–863

Abstract. By further generalizing the concept of Hermitian (or normal) and skew-Hermitian
splitting for a non-Hermitian and positive-definite matrix, we introduce a new splitting, called
positive-definite and skew-Hermitian splitting (PSS), and then establish a class of PSS methods
similar to the Hermitian (or normal) and skew-Hermitian splitting (HSS or NSS) method for itera-
tively solving the positive-definite systems of linear equations. Theoretical analysis shows that the
PSS method converges unconditionally to the exact solution of the linear system, with the upper
bound of its convergence factor dependent only on the spectrum of the positive-definite splitting
matrix and independent of the spectrum of the skew-Hermitian splitting matrix as well as the eigen-
vectors of all matrices involved. When we specialize the PSS to block triangular (or triangular) and
skew-Hermitian splitting (BTSS or TSS), the PSS method naturally leads to a BTSS or TSS itera-
tion method, which may be more practical and efficient than the HSS and NSS iteration methods.
Applications of the BTSS method to the linear systems of block two-by-two structures are discussed
in detail. Numerical experiments further show the effectiveness of our new methods.

Key words. non-Hermitian matrix, positive-definite matrix, triangular matrix, block triangular
matrix, Hermitian and skew-Hermitian splitting, splitting iteration method

AMS subject classifications. 65F10, 65F15, 65F50

DOI. 10.1137/S1064827503428114

1. Introduction. We consider an iterative solution of the large sparse system
of linear equations

Ax = b, A = (ak,j) ∈ C
n×n nonsingular and b ∈ C

n,(1)

where A ∈ C
n×n is a positive-definite complex matrix, which may be either Hermitian

or non-Hermitian.
Denote by

H =
1

2
(A + A∗) and S̃ =

1

2
(A−A∗)

the Hermitian and skew-Hermitian parts of the matrix A, respectively. Then it im-
mediately holds that

A = H + S̃,

∗Received by the editors May 21, 2003; accepted for publication (in revised form) February 9,
2004; published electronically January 12, 2005.

http://www.siam.org/journals/sisc/26-3/42811.html
†State Key Laboratory of Scientific/Engineering Computing, Institute of Computational Mathe-

matics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chi-
nese Academy of Sciences, P.O. Box 2719, Beijing 100080, People’s Republic of China (bzz@lsec.cc.ac.
cn, yinjf@lsec.cc.ac.cn). The work of the first author was subsidized by The Special Funds for Major
State Basic Research Projects G1999032803.

‡Department of Computer Science, Scientific Computing and Computational Mathematics Pro-
gram, Stanford University, Stanford, CA 94305-9025 (golub@sccm.stanford.edu). The work of this
author was supported in part by DOE-FC02-01ER4177.

§Department of Mathematics, Xiamen University, Xiamen 361005, People’s Republic of China
(lzlu@jingxian.xmu.edu.cn). The work of this author was supported by the National Natural Science
Foundation of China.

844

D
ow

nl
oa

de
d

03
/2

0/
17

 to
 5

9.
77

.2
0.

10
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Xiamen University Institutional Repository

https://core.ac.uk/display/41371166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BLOCK TRIANGULAR AND SKEW-HERMITIAN SPLITTING METHODS 845

which naturally leads to the Hermitian and skew-Hermitian splitting (HSS) of the
matrix A [1, 7]. Based on the HSS and motivated by the classical alternating direction
implicit (ADI) iteration technique [8], Bai, Golub, and Ng [1] recently presented the
following HSS iteration method for solving the non-Hermitian positive-definite system
of linear equations (1):{

(αI + H)x(k+ 1
2) = (αI − S̃)x(k) + b,

(αI + S̃)x(k+1) = (αI −H)x(k+ 1
2) + b,

where α is a given positive constant. Then, by further generalizing the HSS to the
normal and skew-Hermitian splitting (NSS)

A = N + S̃o, N ∈ C
n×n normal and S̃o ∈ C

n×n skew-Hermitian,

they obtained the NSS iteration method [2], which is analogous to the above HSS

scheme, except that the splitting matrices H and S̃ in the HSS iteration are replaced
with N and S̃o, respectively.

It was demonstrated in [1, 2] that both HSS and NSS iteration methods converge
unconditionally to the unique solution of the non-Hermitian positive-definite system
of linear equations (1), with the bounds on their convergence being about the same as
those of the conjugate gradient [9] (for HSS) and GMRES [11, 10] (for NSS) methods
when they are applied to Hermitian and normal matrices, respectively. Moreover,
the upper bounds of their contraction factors are dependent on only the spectrums
of the Hermitian (for HSS) and the normal (for NSS) parts but are independent of
the spectrums of the skew-Hermitian parts as well as the eigenvectors of all matrices
involved. Numerical results show that both HSS and NSS iteration methods are very
effective and robust when they are used to solve large sparse positive-definite systems
of linear equations (1).

A noticeable property of this class of methods is that, by making use of matrix
splittings, they split a general non-Hermitian positive-definite linear system into two
special subsystems of linear equations which can be solved effectively by either direct
methods (e.g., Cholesky factorization and Bunch decomposition [5, 6]) or iterative
methods (e.g., Krylov subspace [10], multigrid, and multilevel methods). Hence,
The HSS and NSS iteration techniques bridge the gap between the classical splitting
iteration methods and the modern subspace projection and grid correction methods.

More generally, we know that any Hermitian or non-Hermitian positive-definite
matrix A ∈ C

n×n also possesses a splitting of the form

A = P + S, P ∈ C
n×n positive-definite and S ∈ C

n×n skew-Hermitian.(2)

That is to say, A is of a positive-definite and skew-Hermitian (PS) splitting (2), or in
short, PSS. Here, we say that P ∈ C

n×n is positive definite if its Hermitian part, i.e.,
1
2 (P ∗ + P), is positive definite, and that S ∈ C

n×n is skew-Hermitian if S∗ = −S.
By applying the technique of constructing HSS and NSS iterations, we can establish
a class of PSS iteration methods for solving the positive-definite system of linear
equations (1). Unlike both HSS and NSS methods, the new PSS method can be used to
effectively compute iterative solutions of both Hermitian and non-Hermitian positive-
definite linear systems. Theoretical analysis shows that the PSS iteration method
preserves all properties of both HSS and NSS iteration methods. See Theorem 2.3 in
section 2.

D
ow

nl
oa

de
d

03
/2

0/
17

 to
 5

9.
77

.2
0.

10
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

846 Z.-Z. BAI, G.H. GOLUB, L.-Z. LU, AND J.-F. YIN

By specializing the PSS to block triangular (or triangular) and skew-Hermitian
splittings (BTSS or TSS), the PSS method directly results in a class of BTSS or
TSS iteration methods for solving the system of linear equations (1), which may
be more practical and efficient than both HSS and NSS iteration methods because,
for the BTSS (or TSS) method, we need only solve block triangular (or triangular)
linear subsystems, rather than invert shifted positive-definite matrices, as in the PSS
method, or shifted Hermitian (normal) positive-definite matrices as in the HSS (resp.,
NSS) method, at the first-half of each iteration step. In addition, applications of the
BTSS method to linear systems of block two-by-two structures will be discussed in
detail, and several numerical examples will be used to show the effectiveness of our
new methods.

This paper is organized as follows. We establish the PSS iteration method and its
convergence theory in section 2 and describe the BTSS iteration methods in section 3.
Applications of the BTSS method to linear systems of block two-by-two structures
are discussed in section 4, and numerical results are listed and analyzed in section 5.
Finally, in section 6 we briefly give some concluding remarks.

2. PSS iteration method and its convergence. More precisely, the above-
mentioned PSS iteration scheme based on the PSS (2) for solving the positive-definite
system of linear equations (1) can be described as follows.

The PSS iteration method. Given an initial guess x(0) ∈ C
n, for k =

0, 1, 2, . . . , until {x(k)} converges, compute{
(αI + P)x(k+ 1

2) = (αI − S)x(k) + b,

(αI + S)x(k+1) = (αI − P)x(k+ 1
2) + b,

where α is a given positive constant.
Evidently, just like the HSS and NSS methods, each iterate of the PSS iteration

alternates between the positive-definite matrix P and the skew-Hermitian matrix S,
analogously to the classical ADI iteration for partial differential equations [8, 12]. In
fact, we can reverse the roles of the matrices P and S in the above PSS iteration so
that we may first solve the linear system with coefficient matrix αI+S and then solve
the linear system with coefficient matrix αI + P .

We easily see that when P ∈ C
n×n is normal or Hermitian, the above PSS iteration

method reduces to the NSS or HSS iteration method accordingly.
In matrix-vector form, the PSS iteration can be equivalently rewritten as

x(k+1) = M(α) x(k) + G(α) b,(3)

where {
M(α) = (αI + S)−1(αI − P)(αI + P)−1(αI − S),

G(α) = 2α(αI + S)−1(αI + P)−1.
(4)

Thus, M(α) is the iteration matrix of the PSS iteration. As a matter of fact, (3) may
also result from the splitting

A = B(α) − C(α)

of the coefficient matrix A, with{
B(α) = 1

2α (αI + P)(αI + S) ≡ G(α)−1,

C(α) = 1
2α (αI − P)(αI − S) ≡ G(α)−1M(α).

D
ow

nl
oa

de
d

03
/2

0/
17

 to
 5

9.
77

.2
0.

10
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BLOCK TRIANGULAR AND SKEW-HERMITIAN SPLITTING METHODS 847

To prove the convergence of the PSS iteration method, we first demonstrate the
following two lemmas.

Lemma 2.1. Let

V (α) = (αI − P)(αI + P)−1.(5)

If P ∈ C
n×n is a positive-definite matrix, then it holds that

‖V (α)‖2 < 1 ∀α > 0.

Proof. Because P ∈ C
n×n is a positive-definite matrix (i.e., 1

2 (P ∗ + P), the
Hermitian part of P , is a Hermitian positive-definite matrix), we know that for any
y ∈ C

n \ {0},

2α〈(P ∗ + P)y, y〉 > 0 or 〈(αP ∗ + αP)y, y〉 > 〈(−αP ∗ − αP)y, y〉

holds. Here 〈·, ·〉 denotes the inner product in C
n. It then straightforwardly follows

that

〈(α2I + αP ∗ + αP + P ∗P)y, y〉 > 〈(α2I − αP ∗ − αP + P ∗P)y, y〉,

or equivalently,

〈(αI + P)y, (αI + P)y〉 > 〈(αI − P)y, (αI − P)y〉.(6)

Let x = (αI + P)y. Then we have x �= 0 since (αI + P) is nonsingular and y �= 0.
Now, (6) can be equivalently written as

〈x, x〉 > 〈V (α)x, V (α)x〉.

That is to say, it holds that

‖V (α)x‖2

‖x‖2
< 1 ∀α > 0,

or in other words,

‖V (α)‖2 < 1 ∀α > 0.

Lemma 2.2. Let S ∈ C
n×n be a skew-Hermitian matrix. Then for any α > 0,

(a) αI + S is a non-Hermitian positive-definite matrix; and
(b) the Cayley transform Q(α) ≡ (αI − S)(αI + S)−1 of S is a unitary matrix.
Proof. For the proof, see [1, 2].
With Lemmas 2.1 and 2.2, we are now ready to prove convergence of the PSS

iteration method.
Theorem 2.3. Let A ∈ C

n×n be a positive-definite matrix, let M(α) defined in
(4) be the iteration matrix of the PSS iteration, and let V (α) be the matrix defined in
(5). Then the spectral radius ρ(M(α)) of M(α) is bounded by ‖V (α)‖2. Therefore, it
holds that

ρ(M(α)) ≤ ‖V (α)‖2 < 1 ∀α > 0;

i.e., the PSS iteration converges to the exact solution x� ∈ C
n of the system of linear

equations (1).

D
ow

nl
oa

de
d

03
/2

0/
17

 to
 5

9.
77

.2
0.

10
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

848 Z.-Z. BAI, G.H. GOLUB, L.-Z. LU, AND J.-F. YIN

Proof. Because S ∈ C
n×n is a skew-Hermitian matrix, from the definition of PSS

(2) we know that P ∗ + P = A∗ + A. Hence, P ∈ C
n×n is also a positive-definite

matrix. Moreover, by Lemma 2.2 we see that Q(α) = (αI−S)(αI +S)−1 is a unitary
matrix.

Let

M̃(α) = V (α)(αI − S)(αI + S)−1.

Then M̃(α) is similar to M(α). Therefore, by applying Lemma 2.1 we have

ρ(M(α)) = ρ(M̃(α)) ≤ ‖M̃(α)‖2 = ‖V (α)(αI − S)(αI + S)−1‖2

≤ ‖V (α)‖2‖Q(α)‖2 = ‖V (α)‖2 < 1.

Theorem 2.3 shows that the PSS iteration method converges unconditionally to
the exact solution of the positive-definite system of linear equations (1). Moreover,
the upper bound of its contraction factor is dependent on only the spectrum of the
positive-definite part P but is independent of the spectrum of the skew-Hermitian
part S as well as the eigenvectors of the matrices P , S, and A.

In particular, when the splitting matrix P is additionally assumed to be normal
or Hermitian, Theorem 2.3 recovers the convergence theorem for the HSS and NSS
iteration methods established in [1, 2], respectively.

We should point out that two important problems need to be further studied for
the PSS iteration method. One is the choice of the skew-Hermitian matrix S, or the
splitting of the matrix A, and another is the choice of the acceleration parameter α.

Theoretically, due to Theorem 2.3 we can choose S to be any skew-Hermitian
matrix and α to be any positive constant. However, practically, in addition to the
above requirements, we must choose S to be the skew-Hermitian matrix such that
the linear systems with the coefficient matrices αI + P and αI + S can be solved
easily and effectively, and must choose the positive constant α such that the PSS
iteration converges very fast. Evidently, these two problems may be very difficult and,
usually, their solutions strongly depend on the concrete structures and properties of
the coefficient matrix A as well as the splitting matrices P and S.

For a positive-definite matrix A ∈ C
n×n whether Hermitian or non-Hermitian,

one useful choice of its PSS matrices P and S is as follows: Let A = H + S̃ be the
HSS of the matrix A, and let H = D + LH + L∗

H be the (block) triangular splitting
of the Hermitian positive-definite matrix H, where D is the (block) diagonal matrix
and LH is the strictly (block) lower triangular matrix of H. Then we can define P
and S to be

P = D + 2LH and S = L∗
H − LH + S̃,

respectively. This PS splitting directly leads to a special PSS iteration method for
solving the system of linear equations (1), which only solves (block) lower triangular
linear systems at the first half of each of its iteration steps (IT). Alternatively, we can
also define P and S to be

P = D + 2L∗
H and S = LH − L∗

H + S̃,

respectively, which immediately leads to a similar PSS iteration method.
In the next section, we will give two more practical choices of the PSS. These

two special kinds of PSS are very basic. Technical combinations of them can yield

D
ow

nl
oa

de
d

03
/2

0/
17

 to
 5

9.
77

.2
0.

10
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BLOCK TRIANGULAR AND SKEW-HERMITIAN SPLITTING METHODS 849

a variety of new positive-definite splittings, and hence, many practical PSS iteration
methods.

According to the shifted skew-Hermitian linear subsystem

(αI + S)x(k+1) = (αI + P)x(k+ 1
2) + b(7)

involved in each iteration step of the PSS iteration method, we can solve it either
exactly by the classical LU, QR, or Bunch decomposition [5, 6, 9], or inexactly by
the modern Krylov subspace methods [10, 11]. We remark that the Krylov subspace
iteration method of an optimality or Galerkin property, like GMRES, will possess a
three-term recurrence form, as (αI + S) is now a normal matrix.

According to the positive constant α, if P ∈ C
n×n is a normal matrix, then we can

compute α̂� = arg minα>0{‖V (α)‖2} by making use of the formula in Theorem 2.2 of
[2]; if P ∈ C

n×n is a general positive-definite matrix, we do not have any formula to
compute a usable α̂� and hence, the upper bound of ‖V (α̂�)‖2. Usually, it holds that

α̂� �= αopt ≡ arg min
α>0

{ρ(M(α))}

and

ρ(M(α̂�)) > ρ(M(αopt)).

Therefore, it is important to know how to compute an approximation of αopt as
accurately as possible for improving the convergence speed of the method, and it is a
hard task that needs further in-depth study from the viewpoint of both theory and
computations.

3. BTSS iteration methods. Without loss of generality, we assume, in this
section that the coefficient matrix A ∈ C

n×n of the system of linear equations (1) is
partitioned into the following block m-by-m system:

A = (A�,j)m×m ∈ C
n×n, A�,j ∈ C

n�×nj , �, j = 1, 2, . . . ,m,

where n�, � = 1, 2, . . . ,m, are positive integers satisfying
∑m

�=1 n� = n.
Let D, L, and U be the block diagonal, strictly block lower triangular, and strictly

block upper triangular parts of the block matrix A, respectively. Then we have

A = (L + D + U∗) + (U − U∗) ≡ T1 + S1

= (L∗ + D + U) + (L− L∗) ≡ T2 + S2.(8)

Clearly, T1 and T2 are block lower triangular and block upper triangular matrices,
respectively, and both S1 and S2 are skew-Hermitian matrices. We will call the two
splittings in (8) BTSS of the matrix A. We remark that these two splittings are both
PS splittings because T� + T ∗

� = A + A∗ (� = 1, 2) and A ∈ C
n×n is positive definite.

If we make technical combinations of the BTSS with the HSS or the NSS, other
interesting and practical cases of the PS splitting can be obtained. For example,

A =

(
L +

1

2
(D + D∗) + U∗

)
+

(
1

2
(D −D∗) + U − U∗

)
≡ T3 + S3

=

(
L∗ +

1

2
(D + D∗) + U

)
+

(
1

2
(D −D∗) + L− L∗

)
≡ T4 + S4(9)

D
ow

nl
oa

de
d

03
/2

0/
17

 to
 5

9.
77

.2
0.

10
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

850 Z.-Z. BAI, G.H. GOLUB, L.-Z. LU, AND J.-F. YIN

are two BTSS, which come from combinations of BTSS of the matrix A in (8) and
HSS of the matrix D.

Now, with the choices

P = T�, S = S�, � = 1, 2, 3, 4,

we can immediately define the corresponding BTSS iteration methods for solving the
positive-definite system of linear equations (1).

We note that for these four BTSS iteration methods, we need only solve block-
triangular linear subsystems, rather than invert shifted positive-definite matrices, as in
the PSS iteration method, or shifted Hermitian (normal) positive-definite matrices, as
in the HSS (NSS) iteration method. Moreover, the block-triangular linear subsystems
can be solved recursively through solutions of the systems of linear equations

(αI + Aj,j)xj = rj , j = 1, 2, . . . ,m,(10)

for the BTSS iteration methods associated with the splittings in (8), and(
αI +

1

2
(Aj,j + A∗

j,j)

)
xj = rj , j = 1, 2, . . . ,m,(11)

for those associated with the splittings in (9). Because the splitting matrices T�

(� = 1, 2, 3, 4) are positive definite, the block submatrices Aj,j (j = 1, 2, . . . ,m) are
also positive definite; in particular, 1

2 (Aj,j + A∗
j,j) (j = 1, 2, . . . ,m) are all Hermitian

positive-definite matrices. Therefore, we may employ another BTSS iteration to solve
the linear subsystems (10) and the conjugate gradient iteration to solve the linear sub-
systems (11) if necessary. In addition, the matrices T�, � = 1, 2, 3, 4, may be much
more sparse than the matrices H and N in the HSS and NSS methods. For instance,
when the matrix A is an upper Hessenberg matrix, T� and S�, � = 1, 2, 3, 4, in the
BTSS (or TSS) splittings are still very sparse, but H, S̃ and N , S̃o in the HSS and NSS
may be very dense. Therefore, the BTSS iteration methods may save considerably
more computing costs than both HSS and NSS iteration methods. Another advantage
of the BTSS iteration methods is that they can be used to solve both Hermitian and
strongly non-Hermitian positive-definite systems of linear equations more effectively
than both HSS and NSS iteration methods. For example, consider the non-Hermitian
positive-definite system of linear equations

(αI + Ŝ)z = r

arising from HSS, NSS, and TSS iteration methods, where Ŝ ∈ C
n×n is a skew-

Hermitian matrix, α is a positive constant, and r ∈ C
n is a given right-hand-side

vector. Both HSS and NSS iteration methods cannot be used to solve it; however,
the BTSS iteration method may solve it very efficiently. This shows that the BTSS
iteration methods have a large application area.

When D, L, and U are the (pointwise) diagonal, the (pointwise) strictly lower
triangular, and the (pointwise) strictly upper triangular parts of the matrix A, we call
the BTSS a triangular and skew-Hermitian splitting (TSS) and the BTSS iteration
method a TSS iteration method.

We remark that both BTSS and TSS iteration methods are, in general, different
from the HSS and NSS iteration methods. Only when D is Hermitian (normal) and
L + U∗ = 0 do the BTSS and TSS methods give the same scheme as the HSS (resp.,
NSS) method.

D
ow

nl
oa

de
d

03
/2

0/
17

 to
 5

9.
77

.2
0.

10
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BLOCK TRIANGULAR AND SKEW-HERMITIAN SPLITTING METHODS 851

The following investigation describes formulae for approximately estimating the
acceleration parameters α for the BTSS iteration methods.

For � = 1, 2, 3, 4, let T� = D� + G�, where

D� =

{
D for � = 1, 2,
1
2 (D + D∗) for � = 3, 4,

and G� =

{
L + U∗ for � = 1, 3,
L∗ + U for � = 2, 4.

Obviously, D�(� = 1, 2, 3, 4) are block diagonal matrices and G�(� = 1, 2, 3, 4) are
strictly block lower (for � = 1, 3) or upper (for � = 2, 4) triangular matrices. Therefore,

(αI + T�)
−1 = ((αI + D�) + G�)

−1

=
[(
I + G�(αI + D�)

−1
)
(αI + D�)

]−1

=
[
(αI + D�)

(
I + (αI + D�)

−1G�

)]−1

= (αI + D�)
−1

m−1∑
j=0

(−1)j
[
G�(αI + D�)

−1
]j

=

m−1∑
j=0

(−1)j
[
(αI + D�)

−1G�

]j
(αI + D�)

−1.

Here, the last two equalities hold since[
G�(αI + D�)

−1
]m

=
[
(αI + D�)

−1G�

]m
= 0.

It then follows that

V�(α) ≡ (αI − T�)(αI + T�)
−1

= I − 2T�(αI + T�)
−1

= I − 2(D� + G�)(αI + T�)
−1

= (αI −D�)(αI + D�)
−1 + 2α(αI + D�)

−1
m−1∑
j=1

(−1)j
[
G�(αI + D�)

−1
]j

≈ (αI −D�)(αI + D�)
−1 (a first-order approximation)

and

‖V�(α)‖2 ≈ ‖(αI −D�)(αI + D�)
−1‖2

=

⎧⎪⎪⎨⎪⎪⎩
max

1≤j≤m

{∥∥(αI −Aj,j)(αI + Aj,j)
−1

∥∥
2

}
for � = 1, 2,

max
1≤j≤m

{∥∥∥∥∥
(
αI − 1

2
(Aj,j + A∗

j,j)

)(
αI +

1

2
(Aj,j + A∗

j,j)

)−1
∥∥∥∥∥

2

}
for � = 3, 4.

For � = 3, 4, because 1
2 (Aj,j + A∗

j,j) (j = 1, 2, . . . ,m) are Hermitian matrices we
immediately have

α̂� = arg min
α>0

‖V�(α)‖2 (� = 3, 4)

≈ arg min
α>0

max
1≤j≤m

{∥∥∥∥∥
(
αI − 1

2
(Aj,j + A∗

j,j)

)(
αI +

1

2
(Aj,j + A∗

j,j)

)−1
∥∥∥∥∥

2

}

= arg min
α>0

max
1≤j≤m

max
1≤k≤nj

{∣∣∣∣∣α− λ
(j)
k

α + λ
(j)
k

∣∣∣∣∣
}

=

√
λ

(jo)
minλ

(jo)
max,

D
ow

nl
oa

de
d

03
/2

0/
17

 to
 5

9.
77

.2
0.

10
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

852 Z.-Z. BAI, G.H. GOLUB, L.-Z. LU, AND J.-F. YIN

where λ
(j)
k (k = 1, 2, . . . , nj) are eigenvalues of the matrix 1

2 (Aj,j + A∗
j,j), λ

(jo)
min and

λ
(jo)
max are the smallest and the largest eigenvalues of the matrix 1

2 (Aj,j + A∗
j,j), jo =

arg max1≤j≤m κ(1
2 (Aj,j + A∗

j,j)), and κ(·) denotes the spectral condition number of
the corresponding matrix.

In particular, when m = n and Aj,j (j = 1, 2, . . . ,m) are entries, we have for
� = 1, 2, 3, 4 that

α̂� = arg min
α>0

max
1≤j≤n

∣∣∣∣α− aj,j
α + aj,j

∣∣∣∣ =
√
aminamax,

where

amin = min
1≤j≤n

{aj,j}, amax = max
1≤j≤n

{aj,j}.

4. Applications. We now give applications of the BTSS iteration methods to
the systems of linear equations (1) whose coefficient matrices possess the block two-
by-two structure

A =

[
W F
E N

]
,

where W ∈ C
q×q and N ∈ C

(n−q)×(n−q) are positive-definite complex submatrices
such that A ∈ C

n×n is a positive-definite matrix. We may further assume that both
W and N are Hermitian; otherwise we can consider the BTSS iteration methods to
be induced by the BTSS in (9).

According to (8) and (9) we know that the BTSS of the block two-by-two matrix
A ∈ C

n×n are

A =

[
W 0

E + F ∗ N

]
+

[
0 F

−F ∗ 0

]
≡ T1 + S1

=

[
W E∗ + F
0 N

]
+

[
0 −E∗

E 0

]
≡ T2 + S2

=

[
1
2 (W + W ∗) 0
E + F ∗ 1

2 (N + N∗)

]
+

[
1
2 (W −W ∗) F

−F ∗ 1
2 (N −N∗)

]
≡ T3 + S3

=

[
1
2 (W + W ∗) E∗ + F

0 1
2 (N + N∗)

]
+

[
1
2 (W −W ∗) −E∗

E 1
2 (N −N∗)

]
≡ T4 + S4.

Given an initial guess x(0) ∈ C
n, the BTSS iterations compute sequences {x(k)} as

follows: {
(αI + T�)x

(k+ 1
2) = (αI − S�)x

(k) + b,

(αI + S�)x
(k+1) = (αI − T�)x

(k+ 1
2) + b,

� = 1, 2, 3, 4.

As an example, in the following we investigate only the BTSS iteration for the
case � = 1, because the other three cases can be discussed analogously. Moreover,
without loss of generality, we could assume that both W and N are Hermitian if
necessary; otherwise we can consider the BTSS iteration methods to be induced by
the BTSS for � = 3, 4.

Let x and b be correspondingly partitioned into blocks as

x =

[
u
p

]
, b =

[
f
g

]
,

D
ow

nl
oa

de
d

03
/2

0/
17

 to
 5

9.
77

.2
0.

10
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BLOCK TRIANGULAR AND SKEW-HERMITIAN SPLITTING METHODS 853

where u, f ∈ C
q and p, g ∈ C

n−q. The first half-step of the BTSS iteration requires
the solution of linear systems of the form

(αI + W)u(k+ 1
2) = αu(k) + f − Fp(k).(12)

Once the solution u(k+ 1
2) of (12) has been obtained, we compute

(αI + N)p(k+ 1
2) = −(E + F ∗)u(k+ 1

2) + αp(k) + g + F ∗u(k).(13)

Note that the coefficient matrices in (12) and (13) are positive definite (or Hermitian
positive definite, respectively), if the matrices W and N are. Therefore, the linear
systems (12) and (13) can be solved by any algorithm for positive-definite systems
(e.g., a PSS method) when the matrices W and N are positive definite, or by any
algorithm for Hermitian positive-definite systems (e.g., a sparse Cholesky factorization
or the conjugate gradient method [9]) when the matrices W and N are Hermitian
positive definite.

The second half-step of the BTSS iteration requires the solution of linear systems
of the form{

αu(k+1) + Fp(k+1) = (αI −W)u(k+ 1
2) + f,

−F ∗u(k+1) + αp(k+1) = −(E + F ∗)u(k+ 1
2) + (αI −N)p(k+ 1

2) + g.
(14)

This linear system can be solved in various ways, including the conjugate-gradient-
like method discussed in [7, 10] and the BTSS (or TSS) method. Additionally, when
n ≤ 2q, we may first solve the Hermitian positive-definite system of linear equations

(α2I + F ∗F)p(k+1) = −(αE + F ∗W)u(k+ 1
2) + α(αI −N)p(k+ 1

2) + F ∗f + αg,

and then compute

u(k+1) =
1

α
(−Fp(k+1) + (αI −W)u(k+ 1

2) + f),

and when n ≥ 2q, we may first solve the Hermitian positive-definite system of linear
equations

(α2I + FF ∗)u(k+1) = (α(αI −W) + F (E + F ∗))u(k+ 1
2)

−F (αI −N)p(k+ 1
2) + αf − Fg,

and then compute

p(k+1) =
1

α
(F ∗u(k+1) − (E + F ∗)u(k+ 1

2) + (αI −N)p(k+ 1
2) + g).

We remark that, unlike the HSS and PHSS1 iteration methods in [3, 4], the BTSS
iteration methods are divergent for any α > 0 when they are applied to the saddle-
point problem

Ax ≡
[
W F
F ∗ 0

] [
u
p

]
=

[
f
g

]
≡ b,

1Preconditioned Hermitian and skew-Hermitian splitting.

D
ow

nl
oa

de
d

03
/2

0/
17

 to
 5

9.
77

.2
0.

10
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

854 Z.-Z. BAI, G.H. GOLUB, L.-Z. LU, AND J.-F. YIN

where W ∈ C
q×q is Hermitian positive definite, F ∈ C

q×(n−q) is of full column rank,
and 2q ≥ n. More concretely, when W = I, following a derivation analogous to that
in [3], we obtain that the eigenvalues of the BTSS iteration matrix

M1(α) = (αI + S1)
−1(αI − T1)(αI + T1)

−1(αI − S1)

are α−1
α+1 with multiplicity 2q − n and

1

(α + 1)(α2 + σ2
k)

(α(α2+3σ2
k)±

√
(α2 + σ2

k)
2 + 4α2σ2

k(α
2 + 2σ2

k)), k = 1, 2, . . . , n−q,

where σk(k = 1, 2, . . . , n− q) are the positive singular values of the matrix F . There-
fore,

ρ(M1(α)) = max
1≤k≤n−q

{
α(α2 + 3σ2

k) +
√

(α2 + σ2
k)

2 + 4α2σ2
k(α

2 + 2σ2
k)

(α + 1)(α2 + σ2
k)

}
> 1

for any α > 0. However, we see that all eigenvalues of the iteration matrix M1(α) are
real, and the eigenvalues α−1

α+1 and

1

(α + 1)(α2 + σ2
k)

(α(α2+3σ2
k)−

√
(α2 + σ2

k)
2 + 4α2σ2

k(α
2 + 2σ2

k)), k = 1, 2, . . . , n−q,

are within the interval (−1, 1), while the other eigenvalues

1

(α + 1)(α2 + σ2
k)

(α(α2+3σ2
k)+

√
(α2 + σ2

k)
2 + 4α2σ2

k(α
2 + 2σ2

k)), k = 1, 2, . . . , n−q,

are within the interval (1,+∞).

5. Numerical experiments. We use two examples to numerically examine fea-
sibility and effectiveness of our new methods.

Without special claim (i.e., if we do not introduce new definitions), all our tests are
started from random vectors, performed in MATLAB with machine precision 10−16,
and terminated when the current iterate satisfies ‖r(k)‖2/‖r(0)‖2 < 10−5, where r(k)

is the residual of the current, say kth, iteration. The right-hand-side vector b is
computed from b = Ax�, where x� is the exact solution of the system of linear
equations (1), and is a randomly generated vector.

Example 5.1 (see [1]). Consider the system of linear equations (1), for which
A ∈ R

n×n is the upwind difference matrix of the two-dimensional convection-diffusion
equation

−(uxx + uyy) + q · exp(x + y)(xux + yuy) = f(x, y)

on the unit square Ω = [0, 1]× [0, 1] with the homogeneous Dirichlet boundary condi-
tions. The stepsizes along both x and y directions are the same, i.e., h = 1

m+1 .
In our computations, we use the TSS iteration, resulting from the TSS A = T1+S1

in (8) as the test method, and solve the shifted skew-Hermitian linear subsystem (7)
at each TSS iteration step by the Gaussian elimination method.

In Figures 1 and 2, we plot the eigenvalues of the iteration matrices of both HSS
and TSS methods when q = 1 and m = 24, 32, respectively. It is clear that the
eigenvalue distributions of the HSS and TSS iteration matrices are quite different:
the eigenvalues of the HSS iteration matrix are tightly clustered around the real axis

D
ow

nl
oa

de
d

03
/2

0/
17

 to
 5

9.
77

.2
0.

10
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BLOCK TRIANGULAR AND SKEW-HERMITIAN SPLITTING METHODS 855

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
 m = 24

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
 m = 32

Fig. 1. The eigenvalue distributions of the HSS iteration matrices when q = 1, and m = 24
(left) and m = 32 (right), for Example 5.1.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
 m = 24

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
 m = 32

Fig. 2. The eigenvalue distributions of the TSS iteration matrices when q = 1, and m = 24
(left) and m = 32 (right), for Example 5.1.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
 m = 32

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
 m = 32

Fig. 3. The eigenvalue distributions of the HSS iteration matrices when m = 32, and q = 6
(left) and q = 9 (right), for Example 5.1.

D
ow

nl
oa

de
d

03
/2

0/
17

 to
 5

9.
77

.2
0.

10
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

856 Z.-Z. BAI, G.H. GOLUB, L.-Z. LU, AND J.-F. YIN

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
 m = 32

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
 m = 32

Fig. 4. The eigenvalue distributions of the TSS iteration matrices when m = 32, and q = 6
(left) and q = 9 (right), for Example 5.1.

Table 1

αexp versus ρ(M(αexp)) for Example 5.1 (q = 1).

m 8 16 24 32 64

αexp 1.118 0.619 0.424 0.322 0.163
TSS

ρ(M(αexp)) 0.723 0.858 0.905 0.929 0.964

αexp 1.054 0.595 0.413 0.316 0.163
HSS

ρ(M(αexp)) 0.706 0.837 0.882 0.909 0.953

Table 2

IT and CPU for Example 5.1 (q = 1).

m 8 16 24 32 64

IT 31 56 83 113 234
TSS

CPU 0.009 0.453 4.78 48.095 75.948

IT 24 51 82 108 214
HSS

CPU 0.019 0.825 17.954 87.906 115.606

Speed-up 2.11 1.82 3.76 1.83 1.52

and a circular arc on the complex plane, while those of the TSS iteration matrix are
clustered closely around the real axis and a circle; however, the distribution domains
of the eigenvalues of both iteration matrices are very similar. This observation is
further confirmed by Figures 3 and 4 for which m = 32 and q = 6, 9, respectively.
In particular, from these figures we can see that when q becomes larger, the shapes
and domains of the eigenvalue distributions of the HSS and TSS iteration matrices
become more similar.

In Table 1, we list the experimentally optimal parameters αexp and the corre-
sponding spectral radii ρ(M(αexp)) of the iteration matrices M(αexp) of both TSS
and HSS methods for several m when q = 1. The data show that when m is in-
creasing, αexp is decreasing, while ρ(M(αexp)) is increasing, for both TSS and HSS
methods. αexp and ρ(M(αexp)) of TSS are larger than those of HSS, correspondingly,
for all of our tested m. This straightforwardly implies that the number of IT of TSS
may be larger than that of HSS. However, because TSS has a smaller computational
workload than HSS at each of the IT, the actual computing time (CPU) of TSS may
be less than that of HSS. These facts are confirmed by the numerical results in Table 2.

D
ow

nl
oa

de
d

03
/2

0/
17

 to
 5

9.
77

.2
0.

10
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BLOCK TRIANGULAR AND SKEW-HERMITIAN SPLITTING METHODS 857

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

α

ρ
(

M
 (

α
))

 m = 32

TSS: solid
HSS: dashdotted

0 1 2 3 4 5 6 7 8 9 10
0.8

0.85

0.9

q

ρ
(

M
(

α
e

xp
)

)

m = 32

TSS: solid
HSS: dashdotted

Fig. 5. Curves of ρ(M(α)) versus α with q = 1(left) and ρ(M(αexp)) versus q (right) for the
HSS and TSS iteration matrices when m = 32 for Example 5.1.

0 1 2 3 4 5 6 7 8 9 10
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

q

α ex
p

m = 32

TSS: solid
HSS: dashdotted

Fig. 6. Curves of αexp versus q for the HSS and the TSS iteration matrices when m = 32 for
Example 5.1.

In fact, the speed-up of TSS with respect to HSS is quite noticeable, where we define
it by

speed-up =
CPU of HSS method

CPU of TSS (or BTSS) method
.

In Table 2, the speed-up is at least 1.52 for m = 64, and it even achieves 3.76 for
m = 24.

As we have mentioned in sections 2 and 3, computing the optimal parameter
αopt for both HSS and TSS is very difficult and is usually problem dependent. In
Figure 5 we depict the curves of ρ(M(α)) with respect to α, and ρ(M(αexp)) with
respect to q, and in Figure 6 we depict the curves of αexp with respect to q, when
m = 32, for both TSS and HSS iteration methods, to intuitively show these functional
relationships. Evidently, from Figure 5 we see that ρ(M(α)) attains the minimum at
about α = αexp, that ρ(M(αexp)) monotonically decreases when q is increasing, and
that both ρ(M(α)) and ρ(M(αexp)) for TSS are larger than those for HSS for all α

D
ow

nl
oa

de
d

03
/2

0/
17

 to
 5

9.
77

.2
0.

10
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

858 Z.-Z. BAI, G.H. GOLUB, L.-Z. LU, AND J.-F. YIN

Table 3

αexp and ρ(M(αexp)) when m = 32 for Example 5.1.

q 1 2 3 4 5 6 7 8 9

αexp 0.322 0.379 0.430 0.474 0.512 0.546 0.576 0.605 0.630
TSS

ρ(M(αexp)) 0.929 0.921 0.912 0.903 0.895 0.887 0.880 0.874 0.868

αexp 0.316 0.286 0.285 0.298 0.315 0.331 0.346 0.360 0.373
HSS

ρ(M(αexp)) 0.909 0.903 0.892 0.882 0.871 0.862 0.853 0.845 0.837

Table 4

IT and CPU when m = 32 for Example 5.1.

q 1 2 3 4 5 6 7 8 9

IT 113 98 95 91 88 83 79 79 76
TSS

CPU 48.095 38.567 39.224 35.889 35.161 18.116 17.741 17.379 16.330

IT 108 106 99 91 82 83 71 72 65
HSS

CPU 87.906 91.372 85.389 72.429 37.056 38.673 32.981 31.427 29.013

Speed-up 1.83 2.37 2.18 2.02 1.05 2.13 1.86 1.81 1.78

and q, respectively. These facts are further confirmed by the numerical results listed
in Table 3. It then follows that the IT of TSS will be larger than those of HSS.
However, because TSS has a smaller computational workload than HSS at each of the
IT, the actual CPU of TSS may be less than that of HSS, which straightforwardly
implies that TSS is, practically, more efficient than HSS. These facts are confirmed
by the numerical results in Table 4. In fact, in Table 4 the speed-up of TSS with
respect to HSS is quite noticeable; it is at least 1.78 for all tested values of q, except
for q = 5 whose speed-up is 1.05, and it even achieves 2.18 for q = 3. In addition,
from Figure 6 we observe that αexp monotonically increases when q is increasing for
both TSS and HSS iteration methods, αexp for TSS is larger than that for HSS for
all q, and the gap between the αexp’s for TSS and HSS also becomes larger when q
becomes larger.

In Figure 7 we depict the curves of IT and CPU with respect to q for both
TSS and HSS iteration methods. We see that for a small q, say q < 4, the IT
of TSS are less than those of HSS; while for a large q, say q ≥ 4, the situation
is reversed. However, CPU of TSS is always less than that of HSS for all of our
tested q. This clearly shows that TSS is much more effective than HSS in actual
computations.

To compare the computing efficiency of TSS as an iteration scheme and as a
preconditioner to the Krylov subspace methods, such as GMRES(�) (“�” denotes
the number of the restarting steps) and BiCGSTAB, we choose the starting vector
x(0) = (sin(1), sin(2), . . . , sin(n))T and the stopping criterion ‖r(k)‖2/‖r(0)‖2 < 10−4.
Similarly, the right-hand-side vector b is computed from b = Ax�, where x� is the
exact solution of the system of linear equations (1), and is a randomly generated
vector. The numerical results with respect to IT, CPU, and RES (relative residual
error defined by RES = ‖r(k)‖2/‖r(0)‖2) are listed in Tables 5 and 6. Here, we use
“–” to represent that the corresponding iteration cannot achieve the above-mentioned
stopping criterion after 10m iteration steps.

From Table 5 we see that, as an iteration scheme, TSS outperforms both GMRES
(�) (� = 5, 10, 15, and 20) and BiCGSTAB from the aspect of both IT and CPU. Also
from Table 6 we observe that as a preconditioner TSS improves the numerical behavior

D
ow

nl
oa

de
d

03
/2

0/
17

 to
 5

9.
77

.2
0.

10
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BLOCK TRIANGULAR AND SKEW-HERMITIAN SPLITTING METHODS 859

1 2 3 4 5 6 7 8 9
65

70

75

80

85

90

95

100

105

110

115

q

IT

m = 32

TSS: solid
HSS: dashdotted

1 2 3 4 5 6 7 8 9
10

20

30

40

50

60

70

80

90

100

q

C
P

U

m = 32

TSS: solid
HSS: dashdotted

Fig. 7. Curves of IT versus q (left) and CPU versus q (right) for the HSS and the TSS iteration
methods when α = αexp and m = 32 for Example 5.1.

Table 5

IT, CPU, and RES for Example 5.1.

q 7 8 9

m 32 64 32 64 32 64

αexp 0.5762 0.3072 0.6041 0.3231 0.6303 0.3379

TSS IT 40 80 38 76 38 73

CPU 0.35 19.96 0.33 19.00 0.32 18.96

IT 201 419 458 309 – –

GMRES(5) CPU 1.54 65.52 3.51 55.07 – –

RES – – – – 4.32e-2 1.14e-2

IT 144 201 181 309 387 –

GMRES(10) CPU 0.95 34.80 1.19 55.07 2.58 –

RES – – – – – 8.76e-3

IT 151 178 161 309 200 346

GMRES(15) CPU 0.97 22.47 1.03 55.07 1.25 62.57

RES – – – – – –

IT 120 163 178 231 179 218
GMRES(20)

CPU 0.72 20.21 1.08 37.83 1.10 34.48

IT 50 85 53 82 60 86
BiCGSTAB

CPU 0.54 27.34 0.57 26.67 0.65 25.11

of both GMRES(�) (� = 5, 10, 15, and 20) and BiCGSTAB considerably more than
both ILU (incomplete LU factorization with no fill-in) and UGS (unsymmetric Gauss–
Seidel iteration). See [10, 12].

As a matter of fact, TSS requires much less computational storage than GMRES(�)
and BiCGSTAB, and it possesses better convergence properties than UGS. In addi-
tion, compared with ILU and UGS, TSS can lead to a high-quality preconditioning
matrix. This is why TSS is superior to GMRES(�) and BiCGSTAB as an iteration
scheme, as well as to ILU and UGS as a preconditioner.

Example 5.2. Consider the system of linear equations (1), for which

A =

[
W FΩ

−FT N

]
, where W ∈R

q×q and N,Ω ∈ R
(n−q)×(n−q), with 2q > n.

We define the matrices W = (wk,j), N = (nk,j), F = (fk,j), and Ω = diag(ω1, . . . ,

D
ow

nl
oa

de
d

03
/2

0/
17

 to
 5

9.
77

.2
0.

10
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

860 Z.-Z. BAI, G.H. GOLUB, L.-Z. LU, AND J.-F. YIN

Table 6

IT and CPU when q = 7 for Example 5.1.

Preconditioners

Methods m TSS ILU UGS

IT CPU IT CPU IT CPU

32 24 0.18 39 1.78 561 3.45
GMRES(5)

64 28 3.66 140 96.70 362 142.74

32 22 0.12 27 1.59 410 2.41
GMRES(10)

64 28 3.15 100 23.34 335 112.81

32 23 0.12 25 0.91 263 1.38
GMRES(15)

64 28 2.90 58 32.31 391 123.82

32 20 0.09 19 0.65 189 0.97
GMRES(20)

64 26 2.73 55 29.73 280 84.91

32 14 0.12 21 1.22 101 0.92
BiCGSTAB

64 15 2.83 51 11.47 151 87.80

ωn−q) as follows:

wk,j =

⎧⎨⎩
k + 1 for j = k,
1 for |k − j| = 1,
0 otherwise,

k, j = 1, 2, . . . , q,

nk,j =

⎧⎨⎩
k + 1 for j = k,
1 for |k − j| = 1,
0 otherwise,

k, j = 1, 2, . . . , n− q,

fk,j =

{
j for k = j + 2q − n,
0 otherwise,

k = 1, 2, . . . , q; j = 1, 2, . . . , n− q,

and

ωk =
1

k
, k = 1, 2, . . . , n− q.

Note that A ∈ R
n×n is a nonsymmetric positive-definite matrix. We use the BTSS

iteration method defined by (12)–(14) to solve the system of linear equations (1) and
solve the shifted skew-Hermitian linear subsystem at each BTSS iteration step by the
strategy specified in section 4. In our computations, we choose q = 9

10n.
In Figures 8 and 9, we plot the eigenvalues of the iteration matrices of both HSS

and BTSS methods when n = 400 and n = 800, respectively. Analogously, it is clear
that the eigenvalue distributions of the HSS and BTSS iteration matrices are quite
different: the eigenvalues of the HSS iteration matrix are clustered on the real axis
and a circular arc on the complex plane, while those of the BTSS iteration matrix are
clustered on the real axis and a circular arc as well as located in a triangular area;
however, the distribution domain of the eigenvalues of the BTSS iteration matrix is
considerably smaller than that of the HSS iteration matrix, in particular, along the
direction of the imaginary axis.

In Table 7, we list the experimentally optimal parameters αexp and the corre-
sponding spectral radii ρ(M(αexp)) of the iteration matrices M(αexp) of both BTSS

D
ow

nl
oa

de
d

03
/2

0/
17

 to
 5

9.
77

.2
0.

10
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BLOCK TRIANGULAR AND SKEW-HERMITIAN SPLITTING METHODS 861

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
 n = 400

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
 n = 800

Fig. 8. The eigenvalue distributions of the HSS iteration matrices when n = 400 (left) and
n = 800 (right) for Example 5.2.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
 n = 400

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.3

−0.2

−0.1

0

0.1

0.2

0.3
 n = 800

Fig. 9. The eigenvalue distributions of the BTSS iteration matrices when n = 400 (left) and
n = 800 (right) for Example 5.2.

and HSS methods for several n. The data show that when n is increasing, αexp and
ρ(M(αexp)) are increasing for both BTSS and HSS methods. ρ(M(αexp)) of BTSS is
slightly larger than that of HSS, correspondingly, for all our tested n. This straight-
forwardly implies that the IT of BTSS may be comparable to that of HSS. Because
BTSS has a smaller computational workload than HSS at each of the IT, the actual
CPU of BTSS may be much less than that of HSS. Therefore, BTSS will be much
more efficient than HSS. This fact is further confirmed by the numerical results in
Table 8, where the speed-up is at least 1.75 for n = 800, and it even achieves 2.41 for
n = 200.

Table 7

αexp and ρ(M(αexp)) for Example 5.2.

n 100 200 400 800 1600

αexp 4.865 6.874 9.713 13.733 19.418
BTSS

ρ(M(αexp)) 0.901 0.929 0.949 0.964 0.974

αexp 4.476 6.351 8.999 12.736 18.018
HSS

ρ(M(αexp)) 0.896 0.924 0.946 0.961 0.972

D
ow

nl
oa

de
d

03
/2

0/
17

 to
 5

9.
77

.2
0.

10
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

862 Z.-Z. BAI, G.H. GOLUB, L.-Z. LU, AND J.-F. YIN

5 10 15 20 25 30

0.965

0.97

0.975

0.98

0.985

0.99

0.995

α

ρ (
 M

 (α
))

 n = 800

BTSS: solid
HSS: dashdotted

Fig. 10. Curves of ρ(M(α)) versus α for the HSS and the BTSS iteration matrices when
n = 800 for Example 5.2.

Table 8

IT and CPU for Example 5.2.

n 100 200 400 800 1600

IT 66 101 145 210 293
BTSS

CPU 0.064 0.402 2.991 39.869 208.375

IT 70 97 134 192 269
HSS

CPU 0.133 0.967 6.635 69.744 394.706

Speed-up 2.08 2.41 2.22 1.75 1.89

In Figure 10 we depict the curves of ρ(M(α)), with respect to α when n = 800, for
both BTSS and HSS iteration methods to intuitively show this functional relationship.
Evidently, we see that ρ(M(α)) attains the minimum at about α = αexp, and the
spectral radius of the BTSS iteration matrix is almost equal to that of the HSS
iteration matrix when α becomes larger than αexp of BTSS.

6. Concluding remarks. We have further developed the HSS and NSS iteration
methods and established a more general framework of iteration methods based on the
PSS of the positive-definite coefficient matrix of the system of linear equations. We
have proved the convergence of the PSS iteration method and showed that it inherits
all advantages of both HSS and NSS iteration methods. Several special examples of
the PSS method, i.e., the TSS (or BTSS) methods, have been described, and numerical
examples have been implemented to show that in the senses of computational storage
and CPU time, the TSS and BTSS iteration methods are much more practical and
effective as iteration schemes than the HSS iteration method, as well as the Krylov
subspace methods such as GMRES(�) and BiCGSTAB, and they are also much more
practical and effective as preconditioners than the ILU factorization and the UGS
iteration. However, we should mention that the questions of how to optimally choose
the iteration parameters and how to efficiently solve the shifted skew-Hermitian linear

D
ow

nl
oa

de
d

03
/2

0/
17

 to
 5

9.
77

.2
0.

10
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

BLOCK TRIANGULAR AND SKEW-HERMITIAN SPLITTING METHODS 863

systems involved in these iteration methods are very practical and interesting problems
that need further in-depth study.

REFERENCES

[1] Z.-Z. Bai, G.H. Golub, and M.K. Ng, Hermitian and skew-Hermitian splitting methods for
non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003),
pp. 603–626.

[2] Z.-Z. Bai, G.H. Golub, and M.K. Ng, On Successive-Overrelaxation Acceleration of
the Hermitian and Skew-Hermitian Splitting Iteration, available online at http://www-
sccm.stanford.edu/wrap/pub-tech.html.

[3] Z.-Z. Bai, G.H. Golub, and J.-Y. Pan, Preconditioned Hermitian and skew-Hermitian split-
ting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 98
(2004), pp. 1–32.

[4] M. Benzi and G.H. Golub, An Iterative Method for Generalized Saddle Point Problems, Tech-
nical Report SCCM-02-14, Scientific Computing and Computational Mathematics Pro-
gram, Department of Computer Science, Stanford University, Stanford, CA, 2002. Avail-
able online at http://www-sccm.stanford.edu/wrap/pub-tech.html

[5] J.R. Bunch, A note on the stable decomposition of skew-symmetric matrices, Math. Comput.,
38 (1982), pp. 475–479.

[6] J.R. Bunch, Stable algorithms for solving symmetric and skew-symmetric systems, Bull. Aus-
tral. Math. Soc., 26 (1982), pp. 107–119.

[7] P. Concus and G.H. Golub, A generalized conjugate gradient method for non-symmetric
systems of linear equations, in Computing Methods in Applied Sciences and Engineer-
ing, Lecture Notes in Econom. and Math. Systems 134, R. Glowinski and J.R. Lions
eds., Springer-Verlag, Berlin, 1976, pp. 56–65. Also available online at http://www-
sccm.stanford.edu/wrap/pub-other.html

[8] J. Douglas, Jr. and H. Rachford, Jr., Alternating direction methods for three space vari-
ables, Numer. Math., 4 (1956), pp. 41–63.

[9] G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, MD, 1996.

[10] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.
[11] Y. Saad and M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–869.
[12] R.S. Varga, Matrix Iterative Analysis, 2nd revised and expanded ed., Ser. Comput. Math. 27,

Springer-Verlag, Berlin, 2000.

D
ow

nl
oa

de
d

03
/2

0/
17

 to
 5

9.
77

.2
0.

10
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

