12 research outputs found

    Artificial Intelligence Applications to Critical Transportation Issues

    Full text link

    Artificial Intelligence based multi-agent control system

    Get PDF
    Le metodologie di Intelligenza Artificiale (AI) si occupano della possibilità di rendere le macchine in grado di compiere azioni intelligenti con lo scopo di aiutare l’essere umano; quindi è possibile affermare che l’Intelligenza Artificiale consente di portare all’interno delle macchine, caratteristiche tipiche considerate come caratteristiche umane. Nello spazio dell’Intelligenza Artificiale ci sono molti compiti che potrebbero essere richiesti alla macchina come la percezione dell’ambiente, la percezione visiva, decisioni complesse. La recente evoluzione in questo campo ha prodotto notevoli scoperte, princi- palmente in sistemi ingegneristici come sistemi multi-agente, sistemi in rete, impianti, sistemi veicolari, sistemi sanitari; infatti una parte dei suddetti sistemi di ingegneria è presente in questa tesi di dottorato. Lo scopo principale di questo lavoro è presentare le mie recenti attività di ricerca nel campo di sistemi complessi che portano le metodologie di intelligenza artifi- ciale ad essere applicati in diversi ambienti, come nelle reti di telecomunicazione, nei sistemi di trasporto e nei sistemi sanitari per la Medicina Personalizzata. Gli approcci progettati e sviluppati nel campo delle reti di telecomunicazione sono presentati nel Capitolo 2, dove un algoritmo di Multi Agent Reinforcement Learning è stato progettato per implementare un approccio model-free al fine di controllare e aumentare il livello di soddisfazione degli utenti; le attività di ricerca nel campo dei sistemi di trasporto sono presentate alla fine del capitolo 2 e nel capitolo 3, in cui i due approcci riguardanti un algoritmo di Reinforcement Learning e un algoritmo di Deep Learning sono stati progettati e sviluppati per far fronte a soluzioni di viaggio personalizzate e all’identificazione automatica dei mezzi trasporto; le ricerche svolte nel campo della Medicina Personalizzata sono state presentate nel Capitolo 4 dove è stato presentato un approccio basato sul controllo Deep Learning e Model Predictive Control per affrontare il problema del controllo dei fattori biologici nei pazienti diabetici.Artificial Intelligence (AI) is a science that deals with the problem of having machines perform intelligent, complex, actions with the aim of helping the human being. It is then possible to assert that Artificial Intelligence permits to bring into machines, typical characteristics and abilities that were once limited to human intervention. In the field of AI there are several tasks that ideally could be delegated to machines, such as environment aware perception, visual perception and complex decisions in the various field. The recent research trends in this field have produced remarkable upgrades mainly on complex engineering systems such as multi-agent systems, networked systems, manufacturing, vehicular and transportation systems, health care; in fact, a portion of the mentioned engineering system is discussed in this PhD thesis, as most of them are typical field of application for traditional control systems. The main purpose if this work is to present my recent research activities in the field of complex systems, bringing artificial intelligent methodologies in different environments such as in telecommunication networks, transportation systems and health care for Personalized Medicine. The designed and developed approaches in the field of telecommunication net- works is presented in Chapter 2, where a multi-agent reinforcement learning algorithm was designed to implement a model-free control approach in order to regulate and improve the level of satisfaction of the users, while the research activities in the field of transportation systems are presented at the end of Chapter 2 and in Chapter 3, where two approaches regarding a Reinforcement Learning algorithm and a Deep Learning algorithm were designed and developed to cope with tailored travels and automatic identification of transportation moralities. Finally, the research activities performed in the field of Personalized Medicine have been presented in Chapter 4 where a Deep Learning and Model Predictive control based approach are presented to address the problem of controlling biological factors in diabetic patients

    Development of Decision Support System for Active Traffic Management Systems Considering Travel Time Reliability

    Get PDF
    As traffic problems on roadways have been increasing, active traffic management systems (ATM) using proactive traffic management concept have been deployed on freeways and arterials. The ATM aims to integrate and automate various traffic control strategies such as variable speed limits, queue warning, and ramp metering through a decision support system (DSS). Over the past decade, there have been many efforts to integrate freeways and arterials for the efficient operation of roadway networks. It has been required that these systems should prove their effectiveness in terms of travel time reliability. Therefore, this study aims to develop a new concept of a decision support system integrating variable speed limits, queue warning, and ramp metering on the basis of travel time reliability of freeways and arterials. Regarding the data preparation, in addition to collecting multiple data sources such as traffic data, crash data and so on, the types of traffic data sources that can be applied for the analysis of travel time reliability were investigated. Although there are many kinds of real-time traffic data from third-party traffic data providers, it was confirmed that these data cannot represent true travel time reliability through the comparative analysis of measures of travel time reliability. Related to weather data, it was proven that nationwide land-based weather stations could be applicable. Since travel time reliability can be measured by using long-term periods for more than six months, it is necessary to develop models to estimate travel time reliability through real-time traffic data and event-related data. Among various matrix to measure travel time reliability, the standard deviation of travel time rate [minute/mile] representing travel time variability was chosen because it can represent travel time variability of both link and network level. Several models were developed to estimate the standard deviation of travel time rate through average travel time rate, the number of lanes, speed limits, and the amount of rainfall. Finally, a DSS using a model predictive control method to integrate multiple traffic control measures was developed and evaluated. As a representative model predictive control, METANET model was chosen, which can include variable speed limit, queue warning, and ramp metering, separately or combined. The developed DSS identified a proper response plan by comparing travel time reliability among multiple combinations of current and new response values of strategies. In the end, it was found that the DSS provided the reduction of travel time and improvement of its reliability for travelers through the recommended response plans

    Advances in Evolutionary Algorithms

    Get PDF
    With the recent trends towards massive data sets and significant computational power, combined with evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field

    Conception et application d'un modèle de l'information routière et ses effets sur le trafic

    Get PDF
    Traffic conditions on a road network often suffer from congestion. According to sources, the traffic congestion can be classified into two categories : recurrent congestion determined by the physic laws of traffic and non-recurrent congestion due to incidents, accidents or other hazards on the road. Thanks to the advancement of technologies, including computers, communications and data processing, the traffic operator is now able to detect disturbances, to measure the effects and even to anticipate traffic conditions to better match traffic management activities. Dynamic information on traffic conditions enables users to reduce discomfort and make their route choice decision more reasonable. For the operator, the service user information may be used as a traffic management tool. We investigated the potential contribution of dynamic traffic information for the benefit of individual users and system performance by taking into account : i) recurring congestion and non-recurring ; ii) different route choice behaviours based on accessibility to information service ; iii) other traffic management actions taken by the traffic operator. A theoretical model with an analytical application on a simple two-parallel-road network, an origin-destination pairs and two user classes, respectively-informed or non-informed has given many conclusions : i) an excessive distribution of traffic information with a « neutral » content damages both the individual profit and system performance ; ii) traffic information with some « cooperative » content may help optimize the system performance without causing acceptability problem ; and iii) dynamic information and other traffic management tools interplay in a complementary manner to optimize the trafficLes conditions de circulation sur un réseau routier subissent souvent de la congestion. Selon ses sources, la congestion routière peut être classée en deux catégories : la congestion récurrente déterminée par les lois de trafic et la congestion non-récurrente due aux incidents, accidents ou autres aléas sur la route. Grâce à l'avancement des technologies, notamment en informatique, communication et techniques de traitement des données, l'exploitant est devenu capable de détecter les perturbations, de mesurer les effets et même d'anticiper l'état du trafic afin de mieux adapter ses actions d'exploitation. L'information dynamique concernant les conditions de trafic permet aux usagers de réduire l'inconfort et d'effectuer leur choix d'itinéraire de manière plus raisonnable. Pour l'exploitant, le service d'information aux usagers peut servir à la gestion du trafic. Nous avons étudié la contribution potentielle de l'information dynamique au profit individuel des usagers et à la performance collective du système en prenant en compte : i) la congestion récurrente et non-récurrente ; ii) des différents comportements de choix d'itinéraire en fonction de l'accessibilité à l'information ; iii) d'autres actions de gestion du trafic menées par l'exploitant. Un modèle théorique avec une application analytique sur un réseau élémentaire de deux routes parallèles, une paire origine-destination et deux classes d'usagers respectivement informée ou non-informée nous a permis de retirer de nombreuses indications : i) la diffusion excessive de l'information avec un contenu « neutre » dégrade à la fois le profit individuel et la performance du système ; ii) l'information dynamique avec certain contenu « coopératif » peut contribuer l'optimisation du système sans causer le problème d'acceptabilité ; iii) l'information dynamique et d'autres mesures de gestion dynamique s'interagissent de manière complémentaire à l'optimisation du trafi

    Embracing Society 5.0 With Humanity

    Get PDF

    Industrial Revolution 4.0 and Society 5.0 Eras: From The Strategic Human Resource Management’s Perspective Dianawati Suryaningtyas

    Get PDF
    corecore