1,063 research outputs found

    Multiplicative Noise Removal Using L1 Fidelity on Frame Coefficients

    Get PDF
    We address the denoising of images contaminated with multiplicative noise, e.g. speckle noise. Classical ways to solve such problems are filtering, statistical (Bayesian) methods, variational methods, and methods that convert the multiplicative noise into additive noise (using a logarithmic function), shrinkage of the coefficients of the log-image data in a wavelet basis or in a frame, and transform back the result using an exponential function. We propose a method composed of several stages: we use the log-image data and apply a reasonable under-optimal hard-thresholding on its curvelet transform; then we apply a variational method where we minimize a specialized criterion composed of an 1\ell^1 data-fitting to the thresholded coefficients and a Total Variation regularization (TV) term in the image domain; the restored image is an exponential of the obtained minimizer, weighted in a way that the mean of the original image is preserved. Our restored images combine the advantages of shrinkage and variational methods and avoid their main drawbacks. For the minimization stage, we propose a properly adapted fast minimization scheme based on Douglas-Rachford splitting. The existence of a minimizer of our specialized criterion being proven, we demonstrate the convergence of the minimization scheme. The obtained numerical results outperform the main alternative methods

    Image reconstruction under non-Gaussian noise

    Get PDF

    비가우시안 잡음 영상 복원을 위한 그룹 희소 표현

    Get PDF
    학위논문(박사)--서울대학교 대학원 :자연과학대학 수리과학부,2020. 2. 강명주.For the image restoration problem, recent variational approaches exploiting nonlocal information of an image have demonstrated significant improvements compared with traditional methods utilizing local features. Hence, we propose two variational models based on the sparse representation of image groups, to recover images with non-Gaussian noise. The proposed models are designed to restore image with Cauchy noise and speckle noise, respectively. To achieve efficient and stable performance, an alternating optimization scheme with a novel initialization technique is used. Experimental results suggest that the proposed methods outperform other methods in terms of both visual perception and numerical indexes.영상 복원 문제에서, 영상의 비국지적인 정보를 활용하는 최근의 다양한 접근 방식은 국지적인 특성을 활용하는 기존 방법과 비교하여 크게 개선되었다. 따라서, 우리는 비가우시안 잡음 영상을 복원하기 위해 영상 그룹 희소 표현에 기반한 두 가지 변분법적 모델을 제안한다. 제안된 모델은 각각 코시 잡음과 스펙클 잡음 영상을 복원하도록 설계되었다. 효율적이고 안정적인 성능을 달성하기 위해, 교대 방향 승수법과 새로운 초기화 기술이 사용된다. 실험 결과는 제안된 방법이 시각적인 인식과 수치적인 지표 모두에서 다른 방법보다 우수함을 나타낸다.1 Introduction 1 2 Preliminaries 5 2.1 Cauchy Noise 5 2.1.1 Introduction 6 2.1.2 Literature Review 7 2.2 Speckle Noise 9 2.2.1 Introduction 10 2.2.2 Literature Review 13 2.3 GSR 15 2.3.1 Group Construction 15 2.3.2 GSR Modeling 16 2.4 ADMM 17 3 Proposed Models 19 3.1 Proposed Model 1: GSRC 19 3.1.1 GSRC Modeling via MAP Estimator 20 3.1.2 Patch Distance for Cauchy Noise 22 3.1.3 The ADMM Algorithm for Solving (3.7) 22 3.1.4 Numerical Experiments 28 3.1.5 Discussion 45 3.2 Proposed Model 2: GSRS 48 3.2.1 GSRS Modeling via MAP Estimator 50 3.2.2 Patch Distance for Speckle Noise 52 3.2.3 The ADMM Algorithm for Solving (3.42) 53 3.2.4 Numerical Experiments 56 3.2.5 Discussion 69 4 Conclusion 74 Abstract (in Korean) 84Docto

    Image Restoration for Remote Sensing: Overview and Toolbox

    Full text link
    Remote sensing provides valuable information about objects or areas from a distance in either active (e.g., RADAR and LiDAR) or passive (e.g., multispectral and hyperspectral) modes. The quality of data acquired by remotely sensed imaging sensors (both active and passive) is often degraded by a variety of noise types and artifacts. Image restoration, which is a vibrant field of research in the remote sensing community, is the task of recovering the true unknown image from the degraded observed image. Each imaging sensor induces unique noise types and artifacts into the observed image. This fact has led to the expansion of restoration techniques in different paths according to each sensor type. This review paper brings together the advances of image restoration techniques with particular focuses on synthetic aperture radar and hyperspectral images as the most active sub-fields of image restoration in the remote sensing community. We, therefore, provide a comprehensive, discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to investigate the vibrant topic of data restoration by supplying sufficient detail and references. Additionally, this review paper accompanies a toolbox to provide a platform to encourage interested students and researchers in the field to further explore the restoration techniques and fast-forward the community. The toolboxes are provided in https://github.com/ImageRestorationToolbox.Comment: This paper is under review in GRS

    On the Inversion of High Energy Proton

    Full text link
    Inversion of the K-fold stochastic autoconvolution integral equation is an elementary nonlinear problem, yet there are no de facto methods to solve it with finite statistics. To fix this problem, we introduce a novel inverse algorithm based on a combination of minimization of relative entropy, the Fast Fourier Transform and a recursive version of Efron's bootstrap. This gives us power to obtain new perspectives on non-perturbative high energy QCD, such as probing the ab initio principles underlying the approximately negative binomial distributions of observed charged particle final state multiplicities, related to multiparton interactions, the fluctuating structure and profile of proton and diffraction. As a proof-of-concept, we apply the algorithm to ALICE proton-proton charged particle multiplicity measurements done at different center-of-mass energies and fiducial pseudorapidity intervals at the LHC, available on HEPData. A strong double peak structure emerges from the inversion, barely visible without it.Comment: 29 pages, 10 figures, v2: extended analysis (re-projection ratios, 2D

    A Novel Fractional-Order Variational Approach for Image Restoration Based on Fuzzy Membership Degrees

    Get PDF
    We propose a new fractional-order (space and time) total variation regularized model for multiplicative noise removal in this research article. We use the regularly varying fuzzy membership degrees to characterize the likelihood of a pixel related to edges, texture regions, and flat regions to improve model efficiency. This approach is capable of maintaining edges, textures, and other image information while significantly reducing the blocky effect. We opt for the option of local actions. In order to efficiently find the minimizer of the prescribed energy function, the semi-implicit gradient descent approach is used (which derives the corresponding fractional-order Euler-Lagrange equations). The existence and uniqueness of a solution to the suggested variational model are proved. Experimental results show the efficiency of the suggested model in visual enhancement, preserving details and reducing the blocky effect while extracting noise as well as an increase in the PSNR (dB), SSIM, relative error, and less CPU time(s) comparing to other schemes
    corecore