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Abstract

For the image restoration problem, recent variational approaches exploit-

ing nonlocal information of an image have demonstrated significant improve-

ments compared with traditional methods utilizing local features. Hence, we

propose two variational models based on the sparse representation of image

groups, to recover images with non-Gaussian noise. The proposed models

are designed to restore image with Cauchy noise and speckle noise, respec-

tively. To achieve efficient and stable performance, an alternating optimiza-

tion scheme with a novel initialization technique is used. Experimental re-

sults suggest that the proposed methods outperform other methods in terms

of both visual perception and numerical indexes.

Key words: Image restoration, Image denoising, Image deblurring, Speckle

noise, Cauchy noise, Group sparse representation, Alternating direction method

of multipliers
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Chapter 1

Introduction

Image restoration is the most typical problem in imaging processing. It con-

siders the recovery of an image from its inevitable degraded observation in

real applications. Image restoration includes various problems: image denois-

ing [9, 13], deblurring [10, 22, 46], inpainting [12, 47], compressive sensing

[29, 65], and super-resolution [11, 63]. The degradation process consists of

the application of a non-invertible operator, e.g. blurring or masking oper-

ator, and the contamination with noise which is usually assumed to follow

the Gaussian distribution.

The image restoration is an ill-posed inverse problem, hence the prior as-

sumption is needed to specify the solution. This prior assumption, which is

called a regularizer, utilizes the knowledge about desirable image character-

istics. The variational model reconstructs the original image as a solution

of the minimization problem of some functional, which usually consists of a

data fidelity term and a regularization term.

Classically, the regularization based on the local property of the image

characteristic was widely used. The most popular one is the total varia-

tion (TV) regularization, which was originated from the Rudin-Osher-Fatemi
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CHAPTER 1. INTRODUCTION

model [50]. It assumes that the gradient of the image has small `1 norm,

which results in successful recovery of smooth regions and preservation of

edges. However, it has a drawback of unwanted staircase artifacts and overly

smooth details. The local patch based regularization also gained much at-

tention. Elad and Aharon [25] proposed a denoising algorithm based on the

assumption that local patches are sparsely represented by the learned dictio-

naries. Although it achieved remarkable results, the training process of dic-

tionary is burdensome.

Methods exploiting the nonlocal properties of images to improve the per-

formance of the local regularizer have been studied extensively. Buades et al.

[8] proposed a nonlocal means algorithm which improved the local smoothing

filters. Dabov et al. [16] used block matching and three-dimensional trans-

form domain collaborative filtering for the image denoising problem. Dong

et al. [23] exploited the nonlocal information of images to centralize the sparse

coding coefficents in problems of image denoising, deblurring, and super-

resolution.

Recently, Zhang et al. [66] improved the traditional patch sparse repre-

sentation model to the group sparse representation (GSR) modeling of im-

ages. By using the local sparsity of patches and nonlocal self-similarity of

repeated structures and patterns between patches, it achieved state-of-the-

art results in image deblurring, inpainting, and compressive sensing. Addi-

tionally, the GSR model was utilized in various applications including image

deblocking [67], low lighting image enhancement [55], and synthetic aperture

radar (SAR) image despeckling [39].

As discussed, most works on the image restoration mainly focus on the

problem of the Gaussian noise. However, various non-Gaussian noise distri-

butions have been considered as well, including Cauchy distribution [43, 52],

Gamma distribution [4, 48, 54], and Rician distribution [5, 28]. In fact, these

non-Gaussian distributions can better represent the real noises in some ap-

plications. For example, the Cauchy distribution is known to better repre-
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CHAPTER 1. INTRODUCTION

sent the heavy-tailed property of noise in radar and sonar applications or

biomedical ultrasound images [35, 36, 51]. Also the speckle noise in SAR

imagery, laser, and ultrasound can be modeled by using the Gamma distri-

bution [2, 57, 62].

Herein, we focus on the image restoration problem of denoising and de-

blurring images in the presence of non-Gaussian noises, especially the Cauchy

noise or the speckle noise. In these cases, the variational models designed for

the Gaussian noise are not suitable, and should be adapted to handle differ-

ent types of noises. Especially the data fidelity term, which is usually com-

puted with the `2 norm, has to be changed to consider the different noise

distributions. The derivation of appropriate data fidelity term can be made

based on the Bayesian statistics, specifically the maximum a posteriori prob-

ability (MAP) estimation.

In addition, compared with the uniform amplitude of the Gaussian noise,

the non-Gaussian noises have a rather irregular characteristic. The local reg-

ularization based methods have trouble in distinguishing the sharp noise from

the details of the image. On the other hand, GSR exploits the local sparsity

and the nonlocal self-similarity of the image patches, which is expected to

effectively capture the non-uniform property of the non-Gaussian noises.

Hence, in this dissertation, we adopt GSR approaches and propose two

models for restoring images containing Cauchy noise and speckle noise, re-

spectively. An alternating minimization scheme is utilized and self-adaptive

group dictionaries are learned for efficient optimization of the proposed mod-

els. To overcome the instability of the nonconvex model, an initialization

technique is introduced. From the experimental results, we observe that the

proposed models obtained improvements compared with existing methods.

The remainder of this dissertation is organized as follows. In Chapter 2,

we provide introductions and literature reviews for the Cauchy noise and

the speckle noise, and introduce the GSR model and the ADMM algorithm.

In Chapter 3, we propose two models based on GSR for Cauchy noise and

3



CHAPTER 1. INTRODUCTION

speckle noise, respectively. Numerical experiments are provided to demon-

strate the performance of the proposed models, and the relevant technique

and analyses are discussed. In Chapter 4, we summarize this dissertation.

4



Chapter 2

Preliminaries

In this chapter, the required preliminaries for this dissertation is provided.

We first introduce mathematical descriptions of Cauchy noise and speckle

noise, and review the related works for restoring these kinds of noises. Sub-

sequently, the GSR framework for image restoration is briefly introduced and

the ADMM algorithm is presented, which are necessary to understand our

proposed models.

2.1 Cauchy Noise

In this section, we introduce the Cauchy noise, which is an additive noise fol-

lowing the Cauchy distribution. The Cauchy noise has quite different feature

compared with the additive Gaussian noise, which is explained with exam-

ples. Consequently, the adapted models are required to deal with this kind

of noise accurately. We investigate the related works for the Cauchy noise

in the image processing area.
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CHAPTER 2. PRELIMINARIES

2.1.1 Introduction

In the image restoration problem, the degradation of an image can be math-

ematically formulated as

y = Hx+ n, (2.1)

where x is the unknown original image, y is the observed noisy image, H

is the linear degradation operator, and n is the additive noise. Herein, we

focus on the Cauchy noise, which is defined as the additive noise following

the Cauchy distribution. The probability density function of the Cauchy dis-

tribution is given by [52]

p(x) =
1

π

γ

γ2 + (x− δ)2
, (2.2)

where γ > 0 is the scale parameter acting as a variance; δ ∈ R is the local-

ization parameter that represents the median and may assumed as 0.

In Fig. 2.1, the probability density functions of Gaussian distribution and

Cauchy distribution are plotted. The Gaussian distribution follows N (µ, σ2)

with mean µ = 0 and variance σ2 = π
2
, and the Cauchy distribution follows

C(γ, δ) with scale parameter γ = 1 and localization parameter δ = 0. As

shown, the peak values at the origin coincide but the Cauchy distribution

has higher values on tails implying the impulsive characteristic.

In Fig. 2.2, the original cameraman image (Fig. 2.2a) is degraded by

Gaussian noise (Fig. 2.2b) and Cauchy noise (Fig. 2.2c), respectively. Figs. 2.2d

to 2.2f are the zoomed-in of the arm in the Figs. 2.2a to 2.2c, respectively.

The parameters of the noises are adjusted so that the two noisy images have

the same mean square error with the original image. Explicitly, the Gaus-

sian noise has mean µ = 0 and variance σ2 = 29.52, and the Cauchy noise

has scale parameter γ = 5 and localization parameter δ = 0. As shown, the

Gaussian noise has uniform intensity in both black and gray area (Fig. 2.2e).
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Figure 2.1: Comparison of the probability density functions of the Gaussian
distribution N (µ = 0, σ2 = π

2
) and Cauchy distribution C(γ = 1, δ = 0).

On the other hand, the Cauchy noise is rather impulsive so the overall noise

intensity is low but it has very sharp noise, which can be seen in black points

in gray region and white points in black region (Fig. 2.2f).

2.1.2 Literature Review

Many studies have been performed to mitigate Cauchy noise, especially in

the wavelet domain. Achim and Kuruoglu [1] utilized bivariate isotropic Cauchy

and Gaussian distributions in a complex wavelet domain for image denoising.

Bhuiyan et al. [6] used a Cauchy probability density function as a prior for

the wavelet coefficients of log-transformed speckle noise in synthetic aperture

radar images. Loza et al. [41] described a multimodal image fusion algorithm

based on the non-Gaussian modeling of wavelet coefficients.

Recently, variational models based on TV regularizer have garnered sig-
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CHAPTER 2. PRELIMINARIES

(a) Original image (b) Gaussian noise (c) Cauchy noise

(d) Zoom of (a) (e) Zoom of (b) (f) Zoom of (c)

Figure 2.2: Comparison of different noisy images. (a) Original image; (b)
Gaussian noise (σ2 = 29.52); (c) Cauchy noise (γ = 5); (d)-(f) Zoomed-in
versions of (a)-(c), respectively.

nificant attention. The discrete TV of an image u ∈ Rn×n is defined by

‖∇u‖1 =
∑

1≤i,j≤n

√
(∇xu)i,j

2 + (∇yu)i,j
2

=
∑

1≤i,j≤n

√
(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2. (2.3)

Sciacchitano et al. [52] first utilized the TV regularizer to restore images

8



CHAPTER 2. PRELIMINARIES

corrupted by Cauchy noise,

arg min
u
‖∇u‖1 +

λ

2

(〈
log
(
γ2 + (Hu− y)2

)
,1
〉

+ µ‖Hu− u0‖22
)
, (2.4)

where 〈·, ·〉 denotes the Frobenius inner product, 1 ∈ Rn×n is a matrix of

ones, u0 = med(y) is the median filtered version of y, the second term is

the data fidelity term for Cauchy noise, and the third term has been added

to guarantee the convexity of (2.4). Mei et al. [43] applied the nonconvex

alternating direction method of multipliers (ADMM) to directly solve the

nonconvex TV model

arg min
u
‖∇u‖1 +

λ

2

〈
log
(
γ2 + (Hu− y)2

)
,1
〉
. (2.5)

Although the TV regularizer can preserve sharp edges and restore smooth

images, it suffers from staircase artifacts and oversmoothing. Improvements

have been achieved by considering adaptive higher-order TV [64] or overlap-

ping group sparsity of TV [21]. Laus et al. [37] suggested a nonlocal myriad

filter for estimating the localization and the scale parameter of the Cauchy

distribution, and proposed an unsupervised image denoising method.

2.2 Speckle Noise

In this section, we introduce the speckle noise, which is a multiplicative noise

following the Gamma distribution. The speckle noise is fundamentally differ-

ent from the common additive Gaussian noise or the additive Cauchy noise

introduced in Section 2.1. It is a signal-dependent noise, which is caused by

the multiplicative process in the noise generation. Hence, it is more difficult

to handle this kind of noise and the adapted models are required. We also

9



CHAPTER 2. PRELIMINARIES

provide the literature review for the speckle noise in the related area.

2.2.1 Introduction

Unlike the image degradation with additive noise introduced in (2.1), the

multiplicative noise degradation can be formulated as

y = x ∗ n, (2.6)

where x is the unknown original image, y is the observed noisy image, and

n is the multiplicative noise. Here, we assume that the image is degraded by

the noise only, not by the linear degradation operator. This type of noises

occurs in many applications. For instance, Possion distribution is suitable for

modeling the counting processes in medical images such as PET, SPECT,

and fluorescent confocal microscopy imaging [49]. Also Gamma distribution

can be used for modeling the speckle noise in SAR imagery, laser, and ul-

trasound [2, 57, 62].

Herein, we focus on the speckle noise, which is the multiplicative noise

following the Gamma distribution. The probability density function of the

Gamma distribution is given by [24]

p(x; k, θ) =


xk−1e−

x
θ

θkΓ(k)
for x ≥ 0,

0 for x < 0,

(2.7)

where Γ is the Gamma function satisfying Γ(n) = (n−1)! for positive integers

n, k > 0 is the shape parameter, and θ > 0 is the scale parameter. By the

central limit theorem, it is known that for a large k, the Gamma distribution

approximates the Gaussian distribution with mean µ = kθ and variance σ2 =

kθ2 [33].

10



CHAPTER 2. PRELIMINARIES

Explictly, the speckle noise in SAR image with L looks can be modeled

by the Gamma distribution with k = L and θ = 1/L, so that mean µ =

kθ = 1 and variance σ2 = kθ2 = 1/L [4, 62]

p(x) =


LLxL−1e−Lx

Γ(L)
for x ≥ 0,

0 for x < 0.

(2.8)

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
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1
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Gamma

(a) L = 1; Gamma distribution Γ(k =
1, θ = 1), Gaussian distribution N (µ =
1, σ2 = 1).
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0
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1.6
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2

Gaussian
Gamma

(b) L = 20; Gamma distribution Γ(k =
20, θ = 1/20), Gaussian distribution
N (µ = 1, σ2 = 1/20).

Figure 2.3: Comparison of the probability density functions of the Gamma
distributions and the Gaussian distributions.

In Fig. 2.3, the probability density functions of the Gaussian distribu-

tions and the Gamma distributions are compared. In Figs. 2.3a and 2.3b,

the Gamma distribution Γ(k = L, θ = 1/L) and the Gaussian distribution

N (µ = 1, σ2 = 1/L) are plotted for L = 1 and L = 20, respectively. As

shown, the Gamma distribution approximates the Gaussian distribution for

high values of L, but it has completely different shape with skewness, espe-

cially in low values of L.

In Fig. 2.4, the original cameraman image (Fig. 2.4a) is degraded by the
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(a) Original image (b) Gaussian noise (c) Speckle noise

(d) Zoom of (a) (e) Zoom of (b) (f) Zoom of (c)

Figure 2.4: Comparison of different noisy images. (a) Original image; (b)
Additive Gaussian noise (σ2 = 29.82); (c) Speckle noise (L = 21); (d)-(f)
Zoomed-in versions of (a)-(c), respectively.

additive Gaussian noise (Fig. 2.4b) and the speckle noise (Fig. 2.4c), respec-

tively. Figs. 2.4d to 2.4f are the zoomed-in of the arm in the Figs. 2.4a

to 2.4c, respectively. The parameters of the noises are adjusted so that the

two noisy images have the same mean square error with the original image.

Explicitly, the Gaussian noise has mean µ = 0 and variance σ2 = 29.82, and

the speckle noise has look L = 21. As shown, the Gaussian noise has uni-

form intensity in both black and gray areas (Fig. 2.4e). On the other hand,

the speckle noise is signal-dependent so it has weak noise in black region and

strong noise in gray region (Fig. 2.4f).
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2.2.2 Literature Review

Many researches have been conducted to remove the speckle noise based on

the TV regularization, which are well summarized in [44, 60] and briefly de-

scribed in this subsection. Aubert and Aujol (AA) [4] first introduced the

TV regularization model for removing speckle noise by using a MAP esti-

mator

arg min
u>0

‖∇u‖1 + λ
〈

logu+
y

u
,1
〉
, (2.9)

where 〈·, ·〉 denotes the Frobenius inner product, 1 ∈ Rn×n is a matrix of

ones, the first term is the discrete TV operator defined in (2.3), and the

second term is the data fidelity term for speckle noise.

Since the data fidelity term of (2.9) is nonconvex, adapted models are

suggested to obtain the convex optimization problems. Shi and Osher [54]

utilized the logarithmic transformation w = logu and replaced the TV op-

erator ‖∇u‖1 in (2.9) with ‖∇ logu‖1 = ‖∇w‖1 to propose the following

convex model

arg min
w

‖∇w‖1 + λ
〈
w + ye−w,1

〉
. (2.10)

This model was further expanded to spatially adapted TV model [14], or the

total generalized variation model [27].

Also Steidl and Teuber [56] proposed a convex model consisting of the

I-divergence data fidelity term and the TV regularization term

arg min
u>0

‖∇u‖1 + λ
〈
u− y logu,1

〉
. (2.11)

Although the I-divergence data fidelity term is known to be appropriate for

the Poisson noise, which is derived by the MAP estimation, the authors

showed that the two models (2.10) and (2.11) are equivalent.

Later, Dong and Zeng [24] introduced a quadratic penalty term into (2.9),

13



CHAPTER 2. PRELIMINARIES

which turned out to be

arg min
u>0

‖∇u‖1 + λ
〈

logu+
y

u
+ α

(√
y

u
− 1

)2

,1
〉
, (2.12)

where the model is proven to be strictly convex if the penalty parameter

α satisfies α ≥ 2
√

6/9. This model was also expanded to total generalized

variation model [53], or an exp-model [42].

Various approaches based on patch regularization are also proposed. In-

spired by the dictionary learning [25] and the AA model [4], Huang et al.

[34] proposed a variational model for multiplicative noise removal based on

the combination of a TV regularization and a sparse representation in an

adaptive dictionary of image patches. Parrilli et al. [48] adapted the block

matching and three dimensional transform filtering [16] to SAR despeckling,

and Cozzolino et al. [15] improved it to propose a fast nonlocal despeckling

filter.

Recently, the nonlocal based approaches received much attention. Fang

et al. [26] proposed a SAR image denoising method based on texture strength

and weighted nuclear norm minimization. Liu et al. [38] adapted the non-

locally centralized sparse representation algorithm [23] to propose its SAR-

oriented version. Guan et al. [32] suggested a SAR image despeckling method

based on the nonlocal low-rank minimization model.

The GSR was also utilized for SAR image despeckling. Liu et al. [39] pro-

posed an over-complete dictionary, which consists of the prespecified dictio-

naries and learned dictionary, to adapt GSR for SAR image despeckling. Liu

et al. [40] included a mean filter in the modeling process of GSR based dic-

tionary learning algorithm for SAR image despeckling. But these two mod-

els didn’t consider the appropriate fidelity term for the speckle noise, which

will be considered in our proposed algorithm.

14
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2.3 GSR

In this section, the process of the group construction and the GSR model-

ing for image restoration is briefly introduced. For detailed explanations and

discussions of GSR, we refer the reader to [66].

2.3.1 Group Construction

Suppose that the original image x of size
√
N ×

√
N is divided into n over-

lapping patches xk of size
√
P ×

√
P , k = 1, 2, . . . , n, with stride s. The

image and patches are represented as column vectors x ∈ RN and xk ∈ RP ,

respectively.

For each patch xk, the most similar c patches are searched in the training

window of size L×L. Subsequently, similar patches are stacked as columns

to comprise a matrix xGk = [xGk,1,xGk,2, . . . ,xGk,c] ∈ RP×c, which is called

a group.

The extraction of a group from an image can be defined as a linear op-

erator

xGk = RGk(x), (2.13)

and the transpose RT
Gk

is an operator that returns the group to the original

position in the image, with entries possibly overlapping and padded with

zeros elsewhere.

The image x is reconstructed from the groups {xGk} by averaging all the

groups as

x =
n∑
k=1

RT
Gk

(xGk)./
n∑
k=1

RT
Gk

(1P×c), (2.14)

where ./ is the entry-wise division of vectors; 1P×c ∈ RP×c is a matrix of

ones.
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2.3.2 GSR Modeling

The GSR model assumes that the groups can be sparsely represented by the

atoms in the self-adaptive group dictionary DGk = [dGk,1,dGk,2, . . . ,dGk,m],

which is chosen during optimization. Explicitly, each group xGk is approx-

imated as a linear sum of the atoms dGk,i ∈ RP×c, whose coefficients are

given by the sparse codes αGk = [αGk,1,αGk,2, . . . ,αGk,m] ∈ Rm:

xGk ≈DGkαGk :=
m∑
i=1

αGk,idGk,i. (2.15)

The image x is reconstructed from the sparse codes {αGk} by averaging all

approximations of the groups as

x ≈DG ◦αG :=
n∑
k=1

RT
Gk

(DGkαGk)./
n∑
k=1

RT
Gk

(1P×c), (2.16)

where DG and αG are concatenations of all DGk and αGk , respectively.

Using the `2 error as the data fidelity term and the sparsity of codes

as the regularization term for the image restoration problem (2.1), the GSR

model can be formulated as

α̂G = arg min
αG

1

2
‖HDG ◦αG − y‖22 + λ‖αG‖0, (2.17)

where λ is the regularization parameter that balances the two terms. Sub-

sequently, the original image can be reconstructed by x̂ = DG ◦ α̂G.
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2.4 ADMM

In this section, the ADMM algorithm is presented. The ADMM algorithm

[7] solves the following minimization problem:

minimize f(u) + g(v), subject to Au+Bv = c (2.18)

with variables u ∈ RN and v ∈ RM , where A ∈ RP×N , B ∈ RP×M , and

c ∈ RP . The functions f, g are typically assumed as convex, but noncon-

vex functions can be considered as well [58]. The augmented Lagrangian for

(2.18) is given by

Lµ(u,v,w) = f(u) + g(v) +wT (Au+Bv− c) +
µ

2
‖Au+Bv− c‖22, (2.19)

where w is the dual variable and µ > 0 is a penalty parameter. For conve-

nience, the scaled form of (2.19) can be written as

Lµ(u,v, b) = f(u) + g(v) +
µ

2
‖Au+Bv − c+ b‖22 −

µ

2
‖b‖22, (2.20)

where b = w/µ is the scaled dual variable. The ADMM for solving (2.18)

can be expressed as follows:

17
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Algorithm 1 ADMM for solving the minimization problem (2.18)

Input: µ > 0

1: Initialization: t = 0, u(0) = 0, v(0) = 0, b(0) = 0.

2: repeat

3: u(t+1) = arg min
u

(
f(u) +

µ

2
‖Au+Bv(t) − c+ b(t)‖22

)
4: v(t+1) = arg min

v

(
g(v) +

µ

2
‖Au(t+1) +Bv − c+ b(t)‖22

)
5: b(t+1) = b(t) +Au(t+1) +Bv(t+1) − c
6: t← t+ 1

7: until stopping criterion is satisfied

Output: u, v

18



Chapter 3

Proposed Models

In this chapter, we propose two models for non-Gaussian noises based on

GSR, which are the GSR model for Cauchy noise (GSRC) and the GSR

model for speckle noise (GSRS). First, we will derive the variational model

based on MAP estimation for each noise type. The appropriate patch dis-

tances are introduced, and both models are solved by the ADMM algorithm

which was introduced in Section 2.4. In addition, the numerical experiments

and related discussions are provided for both models.

3.1 Proposed Model 1: GSRC

In this section, we apply the GSR approach to restore images corrupted by

Cauchy noise. Since the Cauchy noise is the additive noise with Cauchy dis-

tribution, the original GSR model, which is designed for Gaussian noise,

should be adapted in some ways. We consider the adaptations, which in-

clude the modeling of GSRC via MAP estimation and the patch distance

for Cauchy noise. The initialization technique and the analyses of the pa-

rameters and convergence are also discussed.
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3.1.1 GSRC Modeling via MAP Estimator

The original GSR model (2.17) uses the `2 norm for the data fidelity term,

which is known to be appropriate for Gaussian noise but not for other types

of noise. In the TV model for Cauchy noise [43, 52], the data fidelity term

appropriate for Cauchy noise is derived using MAP estimate. We follow these

to derive the modeling of GSRC analogously.

Recall that we want to restore the original image x from the noisy obser-

vation y = Hx+ n, where n follows the Cauchy distribution. We consider

y(i), x(i) as random variables for each i = 1, 2, . . . , N . We want to find the

MAP estimator x̂, which maximizes the posterior probability P (x | y). Us-

ing Bayes’ theorem,

x̂ = arg max
x

P (x | y) = arg max
x

P (y | x)P (x)

P (y)

= arg max
x

P (y | x)P (x). (3.1)

we can equivalently find the minimizer of the negative logarithm of (3.1) as

the following:

x̂ = arg min
x
− logP (y | x)− logP (x). (3.2)

Since we are assuming that the values of the image are independent and

identically distributed, we have P (y | x) =
∏N

i=1 P (y(i) | x). From the

probability density function (2.2) of Cauchy noise, we know that

P (y(i) | x) =
1

π

γ

γ2 + (Hx(i)− y(i))2
. (3.3)

For the prior probability P (x), we use the regularizer as

P (x) = exp(−2λΨ(x)), (3.4)
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where λ > 0 is a regularization parameter. Substituting these into (3.2) gives

x̂ = arg min
x
− log

N∏
i=1

P (y(i) | x) + 2λΨ(x)

= arg min
x
−

N∑
i=1

log

(
1

π

γ

γ2 + (Hx(i)− y(i))2

)
+ 2λΨ(x)

= arg min
x

N∑
i=1

log
(
γ2 + (Hx(i)− y(i))2

)
+ 2λΨ(x), (3.5)

where the irrelevant constants are not considered. The variational model for

removing Cauchy noise can be written as

arg min
x

1

2

〈
log
(
γ2 + (Hx− y)2

)
,1
〉

+ λΨ(x), (3.6)

where 〈·, ·〉 denotes the standard inner product and 1 ∈ RN is a vector of

ones.

Now, in the framework of GSR, we are assuming that x ≈DG ◦αG (see

(2.16)) and the regularization term as Ψ(αG) = ‖αG‖0. Hence the GSRC

model can be formulated as

arg min
αG

1

2

〈
log
(
γ2 + (HDG ◦αG − y)2

)
,1
〉

+ λ‖αG‖0. (3.7)

Although the general `0 minimization is an NP-hard problem, by selecting an

appropriate self-adaptive group dictionary, the minimization problem (3.7)

can be solved explicitly, which will be explained in Section 3.1.3.
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3.1.2 Patch Distance for Cauchy Noise

In the process of group construction (Section 2.3.1), when searching for sim-

ilar patches, the Euclidean distance can be affected considerably by the im-

pulsive property of Cauchy noise; thus, similar patches cannot be found ef-

fectively. Hence, the appropriate patch distance for Cauchy noise should be

used. The patch similarity under non-Gaussian noise has been presented in

[19, 20]. Given two patches x1 and x2, the generalized likelihood ratio for

Cauchy noise is given by

LG(x1,x2) =
P∏
i=1

[
1 +

(
x1(i)− x2(i)

2γ

)2
]−2

, (3.8)

and the patch distance for Cauchy noise can be defined as the negative log-

arithm of (3.8),

d(x1,x2) = 2
P∑
i=1

log

[
1 +

(
x1(i)− x2(i)

2γ

)2
]
. (3.9)

Therefore, when we collect similar patches to construct the group xGk , (3.9)

is used as the distance between patches.

3.1.3 The ADMM Algorithm for Solving (3.7)

The optimization problem (3.7) is difficult to solve directly, since it is a

nonconvex problem with complicated structure. For an efficient minimiza-

tion, we adopt the ADMM algorithm in Section 2.4. Recently, the noncon-

vex ADMM was proven to generate a sequence of iterates that has a con-

vergent subsequence to a stationary point of the augmented Lagrangian of

(3.7) [58].
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By introducing an auxiliary variable u, the equivalent constrained formu-

lation of (3.7) can be written as

arg min
αG,u

1

2

〈
log
(
γ2 + (Hu− y)2

)
,1
〉

+ λ‖αG‖0, s.t. u = DG ◦αG. (3.10)

Setting f(αG) = λ‖αG‖0 and g(u) = 1
2
〈log (γ2 + (Hu− y)2) ,1〉, the min-

imization of (3.10) is obtained from Algorithm 1, which involves iteratively

solving the two subproblems of αG and u, with the update of the dual vari-

able b as follows:

α
(t+1)
G = arg min

αG

λ‖αG‖0 +
µ

2
‖u(t) −DG ◦αG + b(t)‖22 (3.11)

u(t+1) = arg min
u

1

2

〈
log
(
γ2 + (Hu− y)2

)
,1
〉

+
µ

2
‖u−DG ◦α(t+1)

G + b(t)‖22

(3.12)

b(t+1) = b(t) + u(t+1) −DG ◦α(t+1)
G (3.13)

In the following, we provide the details to solve the two subproblems above:

(3.11) and (3.12).

αG-subproblem

Because the αG-subproblem (3.11) is not changed from the original GSR

model, we refer to [66] to explain the solution and construction of the self-

adaptive group dictionary. The αG-subproblem can be written as

arg min
αG

1

2
‖x− r‖22 +

λ

µ
‖αG‖0, (3.14)
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where x = DG ◦ αG, and r = u(t) + b(t) is a noisy observation of x. In

the following proposition, it is proven that the error term of the image can

be well approximated by the error term of the groups with a reasonable as-

sumption.

Proposition 3.1. Let x, r ∈ RN , xGk , rGk ∈ RP×c and assume that each

entry of x − r is independent and identically distributed with mean 0 and

variance σ2. Then, for any ε > 0,

lim
N→∞
K→∞

Pr

{∣∣∣∣∣ 1

N
‖x− r‖22 −

1

K

n∑
k=1

‖xGk − rGk‖2F

∣∣∣∣∣ < ε

}
= 1, (3.15)

where K = P × c× n.

Proof. It follows from the law of large numbers, see [66].

Substituting the approximation of (3.15) into (3.14) and using ‖αG‖0 =∑n
k=1 ‖αGk‖0, which is obvious because αG is the concatenation of all αGk ’s,

(3.14) is equivalent to

arg min
αG

n∑
k=1

(
1

2
‖xGk − rGk‖2F + τ‖αGk‖0

)
, (3.16)

where τ = λK
µN

. The minimization of (3.16) can be achieved by solving n

subproblems of αGk ; however, it is a `0 minimization problem, which is NP-

hard in general. Nevertheless, by selecting a self-adaptive dictionary in the

following manner, (3.16) can be solved simply.

Let the singular value decomposition of rGk ∈ RP×c be given by

rGk = UGkΣGkV
T
Gk

=
m∑
i=1

γrGk ,i(uGk,ivGk,i
T ), (3.17)
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where ΣGk = diag(γrGk ), γrGk = [γrGk ,1,γrGk ,2, . . . ,γrGk ,m] ∈ Rm with m =

min(P, c) is the singular value vector of rGk and uGk,i,vGk,i are the columns

of UGk ,VGk , respectively. The atoms for group xGk are defined by

dGk,i = uGk,ivGk,i
T , i = 1, 2, . . . ,m, (3.18)

and the self-adaptive dictionary for xGk is defined by

DGk = [dGk,1,dGk,2, . . . ,dGk,m]. (3.19)

The αGk-subproblem is to obtain xGk = DGkαGk , given that rGk =

DGkγrGk . By the unitary property of UGk and VGk , the n subproblems for

the αGk of (3.16) are equivalent to

arg min
αGk

1

2
‖αGk − γrGk‖

2
F + τ‖αGk‖0. (3.20)

(3.20) can be minimized with the entry-wise hard thresholding operator [3],

α̂Gk = hard(γrGk ,
√

2τ) = γrGk ∗ 1
(
|γrGk | −

√
2τ
)
, (3.21)

where ∗ is the entry-wise product of vectors and 1(·) is the indicator function

1(x) =

1 if xi > 0

0 if xi ≤ 0
.

u-subproblem

To minimize (3.12), we first derive the optimality condition as follows.
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Proposition 3.2. The optimality condition of (3.12) is

HT Hu− y
γ2 + (Hu− y)2

+ µ(u−DG ◦α(t+1)
G + b(t)) = 0, (3.22)

where the division implies the entry-wise division.

Proof. Let u = (u1, u2, . . . , uN) ∈ RN , y = (y1, y2, . . . , yN) ∈ RN , DG ◦

α
(t+1)
G − b(t) = (v1, v2, . . . , vN) ∈ RN and H = (hij) ∈ RN×N . Then, the

objective function in (3.12) can be written as

F (u1, u2, . . . , uN) :=
1

2

N∑
i=1

log

γ2 +

(
N∑
j=1

hijuj − yi

)2
+

µ

2

N∑
i=1

(ui − vi)2.

(3.23)

By taking the partial derivative of F with respect to uk,

∂

∂uk
F (u1, u2, . . . , uN) =

N∑
i=1

hik

(∑N
j=1 hijuj − yi

)
γ2 +

(∑N
j=1 hijuj − yi

)2 + µ(uk − vk)

=
N∑
i=1

hik

[
Hu− y

γ2 + (Hu− y)2

]
i

+ µ(uk − vk) (3.24)

Therefore, the gradient of F is represented as (3.22) in the vector form.

The solution of (3.22) is dependent on the degradation operator H . In

denoising, H is the identity operator and (3.22) becomes a cubic equation

by multiplying with the denominator, which can be written as

a(u− y)3 + b(u− y)2 + c(u− y) + d = 0, (3.25)
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where a = µ, b = µ(y −DG ◦ α(t+1)
G + b(t)), c = 1 + µγ2, d = µγ2(y −DG ◦

α
(t+1)
G + b(t)). The cubic equation (3.25) can be solved explicitly using the

cubic root formula, which can be expressed in terms of real functions as the

following [68]:

Proposition 3.3. For the cubic equation

ax3 + bx2 + cx+ d = 0, where a 6= 0, (3.26)

define p = 3ac−b2
9a2

, q = 2b3−9abc+27a2d
27a3

and the discriminant ∆ = 4p3 + q2. If

∆ > 0, the cubic equation (3.26) has only one real root, which is given by

x =
3

√
−q +

√
q2 + 4p3

2
+

3

√
−q −

√
q2 + 4p3

2
− b

3a
. (3.27)

Otherwise, if ∆ ≤ 0, then (3.26) has three real roots (possibly equal), which

are given by

x = 2
√
−p cos

cos−1 −q
2
√
−p3

+ 2kπ

3
− b

3a
, k = 0, 1, 2. (3.28)

If the equation (3.25) has three real roots, the correct solution is selected

to yield the minimal value of the objective function (3.12).

In deblurring and denoising, H is not the identity operator and the op-

timality condition (3.22) cannot be solved explicitly. Here, the gradient de-

scent algorithm is utilized as

u← u− η
[
HT Hu− y

γ2 + (Hu− y)2
+ µ(u−DG ◦α(t+1)

G + b(t))

]
. (3.29)

27



CHAPTER 3. PROPOSED MODELS

By assuming the periodic boundary condition, the blurring operator H and

its transpose HT are block circulant with circulant blocks, which can be

efficiently computed using the two-dimensional (2-D) fast Fourier transform

as follows [17, 45]:

u← u− η

[
F−1

(
F(h) ∗ F

(
F−1(F(h) ∗ F(u))− y

γ2 + (F−1(F(h) ∗ F(u))− y)2

))

+ µ(u−DG ◦α(t+1)
G + b(t))

]
, (3.30)

where the variables are viewed as matrices, ∗ is the entry-wise product of

the matrices, F is the 2-D discrete Fourier transform, and h is the padded

blur kernel of H .

In Algorithm 2, the full description of the proposed algorithm is provided.

3.1.4 Numerical Experiments

Various numerical experiments were designed to investigate the performance

of the proposed algorithm, including image denoising and deblurring. The

test images are presented in Fig. 3.1: 12 grayscale images of size 256× 256,

whose values are in the range of [0, 255]. All experiments were performed

using MATLAB R2017b and Windows 10 on a PC with Intel(R) Core(TM)

i7-4790 CPU @ 3.60 GHz, 16.0 GB RAM.

In the following experiments, Cauchy noise with probability density func-

tion (2.2), scale parameter γ, and localization parameter δ = 0 is generated

using [37]

y = Hx+ n = Hx+ γ
η1
η2
, (3.31)

where η1 and η2 are two independent Gaussian random variables with mean

0 and variance 1. We assume that y is restricted to [0, 255] after the noise
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Algorithm 2 GSR algorithm for Cauchy noise (GSRC)

Input: the noisy image y, the degradation operator H , parameters P , s,

L, c, T , λ, µ.

1: Initialization: t = 0, u(0) = y, b(0) = 0.

2: repeat

3: Set r = u(t) + b(t), τ = λK/µN .

4: Construct the group rGk by obtaining similar patches using the dis-

tance (3.9).

5: for each group rGk do

6: Construct the dictionary DGk from (3.17) and (3.18).

7: Compute α̂Gk by (3.21).

8: end for

9: Update D
(t+1)
G by concatenating all DGk .

10: Update α
(t+1)
G by concatenating all α̂Gk .

11: Compute D
(t+1)
G ◦α(t+1)

G by (2.16).

12: if H is the identity operator then

13: Update u(t+1) by solving (3.25), using (3.27) or (3.28).

14: else if H is a blurring operator then

15: Update u(t+1) by (3.30).

16: end if

17: Update b(t+1) by (3.13).

18: t← t+ 1.

19: until t < T

Output: the restored image u(T ).
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(a) Baby (b) Barbara (c) Beauty (d) Boats

(e) Cameraman (f) Einstein (g) Goldhill (h) House

(i) Lena (j) Parrot (k) Peppers (l) Plane

Figure 3.1: Original test images.

is generated; hence, y = max(0,min(y, 255)). For comparison, the degraded

image y is restored by three different methods: our algorithm (GSRC), the

median filter (MED) [30], and the total variation with overlapping group

sparsity model (OGSTV). OGSTV [21] is a recently developed method that

improves TV models using the sparsity and group sparsity of the gradient.

The quality of the recovered images from different algorithms are ex-

amined by two widely used criteria: peak signal-to-noise ratio (PSNR) and
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structural similarity index (SSIM) [59], which are defined as

PSNR(u, ũ) = 10 log10

2552

‖u− ũ‖2F/N
,

SSIM(u, ũ) =
(2µuµũ + c1)(2σuũ + c2)

(µ2
u + µ2

ũ + c1)(σ2
u + σ2

ũ + c2)
,

where u is the original image and ũ is the recovered image; N is the image

size; µu and µũ are their respective averages, σu and σũ are their respective

standard deviations; σuũ is the covariance of u and ũ; c1, c2 are constants.

The parameters are as follows: The image size N is 256 × 256, and the

patch size P is set to 6× 6. The stride between overlapping patches s is set

to 2; thus, the number of overlapping patches n is 128× 128. The training

window size L×L is set as 20× 20, and the number of similar patches in a

group c is selected as 60. The maximum iteration number T of the algorithm

is set to 10 for denoising and 30 for deblurring and denoising combined. The

regularization parameter λ and the penalty parameter µ are adjusted to yield

the best results in different simulations, which are presented in the following

sections. For a fair comparison, the parameters of all algorithms are fixed

for different image types. A detailed discussion of the parameter selection is

provided in Section 3.1.5.

Image Denoising

The pure denoising problem is simulated, where H is the identity operator.

The test images are corrupted by Cauchy noise with two different noise lev-

els, γ = 5 and γ = 10. The parameters λ and µ are set as follows: For

γ = 5, λ = 0.13, µ = 0.008 are used; for γ = 10, λ = 0.09, µ = 0.004 are

used. However, to produce fine results, different λ values are used at the

first iteration: λ(0) = 2 for both noise levels. This initialization technique is

discussed in detail in Section 3.1.5.
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Noisy

MED

OGSTV

GSRC

Figure 3.2: Comparison of different methods for restoring images degraded
by Cauchy noise (γ = 5).
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Noisy

MED

OGSTV

GSRC

Figure 3.3: Comparison of different methods for restoring images degraded
by Cauchy noise (γ = 10).
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Original

MED

OGSTV

GSRC

Figure 3.4: The zoomed-in version of the restored images in Fig. 3.2.
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Original

MED

OGSTV

GSRC

Figure 3.5: The zoomed-in version of the restored images in Fig. 3.3.
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Table 3.1: The PSNR and SSIM values of the images degraded by Cauchy
noise (γ = 5) and the restored images by different methods. The best values
are marked in bold.

Image PSNR SSIM

Noisy MED OGSTV GSRC Noisy MED OGSTV GSRC

Baby 19.27 31.44 32.56 34.77 0.3093 0.8762 0.9069 0.9454

Barbara 19.23 25.86 28.92 34.46 0.4380 0.7906 0.8657 0.9517

Beauty 19.20 29.87 33.01 38.84 0.2932 0.8958 0.9122 0.9663

Boats 19.24 29.18 30.92 33.93 0.4046 0.8340 0.8805 0.9318

Cameraman 19.15 26.14 29.07 30.56 0.3542 0.7842 0.8710 0.8910

Einstein 19.21 30.48 31.43 32.71 0.3358 0.8001 0.8371 0.8576

Goldhill 19.27 29.32 30.78 32.04 0.3944 0.8132 0.8512 0.8899

House 19.30 31.01 32.83 35.84 0.2911 0.8030 0.8597 0.9079

Lena 19.20 29.62 30.99 33.63 0.3624 0.8555 0.8855 0.9338

Parrot 19.20 27.11 29.73 30.69 0.3873 0.8243 0.8807 0.9045

Peppers 19.21 29.44 30.77 32.23 0.3867 0.8514 0.8838 0.9113

Plane 19.31 28.65 30.65 31.81 0.3844 0.8624 0.8985 0.9253

Average 19.23 29.01 30.97 33.46 0.3618 0.8326 0.8777 0.9180

In Figs. 3.2 and 3.3, we show the noisy images and the restored images

using different methods at the two noise levels, γ = 5 and γ = 10. As shown,

the median filter reduces the intensive variation of the Cauchy noise well but

does not remove low-intensity noise. In contrast, OGSTV captures the over-

all noise better but yields staircase artifacts. Compared with these methods,

the proposed GSRC efficiently removes Cauchy noise and restores a smooth

region, while preserving the fine details without any artifacts.

The visual difference can be highlighted in zoomed-in images, which are

provided in Figs. 3.4 and 3.5. While other methods cannot clearly restore the

texture pattern of Barbara, the smooth regions of Beauty, and the edges of
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Table 3.2: The PSNR and SSIM values of the images degraded by Cauchy
noise (γ = 10) and the restored images by different methods. The best values
are marked in bold.

Image PSNR SSIM

Noisy MED OGSTV GSRC Noisy MED OGSTV GSRC

Baby 16.40 28.52 29.82 32.42 0.1904 0.7434 0.8411 0.9197

Barbara 16.35 24.61 26.42 31.84 0.2980 0.6990 0.7763 0.9208

Beauty 16.33 27.75 30.34 35.66 0.1703 0.7750 0.8432 0.9490

Boats 16.36 27.00 28.24 31.36 0.2719 0.7336 0.8041 0.8924

Cameraman 16.24 24.88 27.13 28.78 0.2421 0.6606 0.7952 0.8434

Einstein 16.31 28.09 28.96 31.01 0.2107 0.6971 0.7616 0.8120

Goldhill 16.35 27.20 28.28 29.80 0.2487 0.7183 0.7698 0.8194

House 16.40 28.22 30.03 33.93 0.1847 0.6728 0.7830 0.8747

Lena 16.31 27.27 28.32 31.40 0.2399 0.7410 0.8073 0.9041

Parrot 16.31 25.43 27.37 28.79 0.2700 0.7084 0.8096 0.8684

Peppers 16.30 27.13 28.09 30.49 0.2616 0.7496 0.8143 0.8831

Plane 16.43 26.62 28.02 29.76 0.2662 0.7431 0.8313 0.8940

Average 16.34 26.89 28.42 31.27 0.2379 0.7202 0.8031 0.8817

House, it is obvious that GSRC yields outstanding results. For a quantita-

tive comparison, we list the PSNR and SSIM values of the noisy images and

restored images in Tables 3.1 and 3.2. Our method always yields the high-

est PSNR and SSIM values, which represent the superior quality of the re-

stored images. Particularly, compared with OGSTV, our method yields 2.49

dB higher PSNR values on average for the low noise case (γ = 5) and 2.85

dB higher for the heavy noise case (γ = 10).

To further compare with other methods, in Fig. 3.6, we provide the re-

sults of removing Cauchy noise with γ = 5 using the original GSR method

[66], the nonconvex TV model (NCTV) [43], and the nonlocal myriad filter
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(a) GSR: 27.84 (b) NCTV: 30.51 (c) Myriad: 30.60 (d) GSRC: 33.93

(e) GSR: 31.42 (f) NCTV: 31.95 (g) Myriad: 32.30 (h) GSRC: 35.84

Figure 3.6: Comparison of the restored images by different methods for re-
moving Cauchy noise (γ = 5). The PSNR values are shown below each im-
age. From left to right: GSR, NCTV, Myriad, GSRC.

[37]. It is clear that the original GSR model produces oversmoothed images,

thus justifying the adaptation of GSR for the Cauchy noise. NCTV and the

myriad filter suffer from noise or artifacts. It is obvious that GSRC performs

the best in both visual and numerical comparisons.

Image Deblurring and Denoising

The deblurring and denoising problems were simulated simultaneously, where

H is given by a blurring operator. The test images were first blurred with

either a Gaussian blur kernel of size 9 and standard deviation 1, or a motion

blur kernel of length 8 and angle 30◦; subsequently, Cauchy noise with γ = 5

was added. The parameters λ and µ were set as follows: For the Gaussian

blur, λ = 0.05, µ = 0.003 were used; for the motion blur, λ = 0.05, µ = 0.001

38



CHAPTER 3. PROPOSED MODELS

were used. In both cases, the initial different values of λ(0) were not used,

and λ was constant for all iterations. The gradient descent algorithm (3.30)

was executed for 300 iterations, with a step size η = 80.

Table 3.3: The PSNR and SSIM values of the images degraded by a Gaus-
sian blur (size 9 and standard deviation 1) and Cauchy noise (γ = 5) and the
restored images by different methods. The best values are marked in bold.

Image PSNR SSIM

Blurred MED OGSTV GSRC Blurred MED OGSTV GSRC

Baby 18.97 28.96 30.87 33.07 0.2678 0.8308 0.8591 0.9213

Barbara 18.39 24.18 25.01 29.33 0.2988 0.6842 0.7217 0.8648

Beauty 19.04 30.23 31.47 36.62 0.2714 0.8829 0.8846 0.9536

Boats 18.81 27.06 28.88 31.02 0.3256 0.7720 0.8161 0.8819

Cameraman 18.30 24.47 26.52 28.00 0.2588 0.7356 0.7880 0.8317

Einstein 18.75 27.46 29.11 31.53 0.2511 0.7447 0.7748 0.8290

Goldhill 18.87 27.56 28.84 30.19 0.3016 0.7383 0.7768 0.8322

House 19.03 29.00 30.96 33.66 0.2409 0.7757 0.8028 0.8586

Lena 18.77 27.25 28.88 30.95 0.2982 0.7970 0.8298 0.8980

Parrot 18.38 24.47 27.19 28.64 0.3104 0.7777 0.8214 0.8694

Peppers 18.40 25.28 26.78 29.59 0.3056 0.7870 0.8157 0.8769

Plane 18.76 26.11 28.18 29.96 0.3112 0.7977 0.8365 0.8949

Average 18.71 26.84 28.56 31.05 0.2868 0.7770 0.8106 0.8760

In Figs. 3.7 and 3.8, we present the degraded images and restored images

from different methods for the cases of Gaussian blur and motion blur, re-

spectively. We observed that the median filter smoothes out the details and

noise while not deblurring the images, which remain fuzzy especially in the

motion blur case. OGSTV exhibits better deblurring performance but pro-

duces noise and artifacts. By contrast, our method shows exceptional perfor-

mance in both deblurring and denoising, while maintaining the fine details
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Blurred

MED

OGSTV

GSRC

Figure 3.7: Comparison of different methods for restoring images degraded
by a Gaussian blur (size 9 and σ = 1) and Cauchy noise (γ = 5).
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Blurred

MED

OGSTV

GSRC

Figure 3.8: Comparison of different methods for restoring images degraded
by a motion blur (length 8 and angle 30◦) and Cauchy noise (γ = 5).
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Original

MED

OGSTV

GSRC

Figure 3.9: The zoomed-in version of the restored images in Fig. 3.7.
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Original

MED

OGSTV

GSRC

Figure 3.10: The zoomed-in version of the restored images in Fig. 3.8.
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Table 3.4: The PSNR and SSIM values of the images degraded by a motion
blur (length 8 and angle 30◦) and Cauchy noise (γ = 5) and the restored
images by different methods. The best values are marked in bold.

Image PSNR SSIM

Blurred MED OGSTV GSRC Blurred MED OGSTV GSRC

Baby 18.48 25.86 28.44 30.91 0.2287 0.7590 0.7982 0.8618

Barbara 17.72 22.92 23.96 27.19 0.2154 0.5936 0.6624 0.7982

Beauty 18.87 28.77 29.84 33.85 0.2520 0.8473 0.8417 0.9090

Boats 18.23 24.51 26.54 28.65 0.2599 0.6694 0.7361 0.8069

Cameraman 17.48 22.17 24.49 26.85 0.1934 0.6480 0.7300 0.7734

Einstein 18.22 24.98 26.89 29.60 0.1837 0.6267 0.6900 0.7534

Goldhill 18.45 25.47 27.15 28.59 0.2402 0.6333 0.7071 0.7720

House 18.62 26.34 29.10 31.87 0.2074 0.7169 0.7597 0.8121

Lena 18.21 24.62 27.01 29.12 0.2449 0.7083 0.7690 0.8409

Parrot 17.56 22.09 25.18 27.29 0.2583 0.6993 0.7728 0.8188

Peppers 17.80 23.19 25.13 28.64 0.2549 0.7045 0.7580 0.8321

Plane 18.08 23.69 25.84 27.76 0.2449 0.7074 0.7671 0.8252

Average 18.14 24.55 26.63 29.19 0.2320 0.6928 0.7493 0.8170

of the images.

From the zoomed-in results in Figs. 3.9 and 3.10, the differences with

other methods can be clarified. Compared with the blurry results from MED

and the noisy details from OGSTV, our method can restore the stripes of

Barbara, the eye of Beauty, and the stem of Peppers more clearly without

artifacts. As shown in Tables 3.3 and 3.4, GSRC always obtains the highest

PSNR and SSIM values. Specifically, GSRC outperforms OGSTV by 2.49

dB on average in the Gaussian blur case and by 2.56 dB in the motion blur

case.
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3.1.5 Discussion

Initialization Technique

(a) I: 19.57 (b) II: 26.25 (c) III: 34.46

(d) I: 16.51 (e) II: 25.49 (f) III: 31.84

Figure 3.11: Results of GSRC from different initial conditions for the images
degraded by Cauchy noise (first row: γ = 5; second row: γ = 10). The PSNR
values are shown below each image. From left to right: (I) u(0) = y, λ fixed;
(II) u(0) = med(y), λ fixed; (III) u(0) = y, λ(0) = 2.

Because the data fidelity term of the proposed GSRC (3.7) is nonconvex,

the solution may depend on the initial guess u(0) of the image. To investigate

this, three experiments are designed to denoise the Barbara image corrupted

by Cauchy noise with γ = 5 and γ = 10. The proposed GSRC is applied with
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different initial conditions as follows. (I): u(0) is the noisy image y and λ is

fixed. (II): u(0) is the median filtered noisy image med(y) and λ is fixed.

(III): u(0) is the noisy image y and λ is fixed except at λ(0) = 2. In all

cases, the fixed value of the regularization parameter λ and other parameter

values are the same as those in Section 3.1.4.

The results are presented in Fig. 3.11. As shown, in (I), denoising barely

occurred while in (II), the fine features are not restored clearly. To obtain

better results from the noisy image in (I), λ should be increased, but then

the denoising result will be too smoothed to capture the details. In other

words, λ should be sufficiently low to avoid oversmoothing and high enough

to smooth out noise from the initial image. To balance this, consider the

αG-subproblem (3.11) at the first iteration of the algorithm. By enforcing

the sparsity regularization intensively with a high value of λ(0) at the first it-

eration, the initial noise is effectively reduced. Subsequently, the small value

of λ is used to remove noise while maintaining the details. Compared with

(I) or (II), the initialization technique of selecting a high λ(0) yields by far

the best results in (III).

Analysis of Parameters

Plenty of parameters can be adjusted in the GSRC algorithm, as shown in

Section 3.1.4. Therefore, the tuning of the optimal parameters while consid-

ering all variations of the parameters is difficult. Nonetheless, we performed

extensive tests to tune the parameters; for example, we used the patch size

P = [6× 6, 7× 7, 8× 8], the stride between patches s = [2, 3, 4], the training

window size L×L for L = [20, 30, 40], and the number of patches in a group

c = [40, 50, 60, 70, 80].

The test results of these parameters are not discussed herein. Nonethe-

less, we provide the results for two crucial parameters: the regularization pa-

rameter λ and the penalty parameter µ. In Fig. 3.12, the PSNR values of
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(c) Gaussian blur

1 2 3 4 5 6 7

10-3

20

25

30

35

40

P
S

N
R

Beauty
Barbara
House
Cameraman

(d) Gaussian blur

Figure 3.12: Plots of the PSNR values versus the parameter values of GSRC
for 4 test images in the two experimental simulations. (a) and (b): PSNR
values versus λ and µ, respectively, for noisy images with γ = 5; (c) and (d):
PSNR values versus λ and µ, respectively, for Gaussian blurred and noisy
images with γ = 5.
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the results from varying λ and µ are plotted, in the experiments of restor-

ing noisy images with γ = 5 and Gaussian blurred and noisy images with

γ = 5. Because of the time consumption, we tuned the parameters based

on the experiments on the image Cameraman; however, Fig. 3.12 indicates

that λ and µ exhibit consistent behaviors, implying the stable performance

of the proposed algorithm. In fact, we noticed that the fine tuning for each

image could yield better results.

Analysis of Convergence

As shown in Section 3.1.5, the nonconvex property of GSRC causes it to de-

pend on the initial image, and it does not have a global optimizer. Hence,

a theoretical proof of the convergence of the algorithm to a global minimum

cannot be obtained. Nonetheless, we present the numerical analysis of the

convergence. In Fig. 3.13, the PSNR values versus the iteration number are

shown for different types of images in all experimental simulations of Sec-

tion 3.1.4. As shown, the PSNR values increase monotonically and converge

asymptotically, which support the numerical convergence of the algorithm.

3.2 Proposed Model 2: GSRS

In this section, we utilize GSR framework to restore images corrupted by

speckle noise. Since the speckle noise is the multiplicative noise with Gamma

distribution, the original GSR model should be adapted in a proper manner.

We propose the modeling of GSRS via MAP estimation and introduce the

patch distance for speckle noise. The relevant techniques and the analyses

are also discussed.
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(a) Cauchy noise γ = 5
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Figure 3.13: Plots of the PSNR values versus the iteration number of GSRC
for 5 test images in experiments for restoring images degraded by (a) Cauchy
noise with γ = 5; (b) Cauchy noise with γ = 10; (c) Gaussian blur and
Cauchy noise with γ = 5; (d) motion blur and Cauchy noise with γ = 5.
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3.2.1 GSRS Modeling via MAP Estimator

The `2 data fidelity term in (2.17) and the Cauchy data fidelity term in

(3.7) are not suitable for the speckle noise. In the AA model [4], the data

fidelity term appropriate for speckle noise is derived using MAP estimation,

and the convex data fidelity term are introduced in [54, 56]. Following these,

we derive the modeling of GSRS.

Recall the multiplicative noise formulation y = x ∗ n, where we want

to restore the original image x from the noisy image y, and n follows the

Gamma distribution. We consider y(i), x(i) as random variables for each i =

1, 2, . . . , N . The MAP estimation is to find x̂, which maximizes the posterior

probability P (x | y). Using Bayes’ theorem,

x̂ = arg max
x

P (x | y) = arg max
x

P (y | x)P (x)

P (y)

= arg max
x

P (y | x)P (x). (3.32)

It is equivalent to find the minimizer of the negative logarithm of (3.1) as

the following:

x̂ = arg min
x
− logP (y | x)− logP (x). (3.33)

From the assumption that the image values are independent and identically

distributed, we have P (y | x) =
∏N

i=1 P (y(i) | x(i)). Considering the proba-

bility density function (2.8) of speckle noise and the fact that Py|x(y | x) =

Pn( y
x
) 1
x

(see [4, 31]),

P (y(i) | x(i)) =
LLy(i)L−1

Γ(L)x(i)L
e−L

y(i)
x(i) . (3.34)
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We use the regularizer for the prior probability P (x) as

P (x) = exp(−LλΨ(x)), (3.35)

where λ > 0 is a regularization parameter. Substituting these into (3.33),

we have

x̂ = arg min
x
− log

N∏
i=1

P (y(i) | x(i)) + LλΨ(x)

= arg min
x
−

N∑
i=1

log

(
LLy(i)L−1

Γ(L)x(i)L
e−L

y(i)
x(i)

)
+ LλΨ(x)

= arg min
x

N∑
i=1

log
(
x(i)LeL

y(i)
x(i)

)
+ LλΨ(x)

= arg min
x

N∑
i=1

L

(
logx(i) +

y(i)

x(i)

)
+ LλΨ(x) (3.36)

where we omit the unnecessary constants. The variational model for speckle

noise reduction can be written as

arg min
x

〈
logx+

y

x
,1
〉

+ λΨ(x), (3.37)

where 〈·, ·〉 denotes the standard inner product and 1 ∈ RN is a vector of

ones. This is the derivation of the AA model if Ψ(x) = ‖∇x‖1 is used.

To derive the I-divergence fidelity term in [56], we use

Ψ(x) =

∫
Φ′(x)

x
=

Φ(x)

x
+

∫
Φ(x)

x2
. (3.38)
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Then we have the optimality condition of (3.37) as

1

x
− y

x2
+ λ

Φ′(x)

x
= 0, (3.39)

which is equivalent to (for x > 0)

1− y
x

+ λΦ′(x) = 0. (3.40)

Corresponding to this optimality condition is the I-divergence model [56]

arg min
x
〈x− y logx,1〉+ λΦ(x). (3.41)

From the assumption of GSR, we consider x ≈DG ◦αG (see (2.16)) and

the regularization term as Φ(αG) = ‖αG‖0. Hence the modeling of GSRS

can be formulated as

arg min
αG

〈DG ◦αG − y log (DG ◦αG) ,1〉+ λ‖αG‖0. (3.42)

3.2.2 Patch Distance for Speckle Noise

Since the image patches have different noise density distribution, the appro-

priate patch distance for speckle noise should be considered in the process

of group construction (Section 2.3.1). By using the suitable patch distance,

similar patches can be found well and the overall performance of algorithm

can be improved. The patch similarity for the speckle noise has been pre-

sented in [18, 48] as follows.

Given two patches y1,y2 of initial noisy image, the patch distance for
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speckle noise in the initial step is defined by

d0(y1,y2) = (2L− 1)
P∑
i=1

log

[√
y1(i)√
y2(i)

+

√
y2(i)√
y1(i)

]
. (3.43)

After the initial step of the algorithm, we have an estimate x of original

image. The patch distance for two patches x1,x2 in the following step is

defined by

d(x1,x2) =
P∑
i=1

[
(2L− 1) log

(√
y1(i)√
y2(i)

+

√
y2(i)√
y1(i)

)
+ γL

|x1(i)− x2(i)|2

x1(i)x2(i)

]
.

(3.44)

Hence, when we find similar patches to construct the group xGk , (3.43) is

used at the first iteration and then (3.44) is used.

3.2.3 The ADMM Algorithm for Solving (3.42)

Although the data fidelity term of (3.42) is convex, the `0 regularization

term is nonconvex and the optimization problem is hard to solve. To find

the minimizer efficiently, we again adopt the ADMM algorithm which was

introduced in Section 2.4. As mentioned, the nonconvex ADMM was proven

to have subsequential convergence to a stationary point [58].

By introducing an auxiliary variable u, we have the equivalent formula-

tion of (3.42) as the constrained version

arg min
αG,u

〈u− y logu,1〉+ λ‖αG‖0, s.t. u = DG ◦αG. (3.45)

We apply the ADMM algorithm (see Algorithm 1) for an efficient optimiza-

tion. By setting f(αG) = λ‖αG‖0 and g(u) = 〈u− y logu,1〉, (3.45) can

be minimized by iteratively solving the two subproblems of αG and u, with
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the update of the dual variable b as follows:

α
(t+1)
G = arg min

αG

λ‖αG‖0 +
µ

2
‖u(t) −DG ◦αG + b(t)‖22 (3.46)

u(t+1) = arg min
u
〈u− y logu,1〉+

µ

2
‖u−DG ◦α(t+1)

G + b(t)‖22 (3.47)

b(t+1) = b(t) + u(t+1) −DG ◦α(t+1)
G (3.48)

In the following, we explain the details to solve the αG-subproblem (3.46)

and the u-subproblem (3.47).

αG-subproblem

Because the αG-subproblem (3.46) is the same as in GSRC and the original

GSR model, we briefly explain and refer to [66]. The αG-subproblem can

be summarized as

arg min
αG

1

2
‖x− r‖22 +

λ

µ
‖αG‖0, (3.49)

where x = DG ◦αG, and r = u(t) + b(t) is a noisy version of x.

Substituting the approximation of (3.15) into (3.49) yields the equivalent

formulation

arg min
αG

n∑
k=1

(
1

2
‖xGk − rGk‖2F + τ‖αGk‖0

)
, (3.50)

where τ = λK
µN

. Applying the singular value decomposition to rGk ∈ RP×c

gives

rGk = UGkΣGkV
T
Gk

=
m∑
i=1

γrGk ,i(uGk,ivGk,i
T ), (3.51)

where ΣGk = diag(γrGk ), γrGk = [γrGk ,1,γrGk ,2, . . . ,γrGk ,m] ∈ Rm is the sin-

gular value vector and uGk,i,vGk,i are the columns of UGk ,VGk , respectively.
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Define the self-adaptive dictionary by

DGk = [dGk,1,dGk,2, . . . ,dGk,m], (3.52)

where the atoms are defined by

dGk,i = uGk,ivGk,i
T , i = 1, 2, . . . ,m. (3.53)

The αGk-subproblem is to find xGk = DGkαGk , given that rGk = DGkγrGk .

Since UGk and VGk are unitary, the n subproblems for the αGk of (3.50) can

be solved by

arg min
αGk

1

2
‖αGk − γrGk‖

2
F + τ‖αGk‖0. (3.54)

(3.54) is obtained by the entry-wise hard thresholding operator [3],

α̂Gk = hard(γrGk ,
√

2τ) = γrGk ∗ 1
(
|γrGk | −

√
2τ
)
, (3.55)

where 1(·) is the indicator function 1(x) =

1 if xi > 0

0 if xi ≤ 0
.

u-subproblem

The optimality condition of (3.47) is given by

1− y
u

+ µ(u−DG ◦α(t+1)
G + b(t)) = 0, (3.56)
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where the division implies the entry-wise division. By multiplying with the

denominator, (3.56) becomes a quadratic equation:

µu2 + (1− µDG ◦α(t+1)
G + µb(t))u− y = 0. (3.57)

It can be solved explicitly using the quadratic formula,

u =
1

2µ

(
−(1− µDG ◦α(t+1)

G + µb(t)) +

√
(1− µDG ◦α(t+1)

G + µb(t))2 + 4µy

)
.

(3.58)

Note that u > 0 is satisfied.

In Algorithm 3, the proposed algorithm is summarized.

3.2.4 Numerical Experiments

Various numerical experiments were simulated to demonstrate the perfor-

mance of the proposed algorithm for image despeckling. Test images are 8

grayscale images (6 natural images and 2 SAR images) of size 256 × 256,

whose values are in the range of [0, 255]. The test images are presented in

Fig. 3.14. All experiments were performed by using MATLAB R2017b and

Windows 10 on a PC with Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz,

16.0 GB RAM.

In the following experiments, the speckle noise with L looks which has

probability density function (2.8) is generated by

y = x ∗ n. (3.59)

We simulated experiments for 4 different look numbers, L = 1, 2, 4, 8. For

comparison, the speckled image y is restored by three methods: our algo-

rithm (GSRS), the I-divergence model (IDIV) [56], and the block matching
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Algorithm 3 GSR algorithm for speckle noise (GSRS)

Input: the noisy image y, parameters P , s, L, c, T , γ, λ, µ.

1: Initialization: t = 0, u(0) = y, b(0) = 0.

2: repeat

3: Set r = u(t) + b(t), τ = λK/µN .

4: Construct the group rGk by obtaining similar patches using the dis-

tance (3.43) or (3.44).

5: for each group rGk do

6: Construct the dictionary DGk from (3.51) and (3.53).

7: Compute α̂Gk by (3.55).

8: end for

9: Update D
(t+1)
G by concatenating all DGk .

10: Update α
(t+1)
G by concatenating all α̂Gk .

11: Compute D
(t+1)
G ◦α(t+1)

G by (2.16).

12: Update u(t+1) by solving (3.58).

13: Update b(t+1) by (3.48).

14: t← t+ 1.

15: until t < T

Output: the restored image u(T ).
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(a) Barbara (b) Beauty (c) Boats (d) Car

(e) House (f) Lena (g) SAR1 (h) SAR2

Figure 3.14: Original test images.

and three dimensional algorithm for SAR denoising (BM3DS) [48]. The I-

divergence model was implemented with PLAD algorithm [61], and the code

for BM3DS was provided by the authors.

To measure the quality of the denoised images from different algorithms,

we use peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM)

[59], which are defined as

PSNR(u, ũ) = 10 log10

2552

‖u− ũ‖2F/N
,

SSIM(u, ũ) =
(2µuµũ + c1)(2σuũ + c2)

(µ2
u + µ2

ũ + c1)(σ2
u + σ2

ũ + c2)
,

where u is the original image and ũ is the restored image.

The parameters are as follows: The image size N is 256 × 256, and the
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patch size P is 12× 12. The stride between patches s is 4, and the number

of total patches n is 64 × 64. The training window size L × L is 20 × 20,

and the number of similar patches in a group c is set to 60. The maximum

iteration number T is set to 10. The distance weight parameter γ in (3.44)

is set to 3. The penalty parameter µ is set to 0.01. The regularization pa-

rameter λ is set 39/L for L look images, however, to produce fine results,

different λ values are used at the first iteration: λ(0) = 10λ = 390/L. Also

we use a shifting technique [60], which shift values of the speckled image by

5 while processing. The initialization technique and the parameter selection

are discussed in detail in Section 3.2.5.

Table 3.5: The PSNR and SSIM values of the images degraded by speckle
noise (L = 1) and the restored images by different methods. The best values
are marked in bold.

Image PSNR SSIM

Noisy IDIV BM3DS GSRS Noisy IDIV BM3DS GSRS

Barbara 5.56 20.45 21.85 22.33 0.0654 0.4509 0.5441 0.5953

Beauty 5.42 22.53 23.55 23.87 0.0338 0.6092 0.6374 0.6996

Boats 5.36 20.80 22.13 22.17 0.0614 0.5079 0.5606 0.5681

Car 3.77 19.20 20.14 20.21 0.0663 0.4163 0.4452 0.4757

House 4.98 22.16 23.55 23.84 0.0329 0.5923 0.6028 0.6303

Lena 5.74 21.19 22.43 22.69 0.0597 0.5560 0.5870 0.6235

SAR1 5.42 17.12 17.87 17.93 0.0921 0.2855 0.3558 0.3503

SAR2 7.56 19.26 20.24 20.23 0.1350 0.4673 0.5259 0.5168

Average 5.48 20.34 21.47 21.66 0.0683 0.4857 0.5323 0.5575

In Figs. 3.15 to 3.18, we show the speckled images and the restored im-

ages using different models for 4 look numbers, L = 1, 2, 4, 8 respectively.

As shown, the I-divergence model fails to remove speckle noise effectively,

and has remaining noise which are represented as white dots in the restored
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Noisy

IDIV

BM3DS

GSRS

Figure 3.15: Comparison of different methods for restoring images degraded
by speckle noise (L = 1).
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Noisy

IDIV

BM3DS

GSRS

Figure 3.16: Comparison of different methods for restoring images degraded
by speckle noise (L = 2).
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Noisy

IDIV

BM3DS

GSRS

Figure 3.17: Comparison of different methods for restoring images degraded
by speckle noise (L = 4).
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Noisy

IDIV

BM3DS

GSRS

Figure 3.18: Comparison of different methods for restoring images degraded
by speckle noise (L = 8).
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Original

IDIV

BM3DS

GSRS

Figure 3.19: The zoomed-in version of the restored images in Fig. 3.15.
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Original

IDIV

BM3DS

GSRS

Figure 3.20: The zoomed-in version of the restored images in Fig. 3.16.
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Original

IDIV

BM3DS

GSRS

Figure 3.21: The zoomed-in version of the restored images in Fig. 3.17.
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Original

IDIV

BM3DS

GSRS

Figure 3.22: The zoomed-in version of the restored images in Fig. 3.18.
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Table 3.6: The PSNR and SSIM values of the images degraded by speckle
noise (L = 2) and the restored images by different methods. The best values
are marked in bold.

Image PSNR SSIM

Noisy IDIV BM3DS GSRS Noisy IDIV BM3DS GSRS

Barbara 8.45 21.68 23.61 24.23 0.1141 0.5130 0.6309 0.6774

Beauty 8.37 24.62 25.61 26.22 0.0601 0.6994 0.7236 0.7850

Boats 8.34 22.46 23.93 23.90 0.1052 0.5910 0.6365 0.6469

Car 6.73 20.42 21.49 21.45 0.1080 0.4960 0.5304 0.5485

House 7.92 24.20 25.59 26.06 0.0569 0.6909 0.6846 0.7216

Lena 8.65 23.01 24.28 24.54 0.1015 0.6491 0.6794 0.7038

SAR1 8.44 17.85 18.99 19.01 0.1579 0.3245 0.4399 0.4214

SAR2 10.44 20.23 21.43 21.25 0.2165 0.5146 0.6008 0.5904

Average 8.42 21.81 23.12 23.33 0.1150 0.5598 0.6158 0.6369

images. Although the BM3DS captures the speckle noise better, it does not

recover the smooth region successfully. Compared with these methods, the

proposed GSRS effectively reduces the speckle noise and restore smooth re-

gion well.

The visual comparison can be highlighted in zoomed-in versions, which

are provided in Figs. 3.19 to 3.22. Compared with other methods, GSRS

clearly restore the texture pattern of Barbara and smooth skin of Beauty.

Also it recovers the branch parts of the SAR1 image as well as the BM3DS.

To compare results quantitatively, we present the PSNR and SSIM values

of the speckled images and restored images in Tables 3.5 to 3.8. Although

our method doesn’t yield the highest PSNR and SSIM values for all cases,

it produces comparable results with BM3DS and slightly better values on

average.
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Table 3.7: The PSNR and SSIM values of the images degraded by speckle
noise (L = 4) and the restored images by different methods. The best values
are marked in bold.

Image PSNR SSIM

Noisy IDIV BM3DS GSRS Noisy IDIV BM3DS GSRS

Barbara 11.48 22.50 25.11 25.59 0.1842 0.5570 0.7038 0.7304

Beauty 11.35 26.16 27.61 28.19 0.1004 0.7328 0.7858 0.8325

Boats 11.30 23.90 25.53 25.47 0.1698 0.6469 0.7072 0.7153

Car 9.75 21.88 22.98 22.62 0.1698 0.5569 0.6049 0.6141

House 10.92 25.41 27.64 27.80 0.0948 0.7095 0.7473 0.7716

Lena 11.74 24.48 26.19 26.27 0.1597 0.6973 0.7587 0.7715

SAR1 11.43 19.06 20.42 20.33 0.2580 0.4286 0.5471 0.5289

SAR2 13.43 21.52 22.92 22.77 0.3249 0.5913 0.6861 0.6733

Average 11.43 23.11 24.80 24.88 0.1827 0.6150 0.6926 0.7047

3.2.5 Discussion

Initialization Technique

Because the regularization term of the proposed GSRS (3.42) is nonconvex,

the solution may depend on the initial condition. To show this, experiments

are designed to denoise the Car image degraded by speckle noise with L = 1,

L = 4, and L = 8. The GSRS algorithm is applied with two different initial

conditions: (I): λ is fixed. (II): λ is fixed except at λ(0) = 10λ. In all cases,

the parameter values are the same as given in Section 3.2.4.

The results are shown in Fig. 3.23. In the first row (I), there are some

artifacts which is obviously seen in the upper right corner. In the second

row (II), the unwanted artifacts are disappeared compared with (I). It can

be seen that the initialization technique of selecting a high λ(0) yields better

results and higher PSNR values.
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Table 3.8: The PSNR and SSIM values of the images degraded by speckle
noise (L = 8) and the restored images by different methods. The best values
are marked in bold.

Image PSNR SSIM

Noisy IDIV BM3DS GSRS Noisy IDIV BM3DS GSRS

Barbara 14.51 23.46 26.68 27.51 0.2792 0.6235 0.7825 0.8207

Beauty 14.37 27.42 29.45 29.88 0.1626 0.7551 0.8421 0.8700

Boats 14.31 25.15 27.24 27.16 0.2559 0.6913 0.7735 0.7778

Car 12.75 23.06 24.30 23.98 0.2470 0.6017 0.6806 0.6881

House 13.92 26.81 29.63 29.59 0.1505 0.7086 0.7977 0.8081

Lena 14.72 25.89 27.97 27.96 0.2375 0.7291 0.8176 0.8214

SAR1 14.44 20.47 21.74 21.64 0.3811 0.5501 0.6364 0.6221

SAR2 16.43 23.06 24.46 24.30 0.4505 0.6929 0.7594 0.7485

Average 14.43 24.42 26.43 26.50 0.2705 0.6690 0.7612 0.7696

Analysis of Parameters

As shown in Section 3.2.4, there are many parameters in the GSRS algo-

rithm which can be tuned. We tested to tune the parameters, for example,

the patch size P = [6 × 6, 7 × 7, 8 × 8, 10 × 10, 12 × 12], the stride between

patches s = [2, 4], and the distance weight parameter γ = [1, 2, 3, 4, 5]. We

don’t discuss the tuning results of these parameters, but we provide results

for two crucial parameters: the regularization parameter λ and the penalty

parameter µ. In Fig. 3.24, the PSNR values of the results from varying λ

and µ are plotted for the experiments of despeckling images with speckle

noise L = 1 and L = 8. Fig. 3.24 shows that λ and µ exhibit consistent

behaviors, which implies the stable performance of the GSRS algorithm.
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(a) I: 19.40 (b) I: 21.93 (c) I: 23.33

(d) II: 20.21 (e) II: 22.62 (f) II: 23.98

Figure 3.23: Results of GSRS from different initial conditions for the images
degraded by speckle noise (From left to right: L = 1, L = 4, and L = 8.).
The PSNR values are shown below each image. (I) u(0) = y, λ fixed; (II)
u(0) = y, λ(0) = 10λ.

Analysis of Convergence

Because GSRS is a nonconvex model due to its `0 regularization term, it

does not have a global optimizer. Hence the convergence of the algorithm

to a global minimum cannot be guaranteed theoretically. To compensate for

this, we present the convergence of the algorithm numerically. In Fig. 3.25,

the PSNR values versus the iteration number are shown for different images

in the despeckling experiments of Section 3.2.4. As shown, the PSNR values
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(c) speckle noise L = 8
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(d) speckle noise L = 8

Figure 3.24: Plots of the PSNR values versus the parameter values of GSRS
for 4 test images in the two experimental simulations. (a) and (b): PSNR
values versus λ and µ, respectively, for images with speckle noise L = 1; (c)
and (d): PSNR values versus λ and µ, respectively, for images with speckle
noise L = 8.
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(a) speckle noise (L = 1)
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(b) speckle noise (L = 2)
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(d) speckle noise (L = 8)

Figure 3.25: Plots of the PSNR values versus the iteration number of GSRS
for 5 test images in experiments for restoring images degraded by speckle
noise with look (a) L = 1; (b) L = 2; (c) L = 4; (d) L = 8.

are monotone increasing and converge asymptotically, which demonstrate the

numerical convergence of the algorithm.
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Conclusion

We herein propose two nonconvex variational models for restoring images

degraded by non-Gaussian noise. The first model is designed to deblur and

denoise images corrupted by Cauchy noise, and the second model is designed

to denoise images in the presence of speckle noise. We combined a regular-

izer based on the GSR and a fidelity term suitable for each noise to develop

the proposed models. The ADMM was utilized for the efficient implementa-

tion of the proposed algorithms. To mitigate the instability arising from the

nonconvexity of our models, a novel initialization technique was introduced

to obtain the desired solution. Numerical experiments demonstrated the su-

perior performance of our algorithm compared with other methods, in terms

of quantitative and qualitative measures, as well as the stable convergence.
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국문초록

영상 복원 문제에서, 영상의 비국지적인 정보를 활용하는 최근의 다양한 접

근 방식은 국지적인 특성을 활용하는 기존 방법과 비교하여 크게 개선되었다.

따라서, 우리는 비가우시안 잡음 영상을 복원하기 위해 영상 그룹 희소 표현에

기반한 두 가지 변분법적 모델을 제안한다. 제안된 모델은 각각 코시 잡음과 스

펙클 잡음 영상을 복원하도록 설계되었다. 효율적이고 안정적인 성능을 달성하

기 위해, 교대 방향 승수법과 새로운 초기화 기술이 사용된다. 실험 결과는 제

안된 방법이 시각적인 인식과 수치적인 지표 모두에서 다른 방법보다 우수함을

나타낸다.

주요어휘: 영상 복원, 영상 잡음 제거, 영상 블러 제거, 스펙클 잡음, 코시 잡음,

그룹 희소 표현, 교대 방향 승수법

학번: 2014-21191
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