420,980 research outputs found

    Effect of chromophore-chromophore electrostatic interactions in the NLO response of functionalized organic-inorganic sol-gel materials

    Full text link
    In the last years, important non-linear optical results on sol-gel and polymeric materials have been reported, with values comparable to those found in crystals. These new materials contain push-pull chromophores either incorporated as guest in a high Tg polymeric matrix (doped polymers) or grafted onto the polymeric matrix. These systems present several advantages; however they require significant improvement at the molecular level - by designing optimized chromophores with very large molecular figure of merit, specific to each application targeted. Besides, it was recently stated in polymers that the chromophore-chromophore electrostatic interactions, which are dependent of chromophore concentration, have a strong effect into their non-linear optical properties. This has not been explored at all in sol-gel systems. In this work, the sol-gel route was used to prepare hybrid organic-inorganic thin films with different NLO chromophores grafted into the skeleton matrix. Combining a molecular engineering strategy for getting a larger molecular figure of merit and by controlling the intermolecular dipole-dipole interactions through both: the tuning of the push-pull chromophore concentration and the control of TEOS (Tetraethoxysilane) concentration, we have obtained a r33 coefficient around 15 pm/V at 633 nm for the classical DR1 azo-chromophore and a r33 around 50 pm/V at 831 nm for a new optimized chromophore structure.Comment: 10 pages, 11 figures, 1 tabl

    Measurement of outflow facility using iPerfusion

    Get PDF
    Elevated intraocular pressure (IOP) is the predominant risk factor for glaucoma, and reducing IOP is the only successful strategy to prevent further glaucomatous vision loss. IOP is determined by the balance between the rates of aqueous humour secretion and outflow, and a pathological reduction in the hydraulic conductance of outflow, known as outflow facility, is responsible for IOP elevation in glaucoma. Mouse models are often used to investigate the mechanisms controlling outflow facility, but the diminutive size of the mouse eye makes measurement of outflow technically challenging. In this study, we present a new approach to measure and analyse outflow facility using iPerfusion™, which incorporates an actuated pressure reservoir, thermal flow sensor, differential pressure measurement and an automated computerised interface. In enucleated eyes from C57BL/6J mice, the flow-pressure relationship is highly non-linear and is well represented by an empirical power law model that describes the pressure dependence of outflow facility. At zero pressure, the measured flow is indistinguishable from zero, confirming the absence of any significant pressure independent flow in enucleated eyes. Comparison with the commonly used 2-parameter linear outflow model reveals that inappropriate application of a linear fit to a non-linear flow-pressure relationship introduces considerable errors in the estimation of outflow facility and leads to the false impression of pressure-independent outflow. Data from a population of enucleated eyes from C57BL/6J mice show that outflow facility is best described by a lognormal distribution, with 6-fold variability between individuals, but with relatively tight correlation of facility between fellow eyes. iPerfusion represents a platform technology to accurately and robustly characterise the flow-pressure relationship in enucleated mouse eyes for the purpose of glaucoma research and with minor modifications, may be applied in vivo to mice, as well as to eyes from other species or different biofluidic systems

    New phase-changing soft open point and impacts on optimising unbalanced power distribution networks

    Get PDF
    Three-phase unbalanced conditions in distribution networks are conventionally caused by load imbalance, asymmetrical fault conditions of transformers and impedances of three phases. The uneven integration of single-phase distributed generation (DG) worsens the imbalance situation. These unbalanced conditions result in financial losses, inefficient utilisation of assets and security risks to the network infrastructure. In this study, a phase-changing soft open point (PC-SOP) is proposed as a new way of connecting soft open points (SOPs) to balance the power flows among three phases by controlling active power and reactive power. Then an operational strategy based on PC-SOPs is presented for three-phase four-wire unbalanced systems. By optimising the regulation of SOPs, optimal energy storage systems dispatch and DG curtailment, the proposed strategy can reduce power losses and three-phase imbalance. Second-order cone programming (SOCP) relaxation is utilised to convert the original non-convex and non-linear model into an SOCP model which can be solved efficiently by commercial solvers. Case studies are conducted on a modified IEEE 34-node three-phase four-wire system and the IEEE 123-node test feeder to verify the effectiveness, efficiency and scalability of the proposed PC-SOP concept and its operational strategy

    Effective Statistical Control Strategies for Complex Turbulent Dynamical Systems

    Full text link
    Control of complex turbulent dynamical systems involving strong nonlinearity and high degrees of internal instability is an important topic in practice. Different from traditional methods for controlling individual trajectories, controlling the statistical features of a turbulent system offers a more robust and efficient approach. Crude first-order linear response approximations were typically employed in previous works for statistical control with small initial perturbations. This paper aims to develop two new statistical control strategies for scenarios with more significant initial perturbations and stronger nonlinear responses, allowing the statistical control framework to be applied to a much wider range of problems. First, higher-order methods, incorporating the second-order terms, are developed to resolve the full control-forcing relation. The corresponding changes to recovering the forcing perturbation effectively improve the performance of the statistical control strategy. Second, a mean closure model for the mean response is developed, which is based on the explicit mean dynamics given by the underlying turbulent dynamical system. The dependence of the mean dynamics on higher-order moments is closed using linear response theory but for the response of the second-order moments to the forcing perturbation rather than the mean response directly. The performance of these methods is evaluated extensively on prototype nonlinear test models, which exhibit crucial turbulent features, including non-Gaussian statistics and regime switching with large initial perturbations. The numerical results illustrate the feasibility of different approaches due to their physical and statistical structures and provide detailed guidelines for choosing the most suitable method based on the model properties

    Strategic Compensation: Does Business Strategy Influence Compensation in High-Technology Firms?

    Get PDF
    This study examined whether a firm\u27s business strategy influences the firm\u27s compensation systems in high-technology firms. For the firm strategy variable, we used innovation strategy, which is one of the most critical business strategies in the high-technology industry. Our analysis showed that a firm\u27s emphasis on innovation is positively related to the firm\u27s employee pay level, both short-term pay and long-term pay. Moreover, a firm\u27s emphasis on innovation has significant influence on several other aspects of employee compensation management. Innovation is positively associated with the difference in pay level between R&D employees and other employees, time orientation of employee compensation (the relative emphasis on long-term pay to short-term pay), and the length of the stock option vesting period. The influence of innovation is significant after controlling for industry membership

    Quantum control theory and applications: A survey

    Full text link
    This paper presents a survey on quantum control theory and applications from a control systems perspective. Some of the basic concepts and main developments (including open-loop control and closed-loop control) in quantum control theory are reviewed. In the area of open-loop quantum control, the paper surveys the notion of controllability for quantum systems and presents several control design strategies including optimal control, Lyapunov-based methodologies, variable structure control and quantum incoherent control. In the area of closed-loop quantum control, the paper reviews closed-loop learning control and several important issues related to quantum feedback control including quantum filtering, feedback stabilization, LQG control and robust quantum control.Comment: 38 pages, invited survey paper from a control systems perspective, some references are added, published versio

    Model predictive control based on LPV models with parameter-varying delays

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a Model Predictive Control (MPC) strategy based on Linear Parameter Varying (LPV) models with varying delays affecting states and inputs. The proposed control approach allows the controller to accommodate the scheduling parameters and delay change. By computing the prediction of the state variables and delay along a prediction time horizon, the system model can be modified according to the evaluation of the estimated state and delay at each time instant. Moreover, the solution of the optimization problem associated with the MPC design is achieved by solving a series of Quadratic Programming (QP) problem at each time instant. This iterative approach reduces the computational burden compared to the solution of a non-linear optimization problem. A pasteurization plant system is used as a case study to demonstrate the effectiveness of the proposed approach.Peer ReviewedPostprint (author's final draft

    Bellman equations for optimal feedback control of qubit states

    Get PDF
    Using results from quantum filtering theory and methods from classical control theory, we derive an optimal control strategy for an open two-level system (a qubit in interaction with the electromagnetic field) controlled by a laser. The aim is to optimally choose the laser's amplitude and phase in order to drive the system into a desired state. The Bellman equations are obtained for the case of diffusive and counting measurements for vacuum field states. A full exact solution of the optimal control problem is given for a system with simpler, linear, dynamics. These linear dynamics can be obtained physically by considering a two-level atom in a strongly driven, heavily damped, optical cavity.Comment: 10 pages, no figures, replaced the simpler model in section
    corecore