26 research outputs found

    A sensory-guided surgical micro-drill

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 The Authors.This article describes a surgical robotic device that is able to discriminate tissue interfaces and other controlling parameters ahead of the drill tip. The advantage in such a surgery is that the tissues at the interfaces can be preserved. A smart tool detects ahead of the tool point and is able to control the interaction with respect to the flexing tissue, to avoid penetration or to control the extent of protrusion with respect to the position of the tissue. For surgical procedures, where precision is required, the tool offers significant benefit. To interpret the drilling conditions and the conditions leading up to breakthrough at a tissue interface, a sensing scheme is used that discriminates between the variety of conditions posed in the drilling environment. The result is a fully autonomous system, which is able to respond to the tissue type, behaviour, and deflection in real-time. The system is also robust in terms of disturbances encountered in the operating theatre. The device is pragmatic. It is intuitive to use, efficient to set up, and uses standard drill bits. The micro-drill, which has been used to prepare cochleostomies in the theatre, was used to remove the bone tissue leaving the endosteal membrane intact. This has enabled the preservation of sterility and the drilling debris to be removed prior to the insertion of the electrode. It is expected that this technique will promote the preservation of hearing and reduce the possibility of complications. The article describes the device (including simulated drill progress and hardware set-up) and the stages leading up to its use in the theatre.Queen Elizabeth Hospital, Birmingham, U

    Robot-based tele-echography: clinical evaluation of the TER system in abdominal aortic exploration

    Full text link
    OBJECTIVE: The TER system is a robot-based tele-echography system allowing remote ultrasound examination. The specialist moves a mock-up of the ultrasound probe at the master site, and the robot reproduces the movements of the real probe, which sends back ultrasound images and force feedback. This tool could be used to perform ultrasound examinations in small health care centers or from isolated sites. The objective of this study was to prove, under real conditions, the feasibility and reliability of the TER system in detecting abdominal aortic and iliac aneurysms. METHODS: Fifty-eight patients were included in 2 centers in Brest and Grenoble, France. The remote examination was compared with the reference standard, the bedside examination, for aorta and iliac artery diameter measurement, detection and description of aneurysms, detection of atheromatosis, the duration of the examination, and acceptability. RESULTS: All aneurysms (8) were detected by both techniques as intramural thrombosis and extension to the iliac arteries. The interobserver correlation coefficient was 0.982 (P < .0001) for aortic diameters. The rate of concordance between 2 operators in evaluating atheromatosis was 84% +/- 11% (95% confidence interval). CONCLUSIONS: Our study on 58 patients suggests that the TER system could be a reliable, acceptable, and effective robot-based system for performing remote abdominal aortic ultrasound examinations. Research is continuing to improve the equipment for general abdominal use

    Automatic Probe Movement Guidance for Freehand Obstetric Ultrasound

    Full text link
    We present the first system that provides real-time probe movement guidance for acquiring standard planes in routine freehand obstetric ultrasound scanning. Such a system can contribute to the worldwide deployment of obstetric ultrasound scanning by lowering the required level of operator expertise. The system employs an artificial neural network that receives the ultrasound video signal and the motion signal of an inertial measurement unit (IMU) that is attached to the probe, and predicts a guidance signal. The network termed US-GuideNet predicts either the movement towards the standard plane position (goal prediction), or the next movement that an expert sonographer would perform (action prediction). While existing models for other ultrasound applications are trained with simulations or phantoms, we train our model with real-world ultrasound video and probe motion data from 464 routine clinical scans by 17 accredited sonographers. Evaluations for 3 standard plane types show that the model provides a useful guidance signal with an accuracy of 88.8% for goal prediction and 90.9% for action prediction.Comment: Accepted at the 23rd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2020

    Bilateral controllers for teleoperated percutaneous interventions : evaluation and improvements

    Full text link

    Computer- and robot-assisted Medical Intervention

    Full text link
    Medical robotics includes assistive devices used by the physician in order to make his/her diagnostic or therapeutic practices easier and more efficient. This chapter focuses on such systems. It introduces the general field of Computer-Assisted Medical Interventions, its aims, its different components and describes the place of robots in that context. The evolutions in terms of general design and control paradigms in the development of medical robots are presented and issues specific to that application domain are discussed. A view of existing systems, on-going developments and future trends is given. A case-study is detailed. Other types of robotic help in the medical environment (such as for assisting a handicapped person, for rehabilitation of a patient or for replacement of some damaged/suppressed limbs or organs) are out of the scope of this chapter.Comment: Handbook of Automation, Shimon Nof (Ed.) (2009) 000-00

    Kinematic optimization for the design of a collaborative robot end-effector for tele-echography

    Get PDF
    Tele-examination based on robotic technologies is a promising solution to solve the current worsening shortage of physicians. Echocardiography is among the examinations that would benefit more from robotic solutions. However, most of the state-of-the-art solutions are based on the development of specific robotic arms, instead of exploiting COTS (commercial-off-the-shelf) arms to reduce costs and make such systems affordable. In this paper, we address this problem by studying the design of an end-effector for tele-echography to be mounted on two popular and low-cost collaborative robots, i.e., the Universal Robot UR5, and the Franka Emika Panda. In the case of the UR5 robot, we investigate the possibility of adding a seventh rotational degree of freedom. The design is obtained by kinematic optimization, in which a manipulability measure is an objective function. The optimization domain includes the position of the patient with regards to the robot base and the pose of the end-effector frame. Constraints include the full coverage of the examination area, the possibility to orient the probe correctly, have the base of the robot far enough from the patient’s head, and a suitable distance from singularities. The results show that adding a degree of freedom improves manipulability by 65% and that adding a custom-designed actuated joint is better than adopting a native seven-degrees-freedom robot

    Confidence-Driven Control of an Ultrasound Probe: Target-Specific Acoustic Window Optimization

    Get PDF
    International audienceWe propose a control framework to optimize the quality of robotic ultrasound imaging while tracking an anatomical target. We use a multitask approach to control the in-plane motion of a convex probe mounted on the end-effector of a robotic arm, based not only on the position of the target in the image, but also on features extracted from an ultrasound confidence map. The resulting control law therefore guarantees a good image quality, while keeping the target aligned with the central ultrasound scan-line. Potential applications of the proposed approach are, for example, teleoperated ultrasound examination, motion compensation for ultrasound-guided interventions , or automatic ultrasound acquisition. We demonstrate our approach with experiments on an ultrasound examination training phantom in motion

    Visual Feedback System for Ultrasound Training

    Get PDF

    User requirements for a medical robotic system: Enabling doctors to remotely conduct ultrasonography and physical examination

    Full text link
    corecore