925 research outputs found

    Constructive solution methodologies to the capacitated newsvendor problem and surrogate extension

    Get PDF
    The newsvendor problem is a single-period stochastic model used to determine the order quantity of perishable product that maximizes/minimizes the profit/cost of the vendor under uncertain demand. The goal is to fmd an initial order quantity that can offset the impact of backlog or shortage caused by mismatch between the procurement amount and uncertain demand. If there are multiple products and substitution between them is feasible, overstocking and understocking can be further reduced and hence, the vendor\u27s overall profit is improved compared to the standard problem. When there are one or more resource constraints, such as budget, volume or weight, it becomes a constrained newsvendor problem. In the past few decades, many researchers have proposed solution methods to solve the newsvendor problem. The literature is first reviewed where the performance of each of existing model is examined and its contribution is reported. To add to these works, it is complemented through developing constructive solution methods and extending the existing published works by introducing the product substitution models which so far has not received sufficient attention despite its importance to supply chain management decisions. To illustrate this dissertation provides an easy-to-use approach that utilizes the known network flow problem or knapsack problem. Then, a polynomial in fashion algorithm is developed to solve it. Extensive numerical experiments are conducted to compare the performance of the proposed method and some existing ones. Results show that the proposed approach though approximates, yet, it simplifies the solution steps without sacrificing accuracy. Further, this dissertation addresses the important arena of product substitute models. These models deal with two perishable products, a primary product and a surrogate one. The primary product yields higher profit than the surrogate. If the demand of the primary exceeds the available quantity and there is excess amount of the surrogate, this excess quantity can be utilized to fulfill the shortage. The objective is to find the optimal lot sizes of both products, that minimize the total cost (alternatively, maximize the profit). Simulation is utilized to validate the developed model. Since the analytical solutions are difficult to obtain, Mathematical software is employed to find the optimal results. Numerical experiments are also conducted to analyze the behavior of the optimal results versus the governing parameters. The results show the contribution of surrogate approach to the overall performance of the policy. From a practical perspective, this dissertation introduces the applications of the proposed models and methods in different industries such as inventory management, grocery retailing, fashion sector and hotel reservation

    Stochastic Optimization Models for Perishable Products

    Get PDF
    For many years, researchers have focused on developing optimization models to design and manage supply chains. These models have helped companies in different industries to minimize costs, maximize performance while balancing their social and environmental impacts. There is an increasing interest in developing models which optimize supply chain decisions of perishable products. This is mainly because many of the products we use today are perishable, managing their inventory is challenging due to their short shelf life, and out-dated products become waste. Therefore, these supply chain decisions impact profitability and sustainability of companies and the quality of the environment. Perishable products wastage is inevitable when demand is not known beforehand. A number of models in the literature use simulation and probabilistic models to capture supply chain uncertainties. However, when demand distribution cannot be described using standard distributions, probabilistic models are not effective. In this case, using stochastic optimization methods is preferred over obtaining approximate inventory management policies through simulation. This dissertation proposes models to help businesses and non-prot organizations make inventory replenishment, pricing and transportation decisions that improve the performance of their system. These models focus on perishable products which either deteriorate over time or have a fixed shelf life. The demand and/or supply for these products and/or, the remaining shelf life are stochastic. Stochastic optimization models, including a two-stage stochastic mixed integer linear program, a two-stage stochastic mixed integer non linear program, and a chance constraint program are proposed to capture uncertainties. The objective is to minimize the total replenishment costs which impact prots and service rate. These models are motivated by applications in the vaccine distribution supply chain, and other supply chains used to distribute perishable products. This dissertation also focuses on developing solution algorithms to solve the proposed optimization models. The computational complexity of these models motivated the development of extensions to standard models used to solve stochastic optimization problems. These algorithms use sample average approximation (SAA) to represent uncertainty. The algorithms proposed are extensions of the stochastic Benders decomposition algorithm, the L-shaped method (LS). These extensions use Gomory mixed integer cuts, mixed-integer rounding cuts, and piecewise linear relaxation of bilinear terms. These extensions lead to the development of linear approximations of the models developed. Computational results reveal that the solution approach presented here outperforms the standard LS method. Finally, this dissertation develops case studies using real-life data from the Demographic Health Surveys in Niger and Bangladesh to build predictive models to meet requirements for various childhood immunization vaccines. The results of this study provide support tools for policymakers to design vaccine distribution networks

    ํŒ๋งค์ด‰์ง„์„ ๋„์ž…ํ•œ ์ˆ˜์š” ๋ถˆํ™•์‹ค์„ฑ ์žฌ๊ณ ๊ด€๋ฆฌ ๋ชจํ˜•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2020. 8. ๋ฌธ์ผ๊ฒฝ.As the globalization of markets accelerates competition among companies, sales promotion, which refers to short-term incentives promoting sales of products or services, plays a prominent role. Although there are various types of sales promotions, such as price reduction, buy-x-get-y-free, and trade-in program, the common purpose is to induce the purchase of customers by offering benefits. This successful strategy has caught the attention of researchers, including operations management and supply chain management. Thus, various studies have been conducted to examine strategies for ongoing operations and to demonstrate the effects of the sales promotion, which are based on the strategic level. However, research at the tactical or operational level has been conducted insufficiently. This dissertation examines the inventory models considering (i) markdown sale, (ii) buy one get one free (BOGO), and (iii) trade-in program. First, the newsvendor model is considered. By introducing the decision variable, which represents the start time of markdown sale, the retailer can obtain the optimal combination of the start time of a markdown sale and an order quantity. Under certain conditions in a decentralized system, however, the start time of a markdown sale where the retailer obtains the highest profit is the least profitable for the manufacturer. To avoid irrational ordering behavior by a retailer against a manufacturer, a revenue-sharing contract is proposed. Second, the mobile application, ``My Own Refrigerator'', is considered in the inventory model. It enables customers to store BOGO products in their virtual storage for later use. That is, customers can drop by the store to pick up the extra freebies in the future. The promotion involves a high degree of uncertainty regarding the revisiting date because customers who buy the product do not need to take both products on the day of purchase. To deal with this uncertainty, we propose a robust multiperiod inventory model by addressing the approximation of a multistage stochastic optimization model. Third, the trade-in program is considered. It is one of the sales promotions that companies collect used old-generation products from customers and provide them with new-generation products at a discount price. It also helps to acquire the additional products which are required for the refurbishment service. A multiperiod stochastic inventory model based on the closed-loop supply chain system is proposed by incorporating the trade-in program and refurbishment service simultaneously. The stochastic optimization model is approximated to the robust counterpart, which features a deterministic second-order cone program.์‹œ์žฅ์˜ ์„ธ๊ณ„ํ™”์— ๋”ฐ๋ฅธ ๊ธฐ์—… ๊ฐ„์˜ ๊ฒฝ์Ÿ์ด ๊ฐ€์†ํ™”๋จ์— ๋”ฐ๋ผ, ๋‹จ๊ธฐ ์ธ์„ผํ‹ฐ๋ธŒ๋ฅผ ํ†ตํ•ด ๊ณ ๊ฐ์˜ ์ œํ’ˆ ๋˜๋Š” ์„œ๋น„์Šค ๊ตฌ๋งค๋ฅผ ์œ ๋„ํ•˜๋Š” ํŒ๋งค์ด‰์ง„์˜ ์—ญํ• ์ด ์ค‘์š”ํ•ด์กŒ๋‹ค. ๊ฐ€๊ฒฉ ์ธํ•˜, ํ–‰์‚ฌ์ƒํ’ˆ ์ฆ์ •, ํŠธ๋ ˆ์ด๋“œ์ธํ”„๋กœ๊ทธ๋žจ๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์œ ํ˜•์˜ ํŒ๋งค์ด‰์ง„ ์ „๋žต์ด ์กด์žฌํ•˜์ง€๋งŒ, ๊ณตํ†ต๋œ ์ฃผ์š” ๋ชฉ์ ์€ ๊ธฐ์—…์ด ๊ณ ๊ฐ์—๊ฒŒ ํ˜œํƒ์„ ์ œ๊ณตํ•˜์—ฌ ๊ณ ๊ฐ์˜ ์ˆ˜์š”๋ฅผ ์ฆ๋Œ€์‹œํ‚ค๋Š” ๊ฒƒ์ด๋‹ค. ํŒ๋งค์ด‰์ง„์˜ ์„ฑ๊ณต์ ์ธ ์ „๋žต์€ ๊ฒฝ์˜๊ณผํ•™ ๋˜๋Š” ๊ณต๊ธ‰๋ง๊ด€๋ฆฌ ๋ถ„์•ผ๋ฅผ ํฌํ•จํ•œ ๊ด€๋ จ ํ•™๊ณ„์˜ ๊ด€์‹ฌ์„ ์ด๋Œ์—ˆ๋‹ค. ์ง€์†์ ์ธ ์šด์˜์„ ์œ„ํ•œ ์ „๋žต์„ ๊ฒ€ํ† ํ•˜๊ณ  ์ „๋žต์  ์ˆ˜์ค€ ๊ณ„ํš์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ํŒ๋งค ์ด‰์ง„์˜ ํšจ๊ณผ๋ฅผ ์ž…์ฆํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜ํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์šด์˜ ์ˆ˜์ค€์˜ ์†Œ๋งค์—…์ฒด ์ž…์žฅ์—์„œ์˜ ์—ฐ๊ตฌ๋Š” ๋ฏธํกํ•œ ์‹ค์ •์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” (i) ๋งˆํฌ ๋‹ค์šด (ii) buy one get one free (BOGO), ๋ฐ (iii) ํŠธ๋ ˆ์ด๋“œ์ธํ”„๋กœ๊ทธ๋žจ์„ ๊ณ ๋ คํ•œ ์žฌ๊ณ ๊ด€๋ฆฌ๋ชจํ˜•์„ ๋‹ค๋ฃฌ๋‹ค. ๋จผ์ €, ์‹ ๋ฌธ๊ฐ€ํŒ์› ๋ชจํ˜•์— ๋งˆํฌ ๋‹ค์šด ์‹œ์ž‘ ์‹œ์ ์„ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฒฐ์ • ๋ณ€์ˆ˜๋ฅผ ๋„์ž…ํ•˜์—ฌ ์ตœ์ ์˜ ๋งˆํฌ ๋‹ค์šด ์‹œ์ž‘ ์‹œ์ ๊ณผ ์ฃผ๋ฌธ๋Ÿ‰์˜ ์กฐํ•ฉ์„ ์ œ๊ณตํ•˜๋Š” ๋ชจํ˜•์„ ์ œ์•ˆํ•œ๋‹ค. ๋ถ„์‚ฐ ์‹œ์Šคํ…œ์˜ ํŠน์ • ์กฐ๊ฑด์—์„œ๋Š” ์†Œ๋งค์—…์ž๊ฐ€ ๊ฐ€์žฅ ๋†’์€ ์ด์ต์„ ์–ป๋Š” ์‹œ์ ์ด ์ œ์กฐ์—…์ž์—๊ฒŒ ๋‚ฎ์€ ์ˆ˜์ต์„ฑ์„ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ์ œ์กฐ์—…์ž์— ๋Œ€ํ•œ ์†Œ๋งค์—…์ž์˜ ๋น„ํ•ฉ๋ฆฌ์  ์ฃผ๋ฌธ์„ ๋ง‰๊ธฐ ์œ„ํ•œ ์ด์ต๋ถ„๋ฐฐ๊ณ„์•ฝ์„ ์ œ์•ˆํ•œ๋‹ค. ์ด์ต๋ถ„๋ฐฐ๊ณ„์•ฝ์„ ํ†ตํ•œ ์ค‘์•™์ง‘๊ถŒํ™” ์‹œ์Šคํ…œ์€ ๋ถ„์‚ฐ ์‹œ์Šคํ…œ์—์„œ ์–ป์€ ์ด์ต์— ๋น„ํ•ด ์†Œ๋งค์—…์ž์™€ ์ œ์กฐ์—…์ž์˜ ์ด์ต์„ ํ–ฅ์ƒ์‹œํ‚ด์„ ์ˆ˜์น˜์‹คํ—˜์„ ํ†ตํ•ด ํ™•์ธํ•˜์˜€๋‹ค. ๋‘˜์งธ, ๋ชจ๋ฐ”์ผ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜ ``๋‚˜๋งŒ์˜ ๋ƒ‰์žฅ๊ณ ''๋ฅผ ๊ณ ๋ คํ•œ ์žฌ๊ณ ๋ชจํ˜•์„ ๊ณ ๋ คํ•œ๋‹ค. ์ด ์•ฑ์„ ํ†ตํ•ด BOGO ํ–‰์‚ฌ์ œํ’ˆ์„ ๊ตฌ๋งคํ•œ ๊ณ ๊ฐ์€ ์ฆ์ •ํ’ˆ์„ ๊ตฌ๋งค ๋‹น์ผ ๋‚  ๊ฐ€์ ธ๊ฐ€์ง€ ์•Š๊ณ  ๋ฏธ๋ž˜์— ์žฌ๋ฐฉ๋ฌธํ•˜์—ฌ ์ˆ˜๋ นํ•  ์ˆ˜ ์žˆ๋Š” ํ˜œํƒ์„ ๋ฐ›๋Š”๋‹ค. ํ•˜์ง€๋งŒ ์†Œ๋งค์—…์ž ์ž…์žฅ์—์„œ๋Š” ๊ณ ๊ฐ์ด ์ฆ์ •ํ’ˆ์„ ์–ธ์ œ ์ˆ˜๋ นํ•ด ๊ฐˆ ์ง€์— ๋Œ€ํ•œ ๋ถˆํ™•์‹ค์„ฑ์ด ์กด์žฌํ•˜๋ฉฐ ์ด๋Š” ๊ธฐ์กด์˜ ์žฌ๊ณ ๊ด€๋ฆฌ ์šด์˜๋ฐฉ์‹์—๋Š” ํ•œ๊ณ„์ ์ด ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ณ ๊ฐ์˜ ์žฌ๋ฐฉ๋ฌธ์— ๋Œ€ํ•œ ๋ถˆํ™•์‹ค์„ฑ์„ ๊ณ ๋ คํ•œ ๋ณต์ˆ˜๊ธฐ๊ฐ„ ์ถ”๊ณ„๊ณ„ํš ์žฌ๊ณ ๋ชจํ˜•์„ ์ˆ˜๋ฆฝํ•˜๋ฉฐ ์ด๋ฅผ ํšจ์œจ์ ์œผ๋กœ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•œ ๊ฐ•๊ฑด์ตœ์ ํ™” ๋ชจํ˜•์œผ๋กœ ๊ทผ์‚ฌํ™”ํ•˜์˜€๋‹ค. ์…‹์งธ, ๋ฆฌํผ์„œ๋น„์Šค์™€ ํŠธ๋ ˆ์ด๋“œ์ธํ”„๋กœ๊ทธ๋žจ์„ ๊ณ ๋ คํ•œ ํํšŒ๋กœ ๊ณต๊ธ‰๋ง ์‹œ์Šคํ…œ ๊ธฐ๋ฐ˜์˜ ๋ณต์ˆ˜๊ธฐ๊ฐ„ ์žฌ๊ณ ๊ด€๋ฆฌ๋ชจํ˜•์„ ์ œ์•ˆํ•œ๋‹ค. ์‹ ์„ธ๋Œ€ ์ œํ’ˆ, ๋ฆฌํผ์„œ๋น„์Šค ๋ฐ ํŠธ๋ ˆ์ด๋“œ์ธํ”„๋กœ๊ทธ๋žจ์— ๋Œ€ํ•œ ์„ธ ๊ฐ€์ง€ ์œ ํ˜•์˜ ๋ถˆํ™•์‹คํ•œ ์ˆ˜์š”์— ๋Œ€ํ•œ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ฐ˜์˜ํ•จ์— ๋”ฐ๋ผ ๋ณต์ˆ˜๊ธฐ๊ฐ„ ์ถ”๊ณ„๊ณ„ํš ์žฌ๊ณ ๋ชจํ˜•์ด ์ˆ˜๋ฆฝ๋œ๋‹ค. ๋ณต์ˆ˜๊ธฐ๊ฐ„ ์ถ”๊ณ„๊ณ„ํš ์žฌ๊ณ ๋ชจํ˜•์˜ ๊ณ„์‚ฐ์ด ์–ด๋ ต๋‹ค๋Š” ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž ๊ฐ•๊ฑด์ตœ์ ํ™” ๋ชจํ˜•์œผ๋กœ ๊ทผ์‚ฌํ™”ํ•˜์˜€๋‹ค.Chapter 1 Introduction 1 1.1 Sales promotion 1 1.2 Inventory management 3 1.3 Research motivations 6 1.4 Research contents and contributions 8 1.5 Outline of the dissertation 10 Chapter 2 Optimal Start Time of a Markdown Sale Under a Two-Echelon Inventory System 11 2.1 Introduction and literature review 11 2.2 Problem description 17 2.3 Analysis of the decentralized system 21 2.3.1 Newsvendor model for a retailer 21 2.3.2 Solution procedure for an optimal combination of the start time of the markdown sale and the order quantity 25 2.3.3 Profi t function of a manufacturer 25 2.3.4 Numerical experiments of the decentralized system 27 2.4 Analysis of a centralized system 35 2.4.1 Revenue-sharing contract 35 2.4.2 Numerical experiments of the centralized system 38 2.5 Summary 40 2.5.1 Managerial insights 41 Chapter 3 Robust Multiperiod Inventory Model with a New Type of Buy One Get One Promotion: "My Own Refrigerator" 43 3.1 Introduction and literature review 43 3.2 Problem description 51 3.2.1 Demand modeling 52 3.2.2 Sequences of the ordering decision 54 3.3 Mathematical formulation of the IMMOR 56 3.3.1 Mathematical formulation of the IMMOR under the deterministic demand 58 3.3.2 Mathematical formulation of the IMMOR under the stochastic demand 58 3.3.3 Distributionally robust optimization approach for the IMMOR 60 3.4 Computational experiments 76 3.4.1 Experiment 1: tractability of the RIMMOR 77 3.4.2 Experiment 2: robustness of the RIMMOR 78 3.4.3 Experiment 3: e ect of duration of the expiry date under the different customers' revisiting propensities 78 3.5 Summary 83 3.5.1 Managerial insights 83 Chapter 4 Robust Multiperiod Inventory Model Considering Refurbishment Service and Trade-in Program 85 4.1 Introduction 85 4.2 Literature review 91 4.2.1 Effects of the trade-in program and strategic-level decisions for the trade-in program 91 4.2.2 Inventory or lot-sizing model in a closed-loop supply chain system 94 4.2.3 Distinctive features of this research 97 4.3 Problem description 100 4.3.1 Demand modeling 103 4.3.2 Decision of the inventory manager 105 4.4 Mathematical formulation 108 4.4.1 Mathematical formulation of the IMRSTIP under the deterministic demand model 108 4.4.2 Mathematical formulation of the IMRSTIP under the stochastic demand model 110 4.4.3 Distributionally robust optimization approach for the IMRSTIP 111 4.5 Computational experiments 125 4.5.1 Demand process 125 4.5.2 Experiment 1: tractability of the RIMRSTIP 128 4.5.3 Experiment 2: approximation error from the expected value given perfect information 129 4.5.4 Experiment 3: protection against realized uncertain factors 130 4.5.5 Experiment 4: di erences between modeling demands from VARMA and ARMA 131 4.5.6 Experiments 5 and 6: comparisons of backlogged refurbishment service with or without trade-in program 133 4.6 Summary 136 Chapter 5 Conclusions 138 5.1 Summary 138 5.2 Future research 140 Bibliography 142 Chapter A 160 A.1 160 A.2 163 A.3 163 A.4 164 A.5 165 A.6 166 Chapter B 168 B.1 168 B.2 171 B.3 172 Chapter C 174 C.1 174 C.2 174 ๊ตญ๋ฌธ์ดˆ๋ก 179Docto

    Pricing Perishables

    Get PDF
    ย A key feature of food products is their perishability. Within the short marketing window that characterizes most food and ag products, demand is typically highly stochastic and difficult to predict. This combination of features poses substantial challenges to retailers when pricing products and has implications for performance that ripples through vertical food chains. For many food products, processing to forms that can be preserved and held in inventory has traditionally been used as a means of coping with these conditions, despite its high costs and ancillary risks introduced such as change in product attributes and deterioration. This paper presents an alternative ERM strategy that focuses on dynamic pricing to control the rate of sale for perishable products. The paper considers a retailer that has market power to price and supplies perishable products to a market with substitute products and demand originating from heterogeneous consumers. Perishability implies a finite horizon for the marketing of the products over which demand across market segments of consumers is both dynamic and stochastic. Faced with uncertainty, we suppose the firm has limited information about the stochastic properties of demand and must choose a pricing strategy that projects over the market horizon. This price trajectory represents a key control mechanism to cope with uncertainty of both the perishability of the product and of demand

    Integrated Production and Distribution planning of perishable goods

    Get PDF
    Tese de doutoramento. Programa Doutoral em Engenharia Industrial e Gestรฃo. Faculdade de Engenharia. Universidade do Porto. 201

    Revenue Management Concept Training: Its Efficacy as an Intervention Methodology for Hotel Front Desk Employees and Hotel Managers

    Get PDF
    The purpose of this study was determine if a basic Revenue Management (RM) concept training program can successfully teach hotel front desk employees and managers RM fundamentals. The objectives of this study were (a) to evaluate the reaction or satisfaction level of hotel front desk employees and managers in reference to the training program, and (b) to examine the training programโ€™s effectiveness in teaching basic RM concepts. A basic revenue management training program and examination was utilized in a pre- and post-test quasi-experimental design model with a treatment and control group to examine if learning had taken place. The study consisted of 49 participants from eight hotels. Hypotheses one, two, and four were supported by the results. Based on the findings, the basic RM concept training program did successfully teach front desk employees and hotel managers RM fundamentals. The researcher suggests that future RM training programs for both the front desk employees and hotel managers to continue to focus on basic RM concepts. The researcher further suggests the RM training programs include more advanced RM concepts for the hotel managers
    • โ€ฆ
    corecore