
Clemson University Clemson University 

TigerPrints TigerPrints 

All Dissertations Dissertations 

August 2018 

Stochastic Optimization Models for Perishable Products Stochastic Optimization Models for Perishable Products 

Zahra Azadi 
Clemson University, zazadi@clemson.edu 

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations 

Recommended Citation Recommended Citation 
Azadi, Zahra, "Stochastic Optimization Models for Perishable Products" (2018). All Dissertations. 2551. 
https://tigerprints.clemson.edu/all_dissertations/2551 

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been 
accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, 
please contact kokeefe@clemson.edu. 

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_dissertations
https://tigerprints.clemson.edu/dissertations
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2551&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/2551?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2551&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


Stochastic Optimization Models for Perishable Products

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Industrial Engineering

by

Zahra Azadi

August 2018

Accepted by:

Dr. Sandra Eksioglu, Committee Chair

Dr. Burak Eksioglu

Dr. David Neyens

Dr. Kevin Taaffe

Dr. Khoa Truong



Abstract

For many years, researchers have focused on developing optimization models to design and

manage supply chains. These models have helped companies in different industries to minimize

costs, maximize performance while balancing their social and environmental impacts. There is an

increasing interest in developing models which optimize supply chain decisions of perishable products.

This is mainly because many of the products we use today are perishable, managing their inventory

is challenging due to their short shelf life, and out-dated products become waste. Therefore, these

supply chain decisions impact profitability and sustainability of companies and the quality of the

environment. Perishable products wastage is inevitable when demand is not known beforehand. A

number of models in the literature use simulation and probabilistic models to capture supply chain

uncertainties. However, when demand distribution cannot be described using standard distributions,

probabilistic models are not effective. In this case, using stochastic optimization methods is preferred

over obtaining approximate inventory management policies through simulation.

This dissertation proposes models to help businesses and non-profit organizations make

inventory replenishment, pricing and transportation decisions that improve the performance of their

system. These models focus on perishable products which either deteriorate over time or have a

fixed shelf life. The demand and/or supply for these products and/or, the remaining shelf life are

stochastic. Stochastic optimization models, including a two-stage stochastic mixed integer linear

program, a two-stage stochastic mixed integer non linear program, and a chance constraint program

are proposed to capture uncertainties. The objective is to minimize the total replenishment costs

which impact profits and service rate. These models are motivated by applications in the vaccine

distribution supply chain, and other supply chains used to distribute perishable products.

This dissertation also focuses on developing solution algorithms to solve the proposed op-

timization models. The computational complexity of these models motivated the development of
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extensions to standard models used to solve stochastic optimization problems. These algorithms

use sample average approximation (SAA) to represent uncertainty. The algorithms proposed are

extensions of the stochastic Benders decomposition algorithm, the L-shaped method (LS). These ex-

tensions use Gomory mixed integer cuts, mixed-integer rounding cuts, and piecewise linear relaxation

of bilinear terms. These extensions lead to the development of linear approximations of the models

developed. Computational results reveal that the solution approach presented here outperforms the

standard LS method.

Finally, this dissertation develops case studies using real-life data from the Demographic

Health Surveys in Niger and Bangladesh to build predictive models to meet requirements for various

childhood immunization vaccines. The results of this study provide support tools for policymakers

to design vaccine distribution networks.
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Chapter 1

Introduction

Inefficient inventory management of perishable products negatively impacts companies eco-

nomic prosperity. A new study reveals that about $5 billion worth of drugs are thrown away in

unopened packs due to expiration date [77]. Economic Research Service (ERS) of United States

Department of Agriculture (USDA) estimates that, in 2010, 45 billion pounds of available food at

retail stores in the United States was wasted [25]. This amount of wastage sums to $41.9 million

[138]. The Secretary of Agriculture and the Deputy Administrator of Environmental Protection

Agency announced that the food waste in United States, should decrease by 2030 [4]. Poor inven-

tory management of perishable products contributes to this waste. Waste negatively impacts the

environmental and is one of the sources of social problems like hunger. In the United States, food

waste accounts for 10% of the energy supplied, 80% of water consumed, and 50% of farm land used

[56]. Disposed pharmaceutical wastage often reaches the sewage system. This practice is dangerous

since pharmaceutical products contain active chemicals which impact the environment, animal and

human health. The Associated Press reported that, in 2008, drinking water used by 41 million people

in United States was contaminated by pharmaceutical residues [44]. Perishable product wastage is

also critical in developing countries. For example, vaccine wastage negatively impacts immunization

coverage by decreasing availability. Wastage occurs when a vaccine vial is physically damaged or

exposed to extreme temperatures, or when doses from an open vial are discarded after their safe use

time expires. The latter is referred to as open vial wastage (OVW). Clinics can use single-dose vials

to reduce OVW; however, such an approach is more expensive than using multi-dose vials.

For decades, optimization models have been developed to design and manage supply chains.
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These models have helped companies in different industries to minimize costs, maximize performance

while balancing their social and environmental impacts. There is an increasing interest in developing

models to support supply chain-related decisions for perishable products. Perishables are products

which either become obsolete within a fixed period of time, or loose value with time. The first

group of products is referred to in the literature as “perishable products with fixed shelf life”, and

the second group is referred to as “deteriorating products”. Some examples of perishable products

with fixed shelf life include dairy, pharmaceuticals, and blood. Electronics, foods, and groceries are

examples of deteriorating products. Perishable products are an essential part of our life, and their

out-dating is a great threat to the profitability and sustainability of companies, and quality of the

environment. The statistics about the large amounts of waste generated indicate that companies are

not doing a great job in managing perishable inventories. Based on our review of literature, there is a

limited number of models which companies can use to manage the inventory of perishable products.

However, these models do not consider integrating inventory replenishment and markdown decisions,

as well as, trade-offs between the cost of storage and transportation of perishable products when

demand and/or supply is stochastic. In order to fill this gap in the literature, we propose models

and solution algorithms which capture the specific characteristics of perishable inventories. The

challenges associated with decision making about inventory management of perishable products,

both for businesses and non-profit organizations, can be categorized as follows:

• Transportation and storage of perishable products. There are trade-offs between the cost of

storage and transportation of perishable products and the remaining product shelf life. These

decisions impact costs since excess supply leads to spoilage, but shortage results in lost sales.

Questions such as, which supplier(s) to select, how much to order, and how frequently to

replenish the inventory need to be addressed in order to optimize the system performance.

• Price markdowns. The importance of price determination for perishable products is highlighted

in many studies such as [32] and [40]. The goal is to price products in such a way that the

profits of an organization are maximized. This is not an easy task since price impacts demand.

Markdown policies are used to stimulate demand for perishable products by decreasing their

selling price. This leads to decrease in waste and increase in cost savings. Unit selling price of

a product, and the timing of markdown decisions are important and need to be addressed.

• Uncertainties in demand. Perishable products wastage is inevitable when demand is not known
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beforehand. Therefore, deterministic inventory models which do not take uncertainty into

account do not find robust solutions. Although there are studies that consider demand uncer-

tainties, for example [36], most of these studies obtain optimal policies through approximation

methods or simulation. When demand uncertainties cannot be represented using standard

distributions, probabilistic models are not effective. Developing stochastic models and exact

solution approaches is a challenging task which needs to be addressed.

• Uncertainties in supply. Replenishment decisions for perishable products are further com-

plicated by uncertainties in the amount and quality of shipments received from suppliers.

Dual-sourcing is a policy often used by retailers to mitigate the risks of supply uncertainties

[84]. In this setting, usually, one of the suppliers is reliable but expensive. The other supplier

is less reliable and less expensive. Supplier reliability is impacted by his limiting and varying

capacity. In this regard, considering the trade-offs between supply chain costs and reliability

is important and needs to be addressed.

In this dissertation, we use operations research (OR) tools to develop stochastic optimization

models and solution algorithms in order to address the above mentioned challenges. These models

can enable companies and organizations which manage perishable products to identify policies which

allow them to fulfill customer demand at a minimum cost. The proposed models capture the impact

of demand uncertainty on decision making. We propose stochastic optimization models, including a

two-stage stochastic mixed integer linear program, a two-stage stochastic mixed integer non linear

program, and a chance constraint program to capture uncertainties. To solve the two-stage stochastic

programs and analyze the results, we develop different solution frameworks based on well-known

algorithms such as stochastic Benders decomposition. We use the SAA method to solve the chance

constrained program.

In Chapter 2, we study the vaccine vial replenishment problem. Vaccines are perishable

products which have a fixed shelf-life. In the last century, many infectious diseases have been

completely eradicated or significantly reduced because of childhood vaccinations. Ample evidence

suggests that low vaccination coverage in developing countries is caused by vaccine stock out and

high vaccine wastage. Wastage occurs when a vaccine vial is physically damaged or exposed to

extreme temperatures, or as OVW. Clinics can use single-dose vials to reduce OVW; however, such

an approach is more expensive than using multi-dose vials. The focus of this chapter is to develop
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new policies that support vaccine administration and inventory replenishment. These policies are

expected to reduce OVW, reduce the cost of vaccinations and improve vaccination coverage levels

in developing countries. We propose a two-stage stochastic programming model that identifies

an optimal mix of different-sized vaccine vials, and the corresponding decisions that clinics make

about opening vials in the face of uncertain patient arrivals. This work develops a case study

with data gathered from Bangladesh. Experimental results indicate that using a mix of vials of

different sizes reduces OVW, compared to the current practice of using single-sized multi-dose vials.

Experimental results also point to simple and economic vaccine administration policies that health

care administrators can use to minimize OVW. The model is solved using an extension of the

stochastic Benders decomposition algorithm, the LS method. This algorithm uses GMI and MIR

cuts to address the problem’s non-convexity. Computational results reveal that the solution approach

presented here outperforms the standard LS method.

In Chapter 3, we analyze the joint pricing and inventory management for deteriorating prod-

ucts. This research is motivated by the opportunities we see to reduce waste and increase profitability

of perishables in retailing using pricing. We propose a two-stage stochastic optimization model that

selects suppliers; identifies a replenishment schedule for a periodic-review inventory system with

non-stationary demand and supply; and identifies the timing and size of a price markdown in order

to maximize retailer’s profits. In this model, the first-stage problem is bilinear since it captures

the additive relationship between price and demand. Thus, we develop a solution approach which

extends Benders decomposition algorithm via a piecewise linear approximation method to solve the

first-stage problem. We develop a case study to validate the model. Numerical experiments point

to the benefits of integrating inventory management and pricing decision in the supply chain.

Effective distribution of vaccines from manufacturers to clinics is challenging. One of the

main challenges is the stochastic nature of demand for vaccines. In many developing countries the

demand for vaccine is growing exponentially because of an increasing birth rate. This demand is

met via supplies from international organizations that coordinate shipments from multiple different

resources. This complicates vaccine distribution planning. An efficient distribution plan requires an

accurate demand forecast. In Chapter 4 we build predictive models to meet requirements for various

childhood immunization vaccines (CIV). Data from the Demographic Health Surveys in Niger and

Niger Census are used in regression models to predict monthly demand for CIV per region. The

population size, the percentage of population under poverty line, the adult literacy rate, and the
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number of clinics were selected as independent variables. The results suggest that, vaccine type, as

well as, the social and economic characteristics of a region impact the demand for vaccination, and

should be considered in vaccine distribution planning. The results of this study provide support

tools for policymakers to design vaccine distribution networks.

In Chapter 5, we propose a chance constraint programming model which identifies optimal

vaccine supply chain designs and management strategies. This is a data-driven model built upon

the regression models in Chapter 4. The proposed model considers the limited shelf life of vaccines,

facility and transportation storage capacities, as well as variations in patient arrivals at health

clinics. The SAA method is used to approximate the chance constraints. We use the model to

analyze different supply chain network designs and vaccine administration policies for vaccine vial

distribution in Niger. The existing distribution network has multiple layers. Decision makers in each

layer identify inventory levels and timing of replenishment. Removing a level in the hierarchy of the

network impacts on the system-wide costs and reduces the chance of vial breakage due to fewer times

vaccines are touched. Moreover, when a single-dose vaccine is replaced with a multi-dose vaccine,

the OVW rate increases. In this regard, we evaluate the impact of converting the current Niger’s

four-tier vaccine supply chain to a three-tier one by removing the regional stores, and changing

Measles’s vial size from multi-dose to single-dose on vaccine availability at clinics and immunization

coverage.

Finally, in Chapter 6, we summarize our observations and provide concluding remarks.
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Chapter 2

Developing Childhood Vaccine

Administration and Inventory

Replenishment Policies that

Minimize Open Vial Wastage

2.1 Introduction

The spread of infectious diseases has significantly receded over the last century, and these

widespread immunities can largely be attributed to childhood vaccinations [117]. Childhood vac-

cinations have helped eradicate diseases, like smallpox, and have severely restricted diseases, such

as polio, measles, and tetanus. Immunization programs, led by World Health Organization (WHO)

and United Nations Children’s Emergency Fund (UNICEF), have been instrumental in delivering

global eradication efforts. However, achieving immunization targets in developing countries has been

particularly challenging. As recently as 2014, 60% of the 18.7 million children worldwide who did

not receive the diphtheria-tetanus-pertussis (DTP) lived in ten developing countries [3]. Vaccine

stockout is one of the primary reasons for the low vaccination coverage in these places. In 2014,

26% of WHO-member countries experienced a national level vaccine shortage for at least one month
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[127]. Stockout occurs, in part, because of vaccine wastage. WHO estimated that, more than half

of the total vaccination supply distributed around the world is wasted [1]. Wastage occurs when

a vaccine vial is physically damaged or exposed to extreme temperatures, or when doses from an

open vial are discarded after their safe use time expires. The latter is referred to as OVW. The

Global Alliance for Vaccines and Immunizations (GAVI) requests that countries take measures to

bring down their vaccine wastage rates [1], and lowering OVW rates can be one effective approach.

In many developing countries, immunizations are administered in health care centers or at

outreach sessions. For example, in Bangladesh, 94% of immunizations are accomplished at outreach

sessions [55]. These sessions are organized through programs, such as Expanded Programme on

Immunization (EPI), and delivered by trained nurses. Health care centers are often located in

remote areas that lack proper transportation and basic amenities, including refrigeration.Childhood

vaccines, including bacille Calmette-Guérin (BCG), measles, DTP, and tentanus (TT), are typically

produced in multi-dose vials. Outreach sessions conducted by EPI follow a strict open vial policy,

which requires that, opened vials of multi-dose vaccines be discarded at the end of the day or six

hours, whichever comes first [145]. Discarded doses contribute to OVW. While single-dose vials have

zero OVW, they are more expensive than multi-dose vials because of additional costs for packaging,

holding, and transportation. A 2010 study in Bangladesh estimated OVW for BCG at 85%, measles

at 71%, DTP at 44.2%, and TT at 36% [55].

Organizations managing immunization programs in developing countries do make vaccine

replenishment decisions for a single vial size [43, 55]. Vaccines are then distributed to clinics based

on a fixed replenishment schedule [52]. Intuition tells us that, allowing clinics to use a mix of vials of

different sizes should result in OVW reductions. Better inventory management should result when

clinics decide their own replenishment schedules based on observed patient arrivals, and when clinics

have easy-to-implement vaccine administration policies.

In this study, “inventory replenishment policy” refers to the mix of multi-dose vaccine vials,

e.g., single-, two-, and ten-dose vials, that a clinic should order to reduce OVW during outreach

sessions and maintain low vaccination costs. “Vaccine administration policy” refers to the conditions

under which a nurse should open a new vial of a particular size during an outreach session. Such a

policy accounts for session duration, the number of patients present, and/or the time of day when

a multi-dose vial of a particular size should be opened. In the absence of such policies, deciding

whether to open or not to open a multi-dose vial vaccine is challenging due to an uncertain number
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of patient arrivals. This study develops a two-stage stochastic programming model to identify the

optimal mix of multi-dose vaccine vials to order, the timing of orders and the corresponding vial

opening decisions in the face of uncertain patient arrivals. The goal is to minimize OVW and achieve

lower vaccination costs in developing countries. The models proposed here are tested via an extensive

numerical analysis using data from Bangladesh. Numerical results inspired the development of a

number of vaccine administration policies which, as demonstrated in this study, can reduce OVW.

2.1.1 Literature Review

In developing countries, EPI vaccines are purchased by governmental and non-profit agencies

to satisfy annual vaccine requirements. In these countries, EPI delivers vaccines to a central store

from which they are shipped to regional stores, then to district stores, and, finally, to local clinics.

The number of downstream tiers, or supply chain stages, which handle vaccines varies by country.

Some studies in the literature focus on national-level decisions made about how many vaccines

should be purchased to ensure high vaccine coverage levels [34]. Other studies focus on the structure

of the corresponding supply chain to minimize immunization costs [14, 13, 24]. A few studies

focus on the decisions made about clinic-level vaccine administration that can minimize OVW [97,

96, 43]. Similarly, this work examines clinic-level inventory replenishment decisions and vaccine

administration policies with the goal of minimizing OVW and inventory replenishment costs.

The literature on vaccine supply chain management has increased in recent years. Research

focused on OVW management started as vaccine vial wastage increased in outreach immunization

sessions held under programs such as EPI in developing countries. The work conducted by [45] was

the first that discussed the general differences between single- and ten-dose vaccine vials in terms

of cost, distribution, coverage, and safety. A survey of vaccine wastage in Bangladesh, provided

in [55], detailed the usage and wastage rates of different-sized vaccine types in randomly selected

outreach and non-outreach sessions. The aims of both studies were to estimate vaccine wastage,

but neither considered the associated supply chain costs. However, these costs were considered in

the analysis conducted by [115]. The scope of these studies was restricted to analyzing existing

vaccine administration practices, and, hence, they do not prescribe any plan for efficient inventory

management. However, they recognize that “there is an urgent need for more rigorous and systematic

wastage monitoring” [115].

The following studies have used simulation-based approaches to assess the impacts of different-

8



sized multi-dose vials on OVW. [78] proposes a simulation model for Thailand’s Trang Province that

evaluates the cost of replacing ten-dose with single-dose vial vaccines. The results of this study show

that, given a fixed patient arrival rate, the cost associated with medical waste disposal is greater

than the cost savings resulting from OVW reduction. This finding, followed their earlier simulation

work that models patient arrivals using a Poisson distribution [80]. The authors conclude that the

suitable number of doses per vial may vary by region and patient arrival rate. However, the Pois-

son arrival assumption may not necessarily capture the arrival process in outreach immunization

sessions due to the particular challenges of organizing these sessions in particular communities. A

similar simulation study was carried out by [147] to analyze the impact of different patient arrival

rates on OVW for five- and ten-dose vaccine vials. In this case, the authors use real-life data to

estimate parameters for simulation. These studies examine the current practice of using a single

multi-dose vial, and they recommend using a particular vial size based on patients arrival rates.

These recommendations are based on simulated cost estimates, but once again, these works do not

prescribe any vaccine inventory management schemes.

In order to prescribe a vaccine management plan, optimization models are necessary. Such

approaches are limited and include deterministic mixed-integer programs (MIP) and finite state

probabilistic models. In [43], the total vaccination cost is minimized via optimal ordering decisions

which are identified by solving a deterministic MIP integrated within a Monte Carlo simulation setup.

The authors used the simulation model to generate patient arrivals and compute OVW under a fixed

vaccine administration policy and for a given multi-dose vaccine vial. The estimated OVW is then

used in the optimization model to determine the optimal ordering decisions. [97] proposed a Markov

Decision Process (MDP) model to identify a vial-opening policy which minimizes expected OVW

cost and maximizes vaccine coverage over a finite horizon. The authors used a backward induction

algorithm to solve their probabilistic model. This work is further extended in [96] as the MDP model

is integrated with simulation to analyze how session duration impacts the optimal policy obtained

in their previous work. In both studies, the authors determine the clinic closing time or the time

when patients should be rejected. However, they do not consider loss in opportunity due to unserved

patients. Moreover, they assume that an infinite amount of vaccines can be replenished, which is

not always the case at outreach sessions. These studies address the inventory management of a

single multi-dose vaccine vial, and patient arrival is characterized either probabilistically or through

simulation. The optimization models focus either on ordering decisions or vial-opening decisions.
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However, these decisions are interrelated, and, therefore, a model which considers both and accounts

for uncertainty in patient arrivals should be very effective in reducing OVW costs and increasing

immunization rates.

Vaccines are perishable products that expire after their safe-use time. Thus, the study

presented here is related to the literature on inventory replenishment models for perishable products

with fixed shelf-life. Works by [101], [119], and [17] model these problems by extending the classical

economic lot sizing (ELS) problem formulation. ELS and its variations are often formulated using

extensions of the minimum cost network flow model [113]. While some ELS models for perishable

products with fixed shelf-life consider demand to be deterministic, others have considered stochastic

demand; [17] surveys this work. [135] and [103] find optimal ordering policies, when demand follows

continuous and differentiable distributions, by incorporating shortage and ordering costs in the cost

function. [103] also account for wastage costs due to expiry in their cost function. An extended

m-period dynamic programming model is presented both in [51] and [100]. The ELS for perishable

products with a fixed shelf-life is solved with well-known ordering policies, such as (s, S) and (Q,

r). A Markov renewal process is used to obtain an ordering policy in [86], which uses a closed-form

cost function for an (s, S) policy with back-orders. [140] shows the optimality of (s, S) policy when

the demand process is compound Poisson. In these studies, the inventory replenishment model is

restricted to follow a specific policy that is optimal only under certain demand distributions and

cost functions. For example, in [140], the proposed inventory ordering policy is optimal only if the

demand is a compound Poisson process.

Using exact methods to derive optimal policies for stochastic ELS models and their exten-

sions is computationally complex which has resulted in the development of many heuristic policies.

For example, [104] develop a myopic-based inventory policy using bounds on wastage costs. Fol-

lowing this approximation method, [36] develop two heuristic policies for a joint inventory control

and pricing model, but these policies perform well only when demand is non-stationary. Simulation-

based methods have also been employed to obtain approximate policies; see [133]. A combination of

dynamic programming and simulation is used to reduce the state space of the stochastic ELS model

in [59]. However, optimization models that provide exact solutions to the ELS problem and its ex-

tensions have been limited to deterministic models; see [47]. Stochastic demand is handled through

optimal policies only when highly simplifying assumptions have been made, or through sub-optimal

heuristic policies under slightly general settings [86, 104, 140, 133].
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2.1.2 Our contributions

When stochastic patient arrivals cannot be described using standard distributions, proba-

bilistic models are not effective. In this case, using optimization methods is preferred over obtaining

approximate policies through simulation. Moreover, when vaccines are distributed via a mix of

multiple-dose vials, inventory replenishment and vaccine administration decisions, estimating inven-

tory states, and their interdependencies become complicated. Such realistic requirements can be

captured using stochastic programming (SP) models. Furthermore, SP provides effective tools to

design algorithms that can handle these comprehensive models. In this regard, the contributions of

our study are as follows:

• Vaccine administration and inventory replenishment model: We propose a two-stage SP model

for vaccine vial replenishment which captures (a) the order frequency for respective quantities

of different-sized vials, (b) the opening schedule for these vials, and (c) the administration of

available doses to patients. Experimental results indicate that, using a mix of different-sized

vials compared to using vials of a single size, results in monetary savings, better service, and

OVW reductions at outreach sessions.

• Vaccine administration policies: Motivated by the solutions obtained from our model, we

propose simple and economic vaccine administration policies for outreach sessions. These

policies depend on the population size and birth rate in the regions served. This study compares

their effectiveness by replicating a simulation process.

• Scalable algorithm: We develop a new solution approach for two-stage stochastic integer

programs (2-SIP) with continuous recourse. Our algorithm is motivated by the well-known

stochastic Benders method; uses GMI and MIR cuts to address the non-convexity of the first-

stage problem. Our approach significantly reduces the computational requirement compared

to the standard method. Such computational enhancements allow our algorithm to be applied

to real problems.

In the following sections, the SP model developed and tested. The model is presented in

§2.2, and the solution approach is discussed in §2.3. . Data and computational results are presented

in §2.4, and ideas regarding extensions of the current model and the solution approach are presented

in §2.5.
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2.2 Problem Formulation

2.2.1 Problem description and assumptions

This section details a model that aids the design and management of immunization programs

conducted through outreach sessions in developing countries. The structure of vaccine distribution

system differs by country. Typically, clinics replenish inventories via shipments from a regional

distribution center. Clinics run two types of immunization sessions: drop-in or outreach. In drop-in

sessions, individuals visit the clinic to get vaccinated. In outreach sessions, health workers travel to

provide vaccinations in rural communities during temporary gatherings [43]. For example, drop-in

sessions account for 6%, and outreach sessions account for 94% of immunizations in Bangladesh [55].

This study focuses on short outreach sessions, usually lasting a few weeks, that target the infant

population in rural areas. Assume that patient arrivals in outreach sessions are random. Due to the

stochastic nature of patient arrivals and the open vial policy, identifying replenishment schedules

and administration policies is critical.

The model presented below is based on the following assumptions: (i) Vaccines are dis-

tributed in multi-dose vials of different sizes. (ii) Vaccine purchase cost is proportional to its size

because of additional packing costs. (iii) Clinics maintain inventories of multi-dose vials of different

sizes and inventories of doses from opened vials. (iv) OVW and storage cost the clinic.

Transportation lead time for vaccine replenishment is constant since deliveries are received

from the same distribution center. Thus, we can easily transform this into a problem with zero lead

time as follows: (a) the order for a replenishment that is to arrive in time t is submitted in time

t− t′, where t′ is the lead time; and (b) the unit procurement cost is increased by the unit inventory

cost during transit time. Thus, the remainder of this study assumes negligible lead times.

Figure 5.1 provides a schematic representation of the modeling approach used for this prob-

lem. The darker shaded area represents inventory replenishment decisions for multi-dose vials during

the planning horizon. These decisions are made weekly. Each box represents the type of vials in the

inventory over a particular week. Boxes in successive time periods are connected to represent the

inventory flow. The lighter shaded area represents vaccine administration decisions. These decisions

are made daily. Each box shows when a vial is opened and how the doses are used during a given

day. Boxes in successive time periods are not connected since unused doses are discarded, which

contribute to OVW.
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Figure 2.1: Inventory dynamics in vaccine administration and inventory replenishment model.

2.2.2 Vaccine administration and inventory replenishment model

For the model formulation presented here, note the use of lower case for vector and matrix

entries and that bold font represents the entire vector or matrix.

Our model considers two major decisions: (a) inventory replenishment or ordering decisions,

and (b) vial administration or opening decisions. Ordering decisions help to identify the optimal

replenishment schedule, order mix and vial sizes. These decisions are made in a weekly basis. On

the other hand, opening decisions are a function of the vaccine administration policy which depends

on patient arrivals, and thus, these decisions are made at a much finer timescale: on an hourly

basis. Here T = 1, . . . , T denotes the ordering decision epochs, and each ordering period consists of

N opening decision epochs. Therefore, N = 0, . . . ,NT denotes all the opening decision epochs over

the planning horizon.

We first describe modeling of the inventory replenishment decisions. Let V represent the

set of multi-dose vial sizes, e.g., one-dose, five-dose and ten-dose vials, available for order. Once the

vials are opened they must be used within their safe use time, and τ denotes this limit. At t ∈ T ,

ordering decisions zt are made at fixed cost ft. If an order is placed (zt = 1), then the replenishment

quantity for each multi-dose vial size can be determined. These decisions are represented by rνt, and

the corresponding variable purchase cost by cνt,∀ν ∈ V. At each opening decision epoch n ∈ N , vial-

opening decisions are made. Let uνn represent the number of vials of size ν opened. Replenishment

quantity decisions rνt and vial-opening decisions uνn together determine the state of vial inventory,

represented here as sνn,∀ν ∈ V. Let dνt represent the corresponding unit inventory holding cost. The
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evolution of inventory for each vial size ν ∈ V is captured by the following flow-balance equations:

sνNt = sν(Nt−1) + rνt − uνNt ∀t ∈ T , (2.1a)

sνn = sνn−1 − uνn ∀n ∈ N ∖ {N,2N, . . . , TN}, (2.1b)

The initial inventory sν0 is assumed to be known. Since the inventory of vials is replenished weekly,

equation (2.1a) is used to represent the corresponding inventory balance constraints. However,

since dose administration decisions are made at a finer time scale, and those decisions impact the

inventory of vials, equation (2.1b) is used to capture inventory balance during vaccine administration

time periods. Since open vial policy does not apply to unopened vials, loss of inventories is not

considered in these constraints.

∑
ν∈V

rνt ≤Mtzt ∀t ∈ T . (2.2)

Let Mt be an upper bound (UB) on the quantity of vials ordered in a time period. Constraints

(2.2) ensure that the inventory of vials is replenished only if an order is placed in period t. Note

that, decisions about vial replenishment and inventory (z, r,u, and s) are made before the number

of patient arrivals is realized.

We now describe modeling of the vial administration decisions. The vials opened in period

n can vaccinate children in period m < n + τ , or before the end of a session, whichever occurs first.

With ynm to denote the number of doses obtained from vials opened in period n, and used in period

m, then yn(n+τ) represent the number of doses that expire after their safe use time expires, and

hence contributes to OVW. The relationship between the number of vials opened and the number

of doses available is captured by the following equation:

n+τ−1

∑
m=n

ynm + yn(n+τ) = ∑
ν∈V

qνuνn ∀n ∈ N , (2.3)

where qν is the number of doses in a multi-dose vial of size ν. The right-hand side of equation (2.3)

represents the total number of doses obtained by opening vials, while the left-hand side is the sum

of utilized and expired doses in period n.

The total number of patients arriving in time period n is denoted by ω̃n. If the total number

of patients arriving during period t exceeds the number of doses available, then these patients will
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Doses utilized ynm

Doses expired yn(n+τ)

Demand ω̃ OVW

Vial-opening
decisions uνn

Figure 2.2: Dose utilization for n = 2 with τ = 7.

* Filled circles indicate opened vials and unfilled circles indicate unopened vials.

not be served. This model assumes that patients do not wait for vaccinations. This assumption

is relaxed in §2.4.4 when the wait-to-open policy is described. A penalty is associated with each

unserved patient, which is denoted by `n. With these, the dose inventory must satisfy the following

flow-balance equations:

n

∑
m=n−τ+1

ymn + `n = ωn ∀n ∈ N . (2.4)

Here, ωn is a realization of the random variable ω̃n. Equation (2.4) indicates that, of the total number

of patients arriving during a session, the number of patients vaccinated depends on the total number

of doses available, denoted by the first term in the left-hand side of the equation. If the number

of open doses is smaller than the number of patients present during period t, then the unserved

patients leave the session. Figure 2.2 provides a schematic representation of how doses obtained

from opened vials in period n = 2 are utilized over the next τ = 6 periods. OVW is represented by

the arc in red.

We finally describe modeling of the objective function. The objective function includes the

fixed (ft) and variable (cν) purchasing costs, the inventory holding costs (dν), and the expected

value of wastage (g) and penalty (p) costs. This objective function is given by:

∑
t∈T

(ftzt + ∑
ν∈V

cνrνt) + ∑
ν∈V
∑
n∈N

dνsνn +E{∑
n∈N

(gyn(n+τ) + p`n)}. (2.5)

The expectation function is taken over the distribution of ω̃ and its argument captures the penalty

associated with unserved patients and OVW disposal. Note that the total disposal cost depends on
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patient arrivals and is bounded below by zero.

The vaccine vial replenishment problem can be written as a 2-SIP to capture the impact of

the stochastic nature of patient arrivals on vaccine inventory replenishment and vaccine administra-

tion decisions. The complete 2-SIP is presented in Appendix (A). To simplify the exposition of the

algorithm, the following succinct representation of the model formulation is used in the remainder of

the chapter. A single decision vector x ∈ X collectively denotes the ordering decision zt, the replen-

ishment quantity rνt, vial-opening decisions uνn, and the state variables sνn, i.e., x = (z, r,u, s)⊺.

Note that the decision vector x consists of binary (zt), as well as pure-integer decisions1. Since

decision x is made prior to realizations of patient arrivals, which is non-anticipative in nature [20], x

represents the first-stage decision. On the other hand, vial opening decisions ynm depend on patient

arrivals, and therefore, these decisions are made in an adaptive manner. We collate all the adaptive

decisions in a single decision vector γ = (y, `)⊺. This allows us to write the replenishment model as:

min F (x) +E(H(x, ω̃)) (2.6)

s.t. x ∈ X

where the recourse function H(x, ω) takes the first-stage decisions x and realization ω of random

variable ω̃ as input. The resulting model is:

H(x, ω) = min G(γ) (2.7)

s.t. Wγ = ρ(ω) −Tx.

In the equations above, functions F (⋅) and G(⋅) are linear functions; W is the recourse matrix; and

T is the technology matrix. In the SP literature, formulation (2.6) is referred to as the first-stage

problem, and formulation (2.7) is the second-stage problem.

Equations (2.3) and (2.4) represent the constraints set of formulation (2.7). The first-stage

decision variable x affects the right-hand side of equation (2.3). Tx in formulation (2.7) represents

this relationship. The uncertainty affects the right-hand side of equation (2.4). ρ(ω) in formulation

(2.7) denotes this relationship. Consequently, the recourse matrix W represents the left-hand sides

1We use the notation v to denote a single column vector obtained from elements (v1, v2, . . . , vi)⊺ for one dimensional
vectors, column-wise concatenation for two-dimensional matrices (v11, . . . , vi1, v12, . . . , vi2, . . . , v1j , . . . , vij)⊺, and so
on.
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of equations (2.3), and equation (2.4) is independent of randomness. Such SPs are said to have a

fixed recourse [20]. Finally, the first- and second-stage problems have discrete decision variables.

However, the structure of the second-stage constraint set satisfies the following proposition:c

Proposition 1 The linear programming in second-stage problem (2.7) has at least one integer op-

timal solution.

Proof: Second-stage problem (2.7) is an uncapacitated minimum cost network flow model. There-

fore, the recourse matrix satisfies the total unimodularity property [11]. In other words, since the

recourse matrix is integer, every basic feasible solution to the linear relaxation of second-stage prob-

lem is integer for any integer vector (∑ν∈V qνuνn, ω,∀n ∈ N ) which appears on the right-hand side

of (2.7). Since the number of patients and number of doses available are integer, this condition is

satisfied. ∎

As a consequence of Proposition 1, the integer constraints are relaxed in the second-stage

problem. Thus, this problem is solved as a linear program for a given input of (x,ω). Linearizing

second stage problem (2.7) is necessary for the implementation of the LS algorithm which relies on

the duality of the second-stage problem. From this point on, our notation 2-SIP refers to an integer

first-stage problem (2.6) and the linear relaxation of the second-stage problem (2.7). The solution

algorithm is presented in the next section.

2.3 Solution Approach: An extended L-shaped method

2-SIPs have been used to model many applications in the fields of financial planning, ca-

pacity expansion, manufacturing, resource allocation, etc. Over the past several decades, different

algorithms have been proposed to tackle these problems. To achieve computational tractability,

many algorithms represent uncertainty through a finite number of realizations (scenarios). If Ω =

{ω1,ω2, . . . ,ωS} represents this finite set of scenarios with respective probabilities pi, i = 1, . . . , S,

then the expectation function in first-stage problem (2.6) can be written as:

E{H(x, ω̃)} =
S

∑
i=1

piH(x,ωi). (2.8)

17



Discretizing ω allows modeling of the corresponding deterministic equivalent formulation (DEF) of

the proposed 2-SIP. In general, even if S is relatively small, the size of DEF can increase quickly. Since

the decisions variables of the first-stage problem are integers, DEF is a network flow problem with

fixed charge costs, known as an NP-Hard problem [65]. Therefore, solving DEF is computationally

challenging.

Decomposition-based methods, notably, the stochastic Benders decomposition [134], Dantzig-

Wolfe decomposition [41], and progressive hedging [123] have effectively addressed this computa-

tional challenge. These methods iteratively build approximations to the expected recourse function.

Dantzig-Wolfe decomposition is an inner linearization method that iteratively solves the dual of the

first-stage problem. However, this method is not applicable to the class of problems with discrete

first-stage variables, which is the case here. Progressive hedging is a primal-dual method where, in

each iteration, a penalty is associated with a deviation from a feasible solution. However, using this

method requires selecting an appropriate proximal parameter that is both instance dependent and

hard to discern [137]. Therefore, the solution approach proposed here is based on stochastic Benders

decomposition which is also known as the LS method.

In order to build the DEF of a 2-SIP, whose random variable has a large number of realiza-

tions, or its underlying distribution is continuous (as is the case in our application), it is recommended

to use a sampling-based approach [20]. In this case, one can generate S realizations of random vector

ω̃ using Monte Carlo simulation. Then, the set Ω will be comprised of these simulated vectors, and

each will have the same probability pi = 1/S. Given this set of realizations, the SAA problem of the

DEF can be written as follows:

min
x∈X

F̂S(x) ∶= F (x) +
1

S

S

∑
i=1

H(x,ωi). (2.9)

The second term in problem (2.9) is an unbiased estimator of the expectation function in formulation

(2.8). The SAA problem is a 2-SIP with discrete distribution and therefore can be solved using the

LS method with a branch-and-cut procedure to recover the integrality of the first-stage problem.

Since the SAA problem is constructed using random realization obtained by sampling using Monte-

Carlo or other techniques, verifying the quality of the solutions obtained from the SAA is imperative.

Thus, this study uses estimates of lower bounds (LBs) and upper bounds (UBs) computed across

multiple replications, as suggested by [92].
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The LS method is an iterative method used to solve SP problems with continuous recourse.

It is well known that, in these problems, the expected recourse function is piecewise linear and

convex [20]. Therefore, the dual solutions of the second-stage problem are used to generate a LB

and provide an outer approximation of this expected recourse function, in each iteration of the

LS method. When second-stage problem variables are discrete valued, then additional steps are

necessary to achieve convexity; see [125] for details. Due to the total unimodularity of the recourse

matrix W, employing such procedures is not necessary. In order to solve problems with binary

constraints in the first stage, Laporte and Louveaux proposed the integer LS method in 1993 [75].

Later on, improved optimality cuts were introduced by [64] to strengthen the method. This method

was further improved by using local branching techniques developed by [122]. These methods work

for problems with only first-stage binary variables and hence do not apply to the problem presented

here.

In order to improve the computational time of solving large-scale mixed-integer two-stage

SPs with continuous recourse, [22] add valid integer cuts within the LS method. The cuts are added

to the LP relaxation of the first-stage problem. Their computational results show an improvement

in the LS algorithm’s performance. The solution algorithm developed here is an extension of the LS

method to solve the SAA formulation in which the first-stage problem is a mixed-integer program.

This work uses GMI and MIR cuts to strengthen Benders’ cuts. In this regard, our approach

resembles the work of [22] in which cuts are added to the DEF of their problem.

2.3.1 Extended LS Method:

When the classical LS method of [134] is applied to 2-SIPs with continuous recourse, op-

timization is achieved by solving the first-stage problem as an MIP in every iteration. These MIP

solvers often tend to be computationally expensive, prohibiting extensive numerical experimentations

necessary to conducing reliable statistical analyses of the results obtained by solving an SAA-based

formulation of the problem. Herein lies the motivation for the algorithm presented here.

Our algorithm operates in one of two modes: (a) optimization mode and (b) integer-

feasibility mode. In the optimization mode, the goal is to develop acceptable LB approximations of

the first-stage objective function. In this regard, the procedure adopted is akin to the classical LS

method applied to a two-stage stochastic linear program (2-SLP). The goal of the integer-feasibility

mode is to determine an integer feasible solution.
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The algorithm is initialized by setting the first-stage feasible regionX
0
= X , the set of original

constraints. Over the course of the algorithm, lower-bounding affine functions are computed in the

optimization mode and integer cuts are added in the integer-feasibility mode. In iteration k, the

first-stage feasible region X
k−1

is characterized by the set of original constraints X , a set of lower

bounding cuts Lk−1
opt , and a certain set of integer cuts Lk−1

int . The lower bounding cuts are expressed

using an auxiliary variable η, as in the case of the classical LS method. While x is an integer decision

variable, η is a free continuous variable. Therefore, the feasible region for iterationsX
k−1

, k > 1 is

described in an extended space which includes both x and η, a mixed-integer set. The second-

stage problem in formulation (2.7) satisfies the relatively complete recourse assumption; that is, the

second-stage problem is feasible for all ωi ∈ Ω and x ∈X
k
, which mitigates the need to generate

feasibility cuts. Feasibility is achieved because not every patient is assumed to be vaccinated, and

waste is allowed and accounted for. However, the relatively complete recourse assumption can

be relaxed, and a mechanism to generate feasibility cuts can be incorporated in the optimization

mode. These feasibility cuts will be generated in a manner similar to the classical LS method, and

therefore, they are not discussed here. First, the steps involved in the optimization mode procedure

are described, followed by the approach used in the integer-feasibility mode.

2.3.1.1 Optimization Mode.

In this mode, iteration k starts by solving the following problem that identifies a candidate

solution:

min {F (x) + η ∣ (x,η) ∈X
k−1

lp } (Mk
lp)

where X
k−1

lp is a linear relaxation of the first-stage feasible region X
k−1

. The optimal solution of

this problem is given by (xk,ηk), with objective function value vkS . Using the solution xk and a

realization ωi ∈ Ω, the second-stage problem H(xk,ωi) is solved to obtain the optimal dual solution,

πk. This procedure is enumerated for every ωi ∈ Ω. Using these dual solutions, a lower bounding

affine function cut is computed by:

lkopt(x,η) ∶=
1

S

S

∑
i=1

(πk)⊺[ρ(ωi) −Tx] − η ≤ 0. (2.10)
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This affine function is used to obtain the updated set Lkopt = L
k−1
opt ∪{lkopt(x,η)} which provides a LB

approximation to the objective function.

The optimal objective function value vkS provides a LB to (Mk
lp). A UB to (Mk

lp) is F̂S(x
k) =

lkopt(x
k, ηk). Let ∆k denote the relative gap between the current UB and LB defined as ∆k(xk) =

(F̂ kS (x
k) − v̂k)/F̂ k(xk). If ∆k(xk) is less than a predefined error ε, then switch to the integer-

feasibility mode. Otherwise, if ∆k(xk) ≥ ε, then set Lkint = L
k−1
int , i.e., no new integer cuts are

added in iteration k. This results in an updated first-stage feasible regionX
k
, and one iteration in

optimization mode is complete.

Remark : While the algorithm operates in the optimization mode, no new integer cuts are

added. Therefore, when the relative gap ∆k(xk) < ε, the algorithm has solved a 2-SLP with a

first-stage problem characterized by a feasible region {xk ∣ xk ∈ X k ∩{l(xk,ηk) ≤ 0}, l ∈ Lκint}, where

κ is the last iteration when the algorithm operated in integer-feasibility mode. This feasible region

is defined by the original set of constraints and the integer cuts added up to iteration κ. Therefore,

the algorithm presented here converges to the optimal solution of this problem in a finite number of

iterations if ω has a finite support [20].

2.3.1.2 Integer-feasibility mode.

Let κ denote the iteration when switching to integer-feasibility mode. At this point, the

current solution is assigned as an incumbent solution, i.e x̂κ = xκ, with the corresponding objective

function value v̂κ = vκ. If the incumbent solution satisfies the integer requirement, then we have an

integer feasible solution within an acceptable relative gap. Therefore, the algorithm is terminated.

Otherwise, a mixed-integer program is solved:

min {F (x) + η ∣ (x,η) ∈X
k−1

lp ∩ lkopt(x,η) ≤ 0}. (Mκ
mip)

Note that the constraint set in the above problem does includes the latest optimality cut added in

the optimization mode. Let x̂κS be the integer optimal solution with the objective function value v̂κS .

Since the solution is updated, the gap estimate ∆κ(x̂κ) is recomputed with F̂S(x̂
κ) as the UB. This

update might result in ∆κ becoming greater than error ε. In this case, we conclude that the lower

bounding approximation for x̂κ is not acceptable, and hence, the optimization mode is necessary to

improve the approximation.
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Before returning to the optimization mode, GMI and MIR cuts are constructed at (xκ,ηκ)

and added to the feasible region [63]. As a result, the feasible region no longer contains the non-

integer solution xκ. Note that integer cuts are generated based on the original constraint set, as

well as the affine lower bounding functions added so far. Particularly, GMI cuts are generated for

fractional basic solutions to (M
k

lp). Therefore, multiple GMI cuts are generated up to iteration κ using

fractional basic solutions. Let Lκgmi denote the set of all GMI cuts generated in iteration κ. The MIR

cuts are generated only for constraints with mixed-integer variables. In the SAA model, the variables

used in the constraint set of the first-stage problem ((2.1), (2.2)) are integers. Therefore, MIR cuts

are only used for the lower bounding affine functions in Lκopt, which contain the continuous variable

η. Moreover, the observation that the recourse function H(⋅) is lower bounded by zero almost surely

plays a critical role in deriving the MIR inequalities. The set of MIR inequalities added in iteration

κ is denoted by Lκmir. Together, the updated set of integer cuts becomes:

L
κ
int = L

κ−1
int ∪L

κ
gmi ∪L

κ
mir. (2.11)

This formulation completes the steps involved in the integer-feasibility mode of the proposed algo-

rithm, which results in an updated first-stage feasible regionX
κ
. The algorithm returns to a new

iteration in optimization mode.

2.3.2 Statistical Evaluation

Notice that (x̂S , v̂S) is the optimal solution-value pair to the SAA problem in formulation

(2.9) when sample size is S. However, the sample size which is required to ensure that x̂ is an

optimal solution to the true problem (2.6), is problem specific. Moreover, since the samples used

to setup the SAA are chosen randomly through the Monte Carlo sampling method, the optimal

objective function value obtained is also a random quantity. Therefore, concluding that the solution

obtained from a single SAA is optimal to first-stage problem (2.6), may be erroneous. In order

to overcome such premature conclusions on optimality, the experiments should be replicated with

different sets of scenarios. The idea of using multiple replications for estimating the LBs and UBs,

which are then used to obtain estimates on an optimality gap, was proposed by [93]. This idea has

been incorporated successfully in the SP literature to provide statistical performance guarantees for

2-SLPs [85]. Here, a similar experimental setting is used for the SAA approach to develop a 2-SIP
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Figure 2.4: Schematic representation of extended L-shaped algorithm.

with continuous recourse.

For a given selection of S, let ΩrS denote the set of scenarios generated, and let (x̂rS , v̂
r
S) be

the optimal solution pair obtained using the extended LS algorithm in replication r = 1, . . . ,R. In

this regard, an estimator of the optimal objective function value of the true problem (2.6), is given

by vRS = 1
R ∑

R
r=1 v̂

r
S . Note that v̂rS is an LB, and therefore vRS is a biased estimator of the objective

function value.

In each replication, the quality of solution x̂rS is evaluated by simulating the second-stage

problem using scenarios different from the ones in ΩrS . This is an out-of-sample evaluation process.

The evaluation continues until a sample of size S′ is found, such that the corresponding F̂ rS′ is

contained in the (1−α) confidence interval created using F̂ rs for s = 1, . . . , S′. Consider the estimator

∆r = F̂
r
S(x̂

r
S) − v̂

r
S of the optimality gap. The mean and variance of this estimator are given by:

∆
R
=

1

R

R

∑
r=1

∆r, σ2
∆ =

1

R(R − 1)

R

∑
r=1

(∆r
−∆

R
)
2. (2.12)

Notice that∆
R

overestimates the optimality gap and therefore, can be viewed as a pessimistic gap.

In our computational study, we report this gap and the distribution of F̂ rS′ over replications.

Before the conclude this section, we present the distinguishing features of our algorithmic

framework, compared to prior works.

1. If the LS method is implemented to solve the SAA, then the MIP first-stage problem pre-

sented in this study would be solved in every iteration of the algorithm. Instead, the algo-

rithm proposed here solves a linear first-stage problem during the optimization mode, which
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Algorithm 1 Pseudocode for one replication of the extended L-shaped algorithm.

1: Initilize ε, k ← 0, L0
int = ∅, L0

opt = ∅

2: Optimality mode
3: k ← k + 1
4: Solve (Mk

lp) to obtain (xk,ηk) with the objective function value of vk

5: for all i ∈ {1, . . . , S} do
6: Solve the second-stage problem H(xk, ωi) to obtain πk.
7: end for
8: Compute `kopt(x

k,ηk) using (3.11) and add to Lkopt
9: F̂S(x

k) = lkopt(x
k,ηk)

10: if ∆k(xk) = (F̂ kS (x
k) − v̂k)/F̂ k(xk) < ε then

11: Go to integer-feasibility mode
12: else
13: Lkint = L

k−1
int

14: end if
15: Integer-feasibility mode
16: Set k = κ, x̂κ = xκ, v̂κ = vκ

17: if x̂κ ∈ Z+ then
18: STOP
19: else
20: Solve (Mκ

mip) to obtain x̂κS with the objective function value v̂κS
21: end if
22: if ∆κ(xκ) = (F̂κS (x

κ) − v̂κ)/F̂κ(xκ) < ε then
23: STOP
24: else
25: Add GMI and MIR cuts, Lkint = L

k−1
int ∪L

k
gmi ∪L

k
mir

26: Go to optimization mode
27: end if

24



significantly reduces its running time. The algorithm seeks an integer solution only during the

integer-feasibility mode. The computational results in Table (2.4) illustrate that the proposed

algorithm leads to lower running times.

2. The effectiveness of using integer cuts within the LS method has previously been explored in

[22]. The authors add GMI cuts in every iteration of the LS method. In addition to GMI cuts,

the algorithm proposed here exploits the impact of adding MIR cuts as well. These cuts are

only added during the integer-feasibility mode, which reduces the computational time of the

algorithm. The results in Table (2.4) indicate that using both GMI and MIR cuts results in

finding solutions of higher quality, compared to using GMI cuts only.

3. For the application considered in this study, limited data is available to estimate the underlying

distribution of the random variable involved. When this is the case, an evaluation process of

the SP algorithms is required to validate and verify the quality of the solutions obtained

[93]. While evaluation procedures have been developed for a 2-SLP [85], to the best of our

knowledge, the work presented here reflects the first adoption of these procedures for 2-SIPs.

Figure 2.4 shows the schematic representation of the algorithmic framework developed in this study.

2.4 Computational Experiments: A case study for Bangladesh

Instances of the vaccine administration and inventory replenishment problem were created

with real-life data from different regions in Bangladesh. These instances were created to highlight

the impact of data, deterministic as well as stochastic, on model decisions and to draw insights about

the problem as it actually exists in the real world. The optimal solution of the SAA is used as a

benchmark for the simple, easy-to-implement inventory replenishment and vaccine administration

policies proposed here.

This section is organized as follows: First, the input data is presented; second, the ex-

perimental setup is explained; third, the results of solving the SAA are analyzed. The inventory

replenishment and vaccine administration policies derived from solving the SAA are referred to as

the “base policy” to distinguish them from some easy-to-implement policies proposed at the end of

this section.
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Table 2.1: Cost and weight of different vaccine vial sizes of Pentavalent.

Vaccine size Purchase cost per dose ($) Vaccine weight per dose (gr)
Lower limit Mean Upper limit Lower limit Mean Upper limit

1 dose 3.24 3.60 3.96 1.542 1.713 1.885
2 dose 3.25 3.50 3.75 1.723 1.914 2.106
10 dose 2.00 1.80 2.20 3.169 3.522 3.874

2.4.1 Data input model

Two different data sources were used in this case study to generate problem instances for an

outreach session conducted by EPI in Bangladesh. Two regions, based on varying demographic data,

were selected: urban Chittagong and rural Rajshahi. Deterministic data, including purchase and

inventory holding costs, was complied using the 2012 WHO vaccine volume calculator [2]. Stochastic

data was compiled from the Demographic and Health Survey (DHS) of Bangladesh, a population-

based survey executed by National Institute for Population Research and Training in 2011 [105] that

includes individual household level DHS data. The details of deterministic and stochastic parameters

are described next.

2.4.1.1 Deterministic parameters:

The EPI outreach sessions in rural areas are scheduled on a weekly basis [52]. Thus, this

study terms the planning horizon to include 2 weeks with 5 working days per week and 2 to 8 working

hours per day. Based on the proposed model, inventory replenishment decisions are made at the

beginning of each week, and the vaccine administration decisions are made hourly. Experiments

for the Pentavalent vaccine, which is distributed in one-, two-, and ten-dose vials, were conducted.

However, this setup can apply to other pediatric vaccines as well. The Pentavalent vaccines has

6 hours safe use time before expiration (i.e. τ = 6). The 2012 WHO vaccine volume calculator

[2] provides data about vial purchasing costs and corresponding weights, which are summarized in

Table (2.1). Inventory holding cost is estimated based on the weight of the Pentavalent vaccine.

Sensitivity analyses, with respect to purchase and inventory holding cost, were conducted. The

lower, mean and upper limit of the values are presented in Table (2.1). In all the other experiments

conducted, the mean values of purchase and inventory holding costs are used. Order setup cost is

assumed to be constant over the planning horizon and is set to $10. This value is estimated based

on interviews with health care workers in a developing country. The penalty cost associated with
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Table 2.2: Data used to predict the daily demand distribution of Pentavalent through different
regions in Bangladesh.

Number of Infant Daily fitted Hourly estimated

Region clinics population distribution distribution

Barisal 41 8,147,000 NB(0.65,0.43) NB(5,0.43)

Chittagong 141 288,079,000 NB(0.53, 0.81) NB(286, 0.81)

Dhaka 171 46,729,000 NB(2.08, 0.16) NB(2, 0.16)

Khulna 70 15,563,000 NB(0.95, 0.33) NB(4, 0.33)

Rajshahi 182 18,329,000 NB(0.84, 0.31) NB(2, 0.31)

Rangpur 43 15,665,000 NB(5, 0.93) NB(327, 0.93)

Sylhet 62 9,807,000 NB(0.78,0.38) NB(5,0.38)

unserved patients is estimated to be $100 and is based on a sensitivity analysis conducted as part

of this study. A higher penalty value resulted in scalability issues, and a smaller value resulted in a

large number of unserved patients. The selected penalty avoided scalability problems and provided

realistic numbers of unserved patients. The UB of order size Mt is set equal to 2000 for all t. This

value is large enough to capture vaccination shortage dues to OVW only, not capacity. Finally, the

penalty cost for OVW equals the vaccine’s purchase cost.

2.4.1.2 Stochastic parameters:

The only stochastic element in our model is patient arrival. In order to determine how

many arrivals an outreach program might expect, this study uses the DHS data set, which includes

both demographic information and interviews with families from each region of Bangladesh. The

interviews provide information about vaccination history of children younger than 5. We used each

child’s vaccination date to count the number of daily observations, or patient arrivals, over a 1-

year time interval. Since the outreach sessions are held only on weekdays, only weekday data is

considered. The data is used to estimate the distribution of the total number of patients arriving to

an outreach session in one day. We conducted goodness-of-fit tests to find the best distribution for

this data, and summaries of results are listed in Table (2.2). Here NB refers to Negative Binomial

distribution.

Since no information is available about the timing of vaccinations during the day, NB dis-

tribution is applied to estimate the total number of patients arriving within the hour. Furthermore,

this work assumes that patients’ arrivals within an hour follow a uniform distribution. Such an

assumption is not restrictive since the model does not penalize for patient waiting time. The last
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Table 2.3: Paired t-test between different number of scenarios.

p−value (95% CI) ∥x̂S − x̂S′∥ / ∥x̂S∥

S; S′ Rajshahi Barisal Khuluna Sylhet Dhaka Rangpur Chittagong Rajshahi Barisal Khuluna Sylhet Dhaka Rangpur Chittagong

100; 200 0.99 0.00 0.00 0.00 0.14 0.00 0.44 0.30 0.07 0.04 0.06 0.02 0.02 0.05

200; 500 0.99 0.84 0.29 0.80 0.03 0.08 0.01 0.33 0.05 0.01 0.05 0.03 0.02 0.05

500; 1,000 0.99 0.67 0.89 0.35 0.48 0.00 0.96 0.22 0.05 0.03 0.05 0.02 0.02 0.02

1,000; 2,000 0.99 0.74 0.66 0.99 0.58 0.39 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00

column of Table (2.2) shows the estimated arrival rates.

Scenario selection: Selecting an appropriate number of scenarios for our SAA formulation

is critical, since, generating a large number of scenarios increases the running time of the algorithm,

and generating a small number of scenarios may not appropriately represent uncertainty. Two

different sets of analyses are used to assess the difference between the optimal solutions, x̂S and x̂S
′

,

obtained in S and S′ scenarios.

The first set of analysis captures the impact of the optimal solution on the recourse cost

by fixing the optimal solution and simulating the recourse function over the two sets of scenarios.

A paired t-test on the function values was performed. The corresponding p−values for each region

are presented in Table (2.3). A p−value greater than 0.05 implies that the two solution x̂S and x̂S
′

have a statistically indistinguishable impact on the recourse cost. The second set of analysis is based

on the Euclidean norm of the two solutions. Table (2.3) shows the results. A high value indicates

that the solutions are significantly different. As Table (2.3) shows, x̂1,000 and x̂2,000 have acceptable

p−values and relatively small Euclidean distances. For all regions considered in this study, increasing

the number of scenario from 1,000 to 2,000 is not necessary and therefore, the number of scenarios

used is S = 1,000.

2.4.2 Experimental setup

The solution algorithm presented here was implemented in C programming language on a

64-bit Intel Core i5 processor @ 1.9 GHz with 8 GB RAM. All first-stage and second-stage problems

were solved using CPLEX callable subroutines.

Our experiments began by finding an optimal or near optimal first-stage solution (error gap

< 0.01) using the extended LS method. Next, a posterior analysis was conducted to evaluate the

quality of the first-stage solutions by fixing the first-stage decisions and simulating the second-stage

problem (2.7). The scenarios used for optimization and evaluation were generated using the same

distribution. Evaluation terminated when the standard deviation of the value of the recourse function
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Figure 2.5: Base policy: analysis of solution algorithm.

Table 2.4: Comparison of solution quality.

Algorithm LB ($) UB ($) CPU time (s) No. of iter. No. of LP No. of MILP

LS 21,571.7 ± 12.1 22,047.9 ± 33.8 859.7 ± 245.9 233.8 ± 11.2 0 232.7 ± 11.2

LSM 21,574.9 ± 11.8 22,048.9 ± 30.7 350.4 ± 86.1 836.3 ± 83.5 756.4 ± 79.3 78.9 ± 11.8

LSG 21,571.9 ± 12.1 22,047.1 ± 33.6 412.2 ± 160.1 837.9 ± 93.8 756.4 ± 88.5 80.5 ± 12.7

LSMG 21,571.7 ± 12.1 22,047.9 ± 33.9 137.2 ± 47.3 431.1 ± 26.3 335.6 ± 16.6 94.5 ± 12.4

came within a tolerable limit which is equal to 0.01. This process was replicated using independent

samples. In our experiments we conducted R = 30 replications. The results are presented in terms

of the empirical distribution over replications, and heuristic policies are also treated similarly.

2.4.3 Base policy

First, the performance of the solution algorithm and the model’s adequacy must be verified.

The inventory replenishment and vaccine administration policies identified by solving the extended

LS method outlined in §2.3.1 are called “base policy”. Results are provided for the base policy and

are compared with the results obtained by the classical LS method in Table (2.4).

2.4.3.1 Performance of solution algorithms:

This set of experiments is implemented across the Chittagong dataset with vaccines of a

single vial size, such as a ten-dose Pentavalent. The goal is to evaluate the impact of MIR and GMI

cuts in the performance of the extended LS method. The quality of solutions obtained under the

following conditions are compared with the classical LS method: (a) use only MIR cuts (LSM), (b)
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Figure 2.6: Base policy: analyzing the impact of mean daily patient arrival rate on vial portfolio
and daily consumption schedule on number of opened vials.

use only GMI cuts (LSG), and (c) use both MIR and GMI cuts (LSMG). Table (2.4) summarizes

the solution quality of each algorithm in terms of the CPU time, total number of iterations, LB,

UB, total number of LPs solved, and total number of MILPs solved over 30 replications. Note that

the values of LB and UB for all algorithms are similar, and the LS method uses the least number

of iterations. However, in every iteration of the LS method, an MILP is solved, and therefore, the

CPU time is significantly high. In algorithms that require integer cuts, MILPs are solved only when

the error gap is below a threshold ε = 0.1% and x /∈ Z+. Therefore, the first-stage problem is solved

as an LP in most iterations, particularly in the first iterations of the algorithm, which results in not

only a higher number of iterations, but also a shorter computational time.

Experimental results indicate that using MIR cuts results in a greater decrease in com-

putational time than GMI cuts. The greatest computational time savings, by a factor 6.2, was

observed when both types of integer cuts were incorporated. Figure (2.5) illustrates the error gaps

over algorithm iterations for one of the replications.

This analysis establishes that the LSMG algorithm provides solutions similar to those ob-

tained from LS method in significantly less CPU time. Such computational enhancements are

necessary to satisfy the need to replicate SPs. This also allows the algorithm presented here to be

applicable to real-world problem instances, such as the one considered in our study.

30



P1 P2 P3 P4 P5 P6 P7 P8

Purchase cost level

50

100

150

200

250

N
u
m

b
er

 o
f 

u
n
se

rv
ed

 p
at

ie
n
ts

(a) Unserved patients

P1 P2 P3 P4 P5 P6 P7 P8

Purchase cost level

0

5

10

15

20

25

30

35

T
o

ta
l 

O
V

W
 d

u
ri

n
g

 t
im

e 
h

o
ri

zo
n

(b) Wastage

Figure 2.7: Effect of varying purchase cost on dose utilization.

2.4.3.2 Analysis of parameters:

Solutions to the vaccine administration and inventory replenishment model are sensitive to

problem parameters, such as patient arrival rate, purchase cost, and duration of a session. Analysis

of these parameters helps health care policy makers to evaluate the effectiveness of outreach sessions

and design appropriate policies. In the first set of experiments, the impact of different patient

arrivals on vial portfolio selection is evaluated. The second experiment is developed to study the

effects of varying purchase costs on OVW rates and the number of unserved patients. Finally, we

analyze the impacts of session duration on OVW and the number of unserved patients.

1. Patient arrival : This experiment was conducted using regions with different patient arrival

rates. For example, the patient arrival rate in Rajshahi is lowest since this is the least populated

region with available data, and patient arrival rate in Chittagong is highest, and this is the

most populated. Figure 2.6a depicts the relationship among utilization rates of multi-dose

vaccines of different sizes and patient arrival rates. Going from Rajshahi to Chittagong, the

arrival rate increases, as does the number of ten-dose vials ordered. This increase is attributed

to the low cost per dose of multi-dose vials. At high arrival rates, the one-dose vials are ordered

to supplement the multi-dose vials, particularly, to meet the end-of-day arrivals. Based on the

results presented in Figure 2.6a, procuring larger size vials for moderately and highly populated

regions is economically efficient. Likewise, the usage of one- and two-dose vials is higher in
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Figure 2.8: Impact of session duration on OVW and number of unserved patients in Chittagong

sessions with small patient arrival rates, such as outreach centers in remote locations. Figure

2.6b shows the number of multi-dose vials opened at different times within the duration of a

session. The results indicate that multi-dose vials should be opened in the early hours of a

session and one-dose vials at the final hours.

2. Purchase cost : To conduct these experiments 8 problem instances, P1-P8, were developed.

Each instance has the same patient arrival rate as in Rajashahi, but each instance has different

purchase cost. Different values of purchase costs were used within the lower and upper limits

presented in Table 2.1. Instance P1 has the lowest purchase costs, and costs increase from P1 to

P8. Figures 2.7a and 2.7b present the number of unserved patients and OVW observed during

the evaluation step of one of the replications. As purchase cost increases, vial opening decisions

become conservative in order to reduce OVW, which, in turn, increases the number of unserved

patients. This analysis provides a tool to aid policy makers identifying the necessary subsidies

for vaccine purchase costs and achieving a certain level of immunization in the region. For

example, when purchase costs equals the lower limit in instance P1 (c1 = 1.6, c2 = 1.5, c10 = 1),

the total number of unserved patients during the 2-weeks planning horizon and in all the

outreach sessions in the region is less than 100 for 99% of scenarios tested, as indicated by the

top whisker. This number increased to 175 for P3-P4 went up to 190 for P8.

3. Session duration : The choice of session duration affects the numbers of patients who attend

these sessions. Since vaccines expire after their safe use time, the choice of session duration also

32



impacts OVW. To evaluate these impacts, we created problem instances for different regions

by changing session duration from 2 to 8 hours. When session duration is less than 8 hours,

assume that patients, who cannot attend the session during its operational hours, are lost or

unserved. As a result, a shorter session duration increases the number of unserved patients;

see Figure 2.8a. The results indicate that OVW reaches its minimum value when the session

duration equals the vaccine’s safe use time (τ = 6 hours). When the session duration is short,

unexpired doses also contribute to OVW. While increasing the session duration decreases the

number of unserved patients, the need to open new vials to serve patients arriving in later

hours also impacts OVW. Note that increasing session duration also increases operational

costs, which were not considered in the model presented here.

Based on this work’s analysis of the base policy, the usage of multi-dose vials with complementary

one-dose vials for use in last operating hours (when t > τ), is recommended for highly populated

and well connected regions, like Chittagong. Demographic data about Chittagong indicates that

the majority of the population is employed in jobs which do not provide flexible working hours, and

therefore, using longer outreach sessions is beneficial. Different from Chittagong, Rajshahi region is

mostly rural, and the majority of its population works in the agricultural sector [68]. This provides

mothers with greater flexibility to attend the outreach sessions. Thus, having a 6-hour session

duration in this location is appropriate to achieve high coverage and maintain low OVW.

The model presented here and the subsequent analysis targets developing countries, and

hence, purchase cost is a critical factor in inventory replenishment and vaccine administration de-

cisions. Therefore, health care policy makers should negotiate the necessary subsidies to achieve

the targeted vaccination coverage levels in a cost efficient manner. Our setup provides not only a

statistically optimal policy but also a systematic tool to conduct analyses that support decisions

related to vaccination in developing countries.

2.4.4 Heuristic policies

Experimental results presented in §2.4.3 indicate that solving the proposed inventory re-

plenishment and vaccine administration model to develop a base policy requires extensive use of

engineering tools which are commercially expensive and are rarely accessible to health care adminis-

trators in developing countries. In order to address these concerns, this study develops and evaluates
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four simple, easy-to-use policies based on the base policy. These policies are: (a) first multi-dose,

last single-dose (FMLS) policy, (b) shorter duration session (SDS) policy, (c) single vial size policy,

and (d) wait to open (WO) policy. These policies impact both vaccine order replenishment and ad-

ministration. To implement these policies, the first-stage (2.6) and the second-stage (2.7) problems

developed above are modified and described below:

a FMLS : The principle of this policy follows the observation made in Figure 2.6b regarding the

use of one-dose and multi-dose vials: Health care practitioners should open multi-dose vials in

the early hours of the session and one-dose vials as the session comes to an end. To implement

this approach, the session length is divided into three equal intervals, such that, for t ∈ T (a)

ten-dose vials are opened during the first two hours of a session (N1 = {Nt − 5,Nt − 4}), (b)

two-dose vials are opened during the next two hours (N2 = {Nt− 3,Nt− 2}), and (c) one-dose

vials are opened in the last two hours (N3 = {Nt − 1,Nt}). Mathematically, this approach

corresponds to setting uνn = 0 for n ∈ N ∖ Ni when qν = i in (2.6). For example, for time

periods n ∈ N3, when only 10-dose vials are opened, uνn = 0 if qν = 1 or 2.

b SDS : Results in Figure 2.8 indicate that sessions of 6 hours duration have the minimum OVW,

but longer sessions have the lowest number of unserved patients. The SDS policy achieves low

OVW by trimming duration of the immunization session from 8 to 6 hours. In the model

presented here, we assume that only a certain percentage of patients, who would be arriving

during the last 2 hours of a session, are attending the immunization session earlier in the day.

The remaining patients are not served.

c Single vial size: Current vaccination practice relies on the use of single multi-dose vials [43, 55].

This policy can highlight the advantage of using a mix of multi-dose vials. We implement the

single multi-dose vial policy using one-, two, or ten-dose vials by adjusting set V in the first-

stage and second-stage problems.

d WO : It is a common practice to delay vaccine administration until a sufficient number of pa-

tients have arrived at a session [23]. Such a practice reduces OVW, but if the waiting time is

too long, patients may leave without vaccination, which adversely effects immunization cover-

age. In order to study the effects of this policy, an extension to our model is presented. This

extension captures the impacts of patient waiting times on vaccine vial utilization decisions

and considers the trade-offs among OVW, unserved patients, and waiting times.
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Including patient waiting times affects only the second-stage problem in formulation (2.7).

To capture this difference, a new variable must be introduced. Let wjn be the number of

patients who arrived in period j and were served in period n. Thus, j ≤ n < j +L, where L is

the maximum waiting time in hours. Patients not served within this time window leave the

session. A non-linear function v(j − n) for the total patient waiting time is introduced, and a

unit cost v is used to estimate the total cost of waiting and not serving patients. Figure 2.9

illustrates how vaccines are administered to patients arriving in time period n. Mathematically,

the flow-balance equation (2.4) will be changed to include the following constraints:

n

∑
m=n−τ+1

ymn =
n

∑
j=n−L+1

wjn ∀n ∈ N , (2.13a)

n+L−1

∑
j=n

wnj + `n = ω̃ ∀n ∈ N . (2.13b)

The left-hand side of constraints (2.13a) represents the inventory of doses on hand and the

right-hand side represents the total number of patients that arrived within the last L periods.

This inventory contains doses from vials opened within the last τ periods. For example, when

L = 2, the doses available in period n are used to vaccinate patients who arrived in periods

(n − 2), (n − 1), and n, as shown in Figure (2.9). Patients who arrive in the current time

period, ω̃, can be served within the next L hours. Patients waiting longer than L hours leave

the session. These patients are captured by the terms on the left-hand side of equation (2.13b)

and represented by the incoming arcs in Figure 2.9. Now the recourse function H(x, ω) can

be rewritten as follows:

H(x, ω) = min ∑
n∈N

(gyn(n+τ) + p`n +
n+L
∑

j=n+1

v(j − n)wnj) (2.14)

s.t. (2.3), (2.13)

ynm, `n,wnj ∈ Z+ ∀n ∈ N ,m ∈ {n, . . . , n + τ + 1}, j ∈ {n, . . . , n +L}.

In these experiments, the maximum waiting time was set to L = 2 hours, and the penalty for

waiting to v = 0.24$/hour, the average hourly wage in Bangladesh.

To implement this policy, we solve the 2-SIP with (2.6) as first-stage problem and (2.14),

instead of (2.7), as the second-stage problem. To experiment with this policy, the experimental
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Figure 2.9: Dose utilization and patients waiting for n = 2 with L = 2.

setup described in §2.4.2 was adopted.

2.4.4.1 Policy analysis and comparison:

The performance of policies presented is compared based on the total costs, OVW, and

number of unserved patients. Figure 2.10 illustrates the cumulative distribution function (CMF) of

the average total cost, number of unserved patients, and OVW over 30 replications.

1. FMLS : Results in Figure 2.10a indicate that the probability of achieving a certain cost target

under FMLS policy is only slightly lower than the base policy. For example, the probability that

the total cost is less than $22,200 is 0.81 for base policy and 0.8 for FMLS policy. Moreover,

the results in Figures 2.10b and 2.10c indicate that the number of unserved patients and

OVW are comparable to the base policy, which can be attributed to the similarity in vial-

opening decisions under base policy and the vial-opening windows set under FMLS policy;

see Figure 2.6b. However, FMLS policy mandates using one-dose vials even when multiple

patients arrive in the last time window, although using multi-dose vials is more economical.

In summary, FMLS policy is easy to implement and fairly economical.

2. SDS : SDS policy increases the effective arrival rate in the 6 hours time window by allowing a

fraction of patients, originally scheduled to attend in the last seventh and eighth hours of the

initial 8-hour session, to attend a session during the first 6 hours. This increased arrival rate

increases the number of vaccines used within the first 6 hours, but it has only a marginal impact

on OVW and the fraction of patients left unserved. The increase in the number of vaccines

used and the number of unserved patients results in a higher cost, which is demonstrated in

Figure 2.10a.

In this experimental setup with SDS policy, assume that an incentive of $1 was provided to

patients willing to be rescheduled earlier in the day. Assume that 65% of patients are willing
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to be rescheduled. This percentage could be higher if the incentive pay is bigger, which would

result in an increase of vaccination coverage. The incentive pay of $1 is expected to cover the

cost of a snack and drink . This approach is motivated by an experience in Nicaragua, where,

during 1985, the attendance in immunization sessions increased from 77% to 94% because food

was served to patients waiting for vaccinations [87]. Using such an incentive makes economical

sense when the total amount paid is smaller than the penalty associated with unserved patients.

We re-ran our experiments to estimate the penalty from unserved patients as a function of the

percentage of patients willing to move their appointment to earlier in the day. Figure 2.11a

shows the relationship between the fraction of patients rescheduled and the corresponding unit

incentive costs, which are calculated based on the penalty costs. For example, an incentive

pay of $4 is economical if at least 20% of the patients are incentivized to reschedule.

3. Single vial size: If a region must use a single multi-dose vial, then the choice of vial size should

depend on patient arrival rate. In regions with higher patient arrival rates, it is cost efficient to

use ten-dose vials. In regions with lower patient arrival rates, one- and two-dose vials are more

economical compared to using ten-dose vials, since the latter results in higher unused doses,

which contribute to OVW. Figure 2.10 summarizes these observations for a region with high

patient-arrival rate, like Chittagong. The results in Figure 2.10b show that, with a probability

0.95, the total number of unserved patients, for the duration of the planning horizon, is as high

as 45 when two-dose vials are utilized. This number is smaller when ten-dose vials are uzed

instead. The use of vials of small size reduces OVW (it is in fact 0 for one-dose policy). Since

the penalty for letting a patient go unserved is higher than the penalty for OVW, the total

cost for the ten-dose policy is lower than the two-dose policy. In fact, the probability that the

total cost is smaller than 22,000 is 0.7 for the ten-dose policy. This probability is 0.81 for the

optimal policy. This indicates that a policy that relies on the use of ten-dose vials only is near

optimal for this region.

4. WO : This policy, by requesting that patients wait until a multi-dose vial is opened, contributes

to reducing OVW and associated costs. WO policy reduces the number of unserved patients

significantly; see Figure 2.10b, although a few patients do leave if the waiting times are too

long. This policy makes the utilization of larger-sized vials economical, as seen in Figure 2.10c.

For these reasons, the total cost of WO policy is smallest; see Figure 2.10a. Moreover, Figure
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2.11b shows that WO policy, in an effort to reduce the total waiting time, recommends health

care practitioners use ten-dose vials for patients arriving in the early hours of the session, and

smaller-sized vials near the end.

In order to compare the proposed policies with our base policy, we conducted a two-sample

paired t-test on results obtained over 30 replications. These results are summarized in Table 2.5.

The second column of the table presents the estimated difference in total costs between the base

and heuristic policies. In this table, the negative numbers indicate that the base policy has a lower

total cost. The table also presents the 95% CI of the difference in objective function values and

the corresponding p−values. A p−value greater than 0.05 indicates that the null hypothesis, which

states that the objective function values are statistically indistinguishable from one another, cannot

be rejected at a 95% confidence level. These results indicate that WO is the only policy that has

a total cost lower that the base policy. Moreover, the p−values indicate that the total cost of

FMLS policy is statistically indistinguishable from the total cost of the base policy. This is further

corroborated by the fact that 95% CI for estimated difference includes zero. However, the null

hypothesis is rejected for other policies, meaning that they are significantly different from the base

policy.

Our analysis suggests that the WO policy should be implemented during outreach sessions

because it achieves the highest coverage with the least cost. However, implementation of this policy

must take into consideration economic and demographic characteristics of the population in a region

which impact patients’ willingness to wait. The success of the FMLS policy applied depends on

selecting the appropriate time periods to determine which different-sized vials should be opened.

The ease of implementing FMLS policy can be enhanced by combining the FMLS and WO policies.

Vaccine coverage rates are greatest under the SDS policy, which thrives with appropriate incentive

programs. The additional costs incurred from these incentives are justified when the tangible benefits

of disease eradication considered and realized. Finally, in regions where vaccines are distributed in a

single multi-vial size, choosing the right size is important. Factors to weigh include population size,

birth rate, and the number of clinics that organize outreach sessions in the region.
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Table 2.5: Two-sample paired t-test for differences between the base and heuristic policies in Chit-
tagong.

Two-sample t-test Estimated difference (%) Minimum difference (%) Maximum difference (%) 95% CI for difference p−value

Base, FMLS −0.2 −0.4 −0.1 [−26.4,0] 0.19

Base, SDS −18.2 −19.1 −17.6 [−3,946,−3,892] 0.000

Base, WO 0.2 0.1 0.3 [26.9,58.9] 0.00

Base, 1 dose −73.5 −74.1 −73.2 [−15,861,−15,819] 0.00

Base, 2 dose −68.9 −69.5 −68.7 [−14,876,−14,834] 0.00

Base, 10 dose −0.1 −0.5 0.0 [−46.9,−6.0] 0.01

2.5 Conclusion and Future Research

This study presents a 2-SIP model for inventory replenishment and the administration of

childhood vaccines in targeted immunization outreach sessions. To the best of our knowledge, this

is the first stochastic optimization model which captures the relationships that exist among these

decisions . The model presented here minimizes replenishment and OVW costs. OVW represent the

doses not used by the end of an immunization session. Unlike related works in the literature and the

current practice that relies on the use of a single multi-dose vial, this study models the performance

of an inventory replenishment policy that allows a mix of multi-dose vials for vaccination. An

extensive numerical analysis is conducted to evaluate the performance of the proposed policy and

to compare to other simple-to-implement vaccine administration policies.

In order to solve the proposed 2-SIP, the LS method is extended by incorporating GMI and

MRI cuts in the first-stage problem. Via an extensive numerical study we show that the proposed

algorithm is scalable; it outperforms the LS method by providing high quality solutions in a much

shorter CPU time.

After developing a case study using real-world data from Bangladesh, a sensitivity analysis

is conducted to evaluate the system’s behavior. Our observations can be summarized as follows:

1. Population size impacts decisions about the mix of multi-dose vials to use in a region. The

use of multi-dose with complementary single-dose vials is recommended in highly populated

regions.

2. Vaccine purchasing costs impact the achievable immunization levels within a given budget limit.

Thus, the models presented here aid policy makers in negotiating the necessary subsidies to

achieve the targeted vaccination coverage levels.

3. Session length impacts replenishment costs, the number of patients served, and OVW. Session
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lengths that are the same length as the vaccine’s safe use time do minimize the total cost.

Short sessions in sparsely populated regions also minimize costs and OVW.

These observations motivated the design of vaccine administration policies that are simple

and economical. Numerical results demonstrate that the WO policy has the lowest total costs and

therefore, is highly recommended. For highly populated and well-connected regions, FMLS policy

works well since it provides high vaccine coverage level at a lower cost. Moreover, in regions that

can only use single multi-dose vials, the decision about the size of a vial to use should be based on

population size, birth rate, and the number of clinics in the region (see Table (2.5)).

We plan to extend this research in the following ways. First, since no clear guidelines

determine the number of scenarios used, investigating applications of sequential sampling algorithms,

such as the two-stage stochastic decomposition (SD) method [62], is necessary. The SD method was

originally designed for 2-SLPs and does not require a priori selection of scenarios. Since the model

presented here is an MILP, we plan to extend this method to accommodate discrete decision variables

in the first stage. Second, this proposed model identifies inventory replenishment decisions of a single

outreach session, so we plan to extend this model to consider multiple sessions organized by the same

clinic, as well as multiple clinics within a region. We expect that these clinics will coordinate their

own decisions about inventory and operating hours to minimize costs and OVW. Third, we plan to

develop an extension of the proposed model to aid replenishment decisions in clinics that handle

different types of vaccines with different safe use times, such as liquid with 28 days and lyophilized

with 6 hours.
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Chapter 3

A Two-Stage Stochastic Model for

Joint Pricing Inventory

Replenishment with Deteriorating

Products

3.1 Introduction

This work focuses on the analysis of joint pricing and inventory management decisions

for age-dependent perishable products in a periodic-review inventory system. An age-dependent

perishable product loses its quality/value and quantity the longer it stays in the shelves, and it is

disposed after a certain time. Examples of such products are fruits, and vegetables in grocery stores;

or baked goods in bakeries. Since demand for perishable products is price sensitive, businesses offer

price markdowns to stimulate demand for products which are approaching the end of their shelf

life. The same product type, at different stage of shelf life and price, coexist in the market. Thus,

different from the case when the inventory does not perish, models for joint pricing and inventory

management of perishable products take into account the age of inventories. The proposed model

supports replenishment and pricing decisions with the aim of maximizing profits while minimizing
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waste and disposal cost for perished products.

The motivation for this research are the opportunities we see to reduce waste of perishable

products by integrating inventory management policies with pricing and markdown decisions; and

to manage the profitability of perishables in retailing using pricing. For example, ERS of USDA

estimated that, in 2010, 45 billion pounds of available food at retail stores in the United States was

wasted [25]. Moreover, about 40% of the annual agricultural production was wasted while 17% of

the population was undernourished in 2014 in India [21]. In addition to social impacts, wastage has

negative environmental impacts. For example, in the United States food waste accounts for 10% of

the energy supplied, 80% of consumed water, and 50% of land used [56].

A number of studies in the literature propose control policies to optimize the performance

of inventory management systems. Early works in this area assumed that the product has a single

static price which is exogenous to the inventory management problem [48]. In these works, inventory

management and pricing decisions were made in isolation for two main reasons. First, the data

available was insufficient to characterize the impact that price and markdowns have on demand.

Second, the benefits from improved inventory management were perceived as additive to the benefits

from pricing. In recent works, we have seen an increased interest on integrating pricing and inventory

management decisions in retail and other industries [49]. This is due to the increased availability

of data and the development of decision support tools for analyzing the impacts of pricing and

markdowns on inventory management decisions. Technologies available today (such as, point-of-sale

data and loyalty programs) provide companies with ample data about customers’ purchasing history

and preferences which can be used to estimate the impact of price on customer demand. Indeed,

inventory replenishment strategies control the supply side of a business whereas pricing policies

control the demand side. Integrating these decisions mitigates the risk of mismatch in supply and

demand, and increases profitability [128].

It has been noted in the literature [130, 124] that customers are willing to pay less for

perishable products which are approaching their expiration date since they may perceive these

products as of lower quality. Many industries nowadays are dealing with shorter product life-

cycles. Thus, even when a product’s quality is not impacted (such as smart phones), the willingness

of customers to pay the full price decreases when a new version of the product appears in the

market. Businesses use price markdowns to reduce losses from wastage of perishable products.

Supermarkets and bakeries, such as Walmart, Publix, Foodstuffs, etc,. have discount racks. These
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retailers markdown vegetables, fruits, dairy, and bakery goods by as much as 40% to 50%.

Replenishment decisions for perishable products are challenging due to uncertainties of

customer demand which are caused by limited product shelf life and price markdowns. These

decisions are further complicated by uncertainties in the amount and quality of shipments received

from suppliers. Dual-sourcing is a policy often used by retailers to mitigate the risks of supply and

demand uncertainties [84].

This study proposes a stochastic optimization model that integrates inventory replenishment

and pricing decisions for age-dependent perishable products in a periodic-review inventory system.

We express the stochastic demands for new and old products as linear functions of their prices.

The model determines suppliers and corresponding replenishment quantities which balance product

waste (as a result of too much inventory) and product shortage (as a result of too little inventory).

We consider a single markdown which is typically the case in grocery stores. This perishable product

is produced by two suppliers. One of the suppliers is reliable but expensive. The other supplier, is

not reliable since it has limited and varying capacity. However, this supplier is less expensive. The

proposed model captures the trade-offs that exits between timing of markdown and waste, size of

markdown and waste, size of markdown and profits, and supply chain costs and reliability.

The proposed model captures many interrelated and conflicting relationships. We develop

a case study and conduct an extensive sensitivity analysis to demonstrate the nature of these rela-

tionships. This analysis reveals trends which are neither intuitive, nor easy to estimate. We expect

that our results will provide insightful perspectives to managers making inventory replenishment

decisions for perishable products.

3.2 Literature Review

The main contributions of this study are related to three streams of literature: stochastic

inventory management of perishable products, joint pricing and inventory management and dual

sourcing.

The literature on inventory management of perishable products with stochastic demand is

considerably broad. [101] provided a review of early work in this area. More recently [102, 71,

17, 70] indicate an increasing interest in this topic due to some new and interesting applications.

This literature distinguishes perishable products with fixed shelf life from deteriorating products.
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Deteriorating products are further classified into perishable products with random life expectancy,

and age-dependent perishable products. Age-dependent perishable products’ quality/value and/or

quantity degrade over time at a constant or dynamic rate based on age.

Early works in the field was focused on managing the inventory of perishable products

with fixed shelf-life and stationary demand [74]. Stationary demand models assume that demand

in successive periods are represented by independent and identically distributed random variables.

Periodic review models, such as, (R, S ) or (R, s, S ), and continuous review models are typically

used to model problems with stationary demand [31, 36, 83]. Using these models when demand is

non-stationary would result in waste –when demand is low–, or stock outs –when demand is high

[131]. Other approaches used in the literature to model the problem include Markov process [30] or

dynamic programming [38, 81, 72]. [116] propose a model for inventory management of perishable

products with fixed shelf-life and non-stationary demand.

Early works in inventory management modeling assumed that customer demand followed

exogenous distributions [149, 118]. Typically, the objective of these models was to improve opera-

tional efficiency by minimizing expected costs. Another common assumption was that sales price

did not change with time, was exogenous and imposed [26]. A few studies, however, pointed to the

importance of modeling jointly pricing and inventory management decisions [48, 90, 37].

Modeling inventory replenishment for age-dependent perishable products with stochastic

demand is a challenge. [66] proposed an ELS model for the deterministic version of this problem

and developed a dynamic programming solution approach. Extensions of this model focus on de-

terministic demand. This is mainly because it is challenging to capture the age of the inventory

in a stochastic setting. The work of [141] is one of the first studies that discusses a joint pricing

and inventory replenishment problem for perishable products with stochastic demand. [141] extends

the news-vendor model by incorporating pricing as a decision variable. [95] extends this model by

considering a price-dependent demand (x) which is affected additively by a random term (ε) inde-

pendent of price, i.e., x = µ(p)+ε, where µ(p) is mean demand as a function of market price p. Their

analysis concluded that, for additive demands (i.e., x = a + bp) the optimal price in the stochastic

setting is always lower than the optimal price in the deterministic setting. [76] extend this model

considering price-demand relationships of various levels of complexities. These models determine a

single price and order quantity in a single period setting. Thus, the shelf life of these products is

fixed to one period. Work by [139] and [27] consider joint pricing and inventory management for
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deteriorating products. Both works assume a constant decay rate and derive a fixed-pricing policy.

The news-vendor model has been extended to consider multiple period planning horizons.

For example, [31] present a joint pricing and replenishment model for a perishable product over a

multi-period planning horizon. The authors first consider the single-period problem and identify

optimality conditions for the case when demand function is linear. Next, the authors propose a

dynamic programming model for the multi-period problem. The number of states in a dynamic

program typically grows exponentially with the problem size. For this reason, only problems of

small size are solved optimally. To solve larger problems, [31] propose heuristic approaches that

provide approximate solutions. [36] provide a structural analysis of a multi-period, periodic review

model. The authors also develop analytical bounds for the optimal order-up-to level, and propose

a heuristic policy that applies to problems with stationary and non-stationary demand. Other

notable works are by [67] who formulate a multi-period dynamic pricing and inventory model for

perishable products with one-period shelf life and strategic customers; [38] who identify optimality

conditions for a pricing an inventory allocation problem with two-period shelf life. The authors

propose heuristics to identify quality decisions for products with longer shelf life. Recently, [72] use

a dynamic programming model to identify optimal order quantity and price for a perishable product

with fixed shelf life. Works by [91, 98] solve a joint pricing and inventory problem for deteriorating

products with constant perishability rate. Note that, these models listed here either assume a fixed

shelf life or constant perishability rate.

The following papers focus on perishable products with random life expectancy. Work by

Mandal and Pal (1998), which was further investigated by Wu and Ouyang (2000) and then extended

by Wu (2001), focuses on inventory management of a perishable product with ramp type demand

function and Weibull distributed deterioration rate. [146] extend these models by considering a

general demand rate function and Weibull distributed deterioration rate. To the best of our knowl-

edge, there are no papers in the literature that address joint pricing and inventory replenishment

for products with random life expectancy.

A number of works in the literature focus on dual sourcing as a strategy to reduce risk in the

supply chain [136, 15]. [57] integrate supplier selection and inventory replenishment decisions via a

mixed integer nonlinear programming model. These suppliers differ by transportation costs and lead

times. Stochasticity of lead time impacts suppliers’ reliability. This study does not consider pricing

decisions and the product is not perishable. [12] develop a two-stage stochastic programming models
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to aid supplier selection decisions in the processed food industry. The first stage problem decides

about the quantities to procure from each supplier. The second stage problem identifies procurement

and transportation plans. This model assumes uncertain supply and demand. However, this study

does not consider pricing decisions. A few studies model joint pricing and inventory management

problems with supply uncertainty and non-perishable products [82, 28, 50, 35, 128, 29]. To the best

of our knowledge the problem of joint pricing and inventory management for deteriorating products

under demand and supply uncertainty and dual sourcing has not been investigated in the literature.

3.3 Our Contributions

Modeling: We propose a two-stage stochastic optimization model that integrates inventory

replenishment and pricing decisions for an age-dependent perishable product in a periodic-review

inventory system. We express the stochastic demands for new and old products via linear functions

of their prices. We consider markdowns for older products to stimulate sales and minimize waste.

The model uses dual sourcing to mitigate supply chain risks due to random supply. As indicated

by our extensive literature review, this problem -although relevant for grocery stores and bakeries-

has not been studied in the literature for these reasons. First, this problem is challenging to solve.

Second, modeling the relationship between demand and price requires extensive amount of data.

Third, due to lack of technical support, businesses favored simple models which provided simple

rules of thumb that are easy to implement. However, current advancements in technology (such as

RFID tags, point-of-sale data, loyalty programs) allow businesses to track the age of products and

provide the means to collect ample amount of data necessary to estimate the impact of pricing on

sales; etc. Thus, businesses have the means to employ relevant models and decision support tools

to help with pricing decisions which better align demand and supply. Solution approach: We

propose a solution approach for a two-stage stochastic, bilinear model with linear recourse. Our

algorithm is an extension of the Benders-decomposition method. We approximate the non-linear

first stage problem using extensions of McCormick relaxation method. Our approach significantly

reduces the computational time as compared to using commercial solvers.
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3.4 Problem Statement and Formulation

3.4.1 Notations and Assumptions

We consider a single retailer who makes inventory replenishment decisions for one perishable

product in a periodic-review inventory system. We assume that a discrete and finite planning horizon

of length T is a typical one and repeats itself over time. Thus, all problem data are assumed cyclic

with cycle length equal to T (ψT+t = ψt for t = 1, . . . , T, where ψt is a problem parameter in period

t). As a result, the inventory replenishment decisions and inventory levels are cyclic.

This retailer receives shipments from I suppliers. Each supplier i (= 1, . . . ,I) charges a

fixed cost (si) per shipment and a variable cost (ri) per unit of product delivered. The fixed cost

is due to order replenishment and loading/unloading; and the unit cost is due to purchasing and

transportation. We assume zero transportation lead time since refrigerated transportation vehicles

are typically used to deliver perishable products, thus, we assume no deterioration during lead time.

We assume that the longer a unit of this product is carried in inventory, the faster it

deteriorates. This is indeed the case for most practical applications [66, 112]. Let ρtτ denote

deterioration rate in period τ of a unit which was received in period t. Thus, for t ≤ τ ≤ j, we

assume that ρtτ ≤ ρtj . Let κtτ represent the portion of a demand in period τ satisfied via a shipment

received in period t. Thus, κtτ =∏
τ−1
j=t (1 − ρtj) and 1 = κtt ≥ κtτ ≥ κtj for t ≤ τ ≤ j.

We consider a single price markdown of this perishable product. Thus, we assume that a

product which has been in shelves for less than l(< T ) periods is “new” and sells at full price pn. A

product which has been in shelves longer is “old” and sells at a discounted price po. Products which

have been in shelves for f periods of time (` ≤ f < T ), or longer, are disposed. It is expected that

the discounted price of old products will impact the demand for new products, and vice-versa. We

assume demands for new and old products in each time period are stochastic, independent and non-

stationary. Within the same period however, demand for new and old products are interdependent

and represented via equations (3.1) and (3.2).

D
n
(po, pn, t) = αn − βnpn + βopo + ωnt , ∀t = 1, . . . , T ; (3.1)

D
o
(po, pn, t) = αo − θopo + θnpn + ωot , ∀t = 1, . . . , T ; (3.2)
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Where,

µn(po, pn) = αn − βnpn + βopo; (3.3)

µo(po, pn) = αo − θopo + θnpn; (3.4)

estimate the mean demand for new and old products, and ωnt , ωot are the corresponding random

elements. We assume that these random elements are independent, with generic distributions and

continuous density functions that may change with time. The coefficient βn(βo) represents the

sensitivity of the demand for new products to the price of new (old) products; and θo(θn) represents

the sensitivity of the demand for old products to the price of old (new) products. We assume that

βn ≥ βo and θo ≥ θn to ensure that an increase in price will result in a decrease of the overall

demand. The intercepts αn, αo represent the maximum demand for new and old products. In

summary, equations (3.3) and (3.4) enforce the mean demand for new (old) products to decrease

with the price of new (old) product and increase with the prices of old (new) [48]. Other studies in

the literature use equations (3.1) and (3.2) to represent stochastic demands for substitute products

[48, 40].

3.4.2 Problem Formulation

We propose a joint pricing and inventory replenishment model for a perishable product with

stochastic, non-stationary demand and age-dependent deterioration rate. We model this problem

as a two-stage stochastic program in order to capture the stochastic nature of demand and its

impact on the timing of decisions in the supply chain. We consider that supplier selection, inventory

replenishment schedule, and pricing decisions are made a priori (in the first stage) and before

demand is realized. Therefore, these decisions are non-anticipative in nature. The assumption that

a replenishment schedule is identified prior to demand realization is not restrictive since the model is

uncapacitated. Pricing decisions only impact the mean demand for old and new products. However,

inventory replenishment decisions for new and old products follow demand realization. Therefore,

these decisions are made in an adaptive manner.

First stage decision variables: Supplier selection and replenishment schedule decisions are cap-

tured via yit. This is a binary decision variable which takes the value 1 if supplier i is selected to

replenish the inventory in period t (I = 2), and takes the value 0 otherwise. This variable is used to
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calculate the total fixed order cost during the planning horizon ∑
I
i=1∑

T
t=1 siyit.

Other first stage decision variables are the price of new and old products pn, po. The

relationship between prices and mean demands are captured via equations (3.3) and (3.4). The

total cost due to first stage decisions is

ζ(pn, po, yit) =
T

∑
t=1

I
∑
i=1

siyit − (pnµn + poµo) ∗ T.

Since there is a one-to-one relationship between price and mean demand, we substitute mean

demand with the corresponding functions defined in (3.3) and (3.4). Thus, the total cost becomes

ζ(pn, po, yit) =
T

∑
t=1

I
∑
i=1

siyit − (αnpn + αopo − βn(pn)2
− θo(po)2

+ (βo + θn)pnpo) ∗ T.

We use a single decision vector x ∈ X to collectively denote the first stage decision variables

(i.e., x = (pn, po, yit ∀i = 1, . . . ,I, t = 1, . . . , T )). Thus, the corresponding total cost is denoted by

ζ(x).

Second stage decision variables: Inventory replenishment decisions are denoted by qitτ and

represent how much of the demand in period τ is satisfied via shipment from supplier i in period t.

These decision variables facilitate tracking the age of the inventory (the age of a product in period

τ equals τ − t). For example, qitt represents how much of the demand in period t is satisfied via

a shipment received in the same period; qi,t−1,t represents how much of the demand in period t is

satisfied via 1 period old inventory, etc.

Let citτ denote the replenishment cost per each unit of qitτ , and hτ denote the unit inventory

holding cost in period τ . The unit replenishment cost consists of the unit delivery cost ri and the

total unit inventory holding cost for the period (t, . . . , τ − 1) during which it was held in inventory:

citτ = ri +∑
τ−1
s=t hsκts. Thus, the total replenishment cost is ∑i,t,τ citτqitτ . Sit is a random variable

which represents the amount available at supplier i ∈ I in time period t = 1, ..., T .This quantity is a

random parameter with specified distribution.

Other decision variables included in the model are ut and zt which represent amounts of

shortage and wastage due to the stochastic nature of demand. The corresponding penalty costs are

ft and gt. The service level is defined as the probability of not having a stock-out in a replenishment

cycle. One can adjust (increase) the value of ft to reduce shortages, thus, improve service level.
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Similarly, the value of gt impacts wastage.

Two-stage stochastic model formulation: The objective is to minimize the total cost of the

first stage decisions and the expected cost of the second stage decisions. That is,

min F (x) = ζ(x) +E{φ(x,ω)}, (3.5a)

s.t. x ∈ X = {(pn, po, yit)∣p
n, po ≥ 0, yit ∈ {0,1} ∀i ∈ I, t = 1, . . . , T} (3.5b)

The objective function F (x) includes bilinear terms, thus, the problem is not convex.

The recourse function φ(x,ω) for a realization ω̃ = (ω̃n, ω̃o, S̃) is given by:

φ(x, ω̃) = min ∑
T
t=1 [ftut + gtzt − p

nω̃nt − p
oω̃ot +∑

I
i=1∑

T
τ=t citτqitτ ] (3.6a)

s.t.

∑
I
i=1∑

τ
t=[T+(τ−`)+1] κtτqitτ + uτ = D̃

n
τ 1 ≤ τ ≤ T, (3.6b)

∑
I
i=1∑

[T+(τ−`)]
t=[T+(τ−`)+1] κtτqitτ + uτ − zτ = D̃

o
τ 1 ≤ τ ≤ T, (3.6c)

κtτqitτ − S̃ityit ≤ 0 1 ≤ i ≤ I; 1 ≤ t ≤ T,1 ≤ τ ≤ T, (3.6d)

qitτ , uτ , zτ ≥ 0, 1 ≤ i ≤ I; 1 ≤ t ≤ T,1 ≤ τ ≤ T . (3.6e)

Where D̃nτ = αn − βnpn + βopo + ω̃nτ and D̃oτ = α
o − θopo + θnpn + ω̃oτ .

For convenience, we propose the following notation [t] = (t + 1)mod T − 1 and [0] = T .

Function (3.6a) minimizes the total cost of inventory replenishment, shortage and wastage. This

function also maximizes the revenue gain due to the stochastic nature of demand. Constraints (3.6b)

are the inventory balance constraints for new products, and (3.6c) for old products. Note that, qitτ

represents the amount received from supplier i in period t to satisfy demand in period τ . However,

(1 − κtτ)qitτ units of inventory are wasted due to storage from periods t to τ and the remaining

amount κtτqitτ represent the demand met in period τ . Shortage and wastage occur due to the

random nature of demand and are captured via uτ , zτ . Constraints (3.6d) set an upper bound on

the amount of inventory. In the case when a shipment has been delivered in period t (yit = 1), the

upper bound is the total amount available at supplier i in period τ ; otherwise (yit = 0), the upper

bound is zero. Constraints (3.6e) are the non-negativity constraints.

In this two-stage stochastic programming model, (3.5) is the first-stage problem and (3.6)
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is the second stage problem. The decision variables of the first-stage problem, x ∈ X , are a mix of

binary and continuous variables; however, the decision variables of the second stage problem are

continuous.

Formulation (3.6) has uncertain parameters in the right-hand-sides of equations (3.6b) to

(3.6d) and in the objective function. We reformulate the second stage problem in order to have

uncertain parameters only in the right-hand-sides of the constraint sets. This reformulation is a

two-stage stochastic program with fixed recourse.

φ(x, ω̃) = min η (3.7a)

s.t.

(3.6b), ..., (3.6e)

η −∑
T
t=1 [ftut + gtzt +∑

I
i=1∑

T
τ=t citτqitτ ] ≥ ∑

T
t=1 [ − pnω̃nt − p

oω̃ot ] (3.7b)

3.5 Solution Approach

Two-stage stochastic programs with recourse provide a powerful tool to model problems

arising in the areas of energy planning, manufacturing, supply chain, etc [20]. The special structure

of these models enables the use of decomposition-based algorithms. Many decomposition-based

algorithms, so-called scenario-based decomposition methods, use scenarios to capture uncertainties.

This model captures the stochastic behavior of supply via Sit and the stochastic behavior

of demand for new and old products via ωnt , ω
o
t . These variables represent deviations of demand for

new and old products from the corresponding mean demands. We discretize these random variables

by creating S scenarios. Let Ω = {ω̃1, ω̃2, . . . , ω̃S} be the set of scenarios and Ps be the probability

associated with each scenario s = 1, . . . , S. Thus, we can represent the expectation function in (3.5)

as:

E{φ(x,ω} =
S

∑
s=1

Psφ(x, ω̃s). (3.8)

This discretization facilitates the formulation of the corresponding deterministic equivalent

of (3.5), which can be solved using deterministic, global optimization algorithms, such as, branch-

and-reduce [129], nonconvex outer approximation methods [73], and branch and bound [9]. However,
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these methods are not practical for large scale problems that have a large number of scenarios. This

is why we use Benders decomposition algorithm explained in Section (3.5) which is an iterative

procedure that generates an outer approximation of the expected recourse function [19].

The recourse function (3.8) can be replaced by a Monte Carlo estimate assuming that all

scenarios have the same probability of Ps = 1/S. This yields the SAA problem which follows:

min x∈XFS(x) = ζ(x) +
1
S ∑

S
s=1 φ(x, ω̃s), (3.9a)

s.t. x ∈ X = {(pn, po, yit)∣p
n, po ≥ 0, yit ∈ {0,1} ∀i ∈ I, t = 1, ..., T} (3.9b)

Recall that, function ζ(x) contains the bilinear term pnpo and the quadratic terms (pn)2, (po)2.

Due to the bilinear terms pnpo, this function is neither convex nor concave. The following are a

few examples of convex relaxation methods that are used in the literature for bilinear terms: Mc-

Cormick relaxation [94], outer linearization [129], and α-based Branch and Bound [10]. In Section

(3.5.2) we present a relaxation of the problem via McCormick envelopes. This leads to a linear

relaxation of nonlinear functions in the first-stage problem. In Section (3.5.3) we use an extension of

the McCormick relaxation algorithm which leads to tighter relaxations of nonlinear functions in the

first-stage problem. Section (3.5.4) presents an extended Benders decomposition algorithm which

employs these relaxations.

3.5.1 Benders Decomposition Algorithm

Let X k represent the feasible region of problem (3.9) during the kth iteration of the Benders

decomposition algorithm. In the first iteration of this algorithm the feasible region X 0 includes only

constraints (3.9b). In the kth iteration, the feasible region X k comprises of these constraints as

well as additional affine functions. The maximum of the affine functions approximates the expected

recourse function. These affine functions are generated using the optimal dual solutions to the

second-stage problem in (3.7). Let xk be the optimal/near optimal solution to the following relaxed

first stage problem:

min
(x,η)∈Xk

Fk(x) = {ζ(x) + η} (3.10)

where, η is an auxiliary variable employed by the affine functions.
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For a given xk and a realization ω̃s ∈ Ω, we obtain dual solutions to the second-stage problem

φ(xk, ω̃s). Let λ, γnt
k, γot

k, ιitτ
k, be the dual optimal solutions to (3.7b), (3.6b), (3.6c), and (3.6d)

in iteration k. Then, the lower bounding affine function (optimality cut) is obtained as follows:

lkopt(x, η) ∶=
1

S

S

∑
s=1

[∑
i∈I

T

∑
τ=1

T

∑
t=1

S̃itιitτs
kykit−

T

∑
t=1

(D̃
n
tsγ

n
τs
k
+ D̃

o
tsγ

o
τs
k
) − λs

T

∑
t=1

(pnω̃nts + p
oω̃ots)] + η, (3.11)

where D̃nτs = α
n−βnpn+βopo+ ω̃nτs and D̃oτs = α

o−θopo+θnpn+ ω̃oτs. By adding (3.11) to X k

an iteration of Benders decomposition method is completed and X k+1(x) = X k(x) ∪ (lkopt(x, η) ≤ 0).

With help from slack variables (ut, zt) we ensure that the second-stage problem is always feasible.

Therefore, the problem is relatively complete, and there is no need to generate feasibility cuts in

this implementation of Benders algorithm.

Let xk be the solution found during the kth iteration of Benders algorithm. Then, the objec-

tive function value of (3.10), Fk(x
k), provides a lower bound (Lk) for problem (3.5). The objective

function value for (3.9), FS(x
k), provides an upper bound (Uk) for (3.5). Benders decomposition

algorithm terminates when the relative error gap between Uk and Lk is less than a predefined error

gap ε1. Let x̂ = xk be the optimal solution and FS(x̂), be the corresponding optimal objective

function value.

3.5.2 McCormick Relaxation Algorithm

The first-stage problem (3.9) contains the bilinear terms pnpo in the objective function.

Therefore, the problem is nonlinear and non-convex. We use McCormick envelopes to linearize

these terms [94].

Let pn ≤ pn ≤ pn, po ≤ po ≤ po; and pn, po be upper bounds on the variables. One can calculate

pn by maximizing function F̃S(x) = p
n− 1

S ∑
S
s=1 φ(x, ω̃s) over the feasible region of formulation (3.9).

A similar approach is used to calculate the upper bounds for po. Let W = pnpo and substitute the

bilinear terms in the objective with the newly defined variables. The corresponding McCormick

relaxations of these terms are constraints (3) presented in the appendix (C).
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The following is a relaxation of formulation (3.9).

min F̂ (x) = ∑i∈I ∑
T
t=1 siyit − (αnpn + αopo − βn(pn)2 − θo(po)2 + (βo + θn)W ) ∗ T + η, (3.12)

s.t.

(3.9b), (3.11), (3)

Proposition 3.5.1 A feasible solution x̂∗ of (3.12) is also feasible to the master problem (3.5).

Proof: In formulation (3.12) the bilinear term pnpo appears only in the objective function (3.12).

Thus, McCormick envelopes provide an exact relaxation of the feasible region of (3.12). ∎

Corollary 3.5.1 Let x̂∗ be a feasible solution to (3.12). An upper bound to the master problem

(3.5) is Û = FS(x̂
∗) which is found by evaluating the objective function of (3.9) at x̂∗.

Corollary 3.5.2 Let x̂∗ be a feasible solution to (3.12). A lower bound to the master problem (3.5)

is L̂ = Fk(x̂
∗) which is found by evaluating the objective function of (3.10) at x̂∗.

3.5.3 Piecewise Linear Approximation Algorithm

McCormick relaxations of the bilinear term pnpo is loose. An algorithmic approach pro-

posed by [60], which is based on a piecewise linear relaxation of the bilinear terms using bivariate

partitioning, provides tighter bounds. To create the piecewise linear approximation, we partition

pn, po into Nn,No equal and exclusive segments using Nn + 1,No + 1 grid points. Let dn, do denote

the length of each segment. Let N ∶= {Nn,No} denote the collection of the number of grid points

and W = pnpo. The set of constraints necessary to relax the bilinear term are (4), and presented in

the Appendix.

The following is a relaxation of formulation (3.5).

min F̂ (x) = ∑i∈I ∑
T
t=1 siyit − (αnpn + αopo − βn(pn)2 − θo(po)2 + (βo + θn)W ) ∗ T + η, (3.13a)

s.t.

(3.5b), (3.11), (4)
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Proposition 3.5.2 A feasible solution x̂∗ of (3.13) is also a feasible to the master problem (3.5).

Proof: In formulation (3.13) the bilinear term pnpo appears only in the objective function (3.13a).

Thus, McCormick envelopes provide an exact relaxation of the feasible region of (3.5). ∎

Corollary 3.5.3 Let x̂∗ be a feasible solution to (3.13). An upper bound to the master problem

(3.5) is Û = FS(x̂
∗) which is found by evaluating the objective function of (3.9) at x̂∗.

Corollary 3.5.4 Let x̂∗ be a feasible solution to (3.13). A lower bound to the master problem (3.5)

is L̂ = Fk(x̂
∗) which is found by evaluating the objective function of (3.10) at x̂∗.

Proposition 3.5.3 Formulation (3.13) provides a tighter relaxation of (3.5) than formulation (3.12)

when either Nn ≥ 1, or No ≥ 1, or both Nn ≥ 1,No ≥ 1.

Proof: In the case when Nn = 0 and No = 0, the piecewise linear approximation of pnpo provides

just the corresponding McCormick relaxation of this term. In this case, formulations (3.12) and

(3.13) are exactly the same. Increasing the number of grid points Nn and/or No has no impact on

the feasible region of (3.12) and (3.13). Based on Lemma I in [60], the uniform placement of grid

points for bivariate partitioning minimizes the sum of squares of the maximum separation of the

bilinear terms W = pnpo from its linear relaxation in each segment. Therefore, increasing the number

of grid points provides a tighter approximation of the objective function of (3.5). This results in

finding solutions which provide tighter bounds for (3.5). ∎

Algorithm (2) summarizes an algorithm we use to solve (3.5) by iteratively solving a

sequence of relaxations (3.13). In each iteration the number of grid points is increased by 1. Let

x̂i ∈ X̂ represent a solution to (3.13) during the i-th iteration of the algorithm. We use x̂i to calculate

lower and upper bounds to (3.5). The algorithm terminates when the relative gap between upper and

lower bounds is less than a predefined error gap δ. Formulation (3.13) is a mixed integer, quadratic

program which we solve via CPLEX.

3.5.4 Proposed Extended Bender’s Decomposition Algorithm

Algorithm (3) summarizes the proposed extended Benders decomposition algorithm. Dur-

ing the k-th iteration of this algorithm, a relaxation of (3.5) is solved to obtain the first-stage variables

xk. Given xk, formulation (3.7) of the subproblem is then solved for each scenario ω̃s ∈ Ω, s = 1, . . . , S.

The first- and second-stage solutions are used to calculate lower and upper bounds to (3.5). This
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Algorithm 2 Piece-wise linear approximation algorithm

1: Initialize:
i← 0; L̂← − inf, Û ← + inf,Nn,No, δ > 0

2: while ∣Û − L̂∣ /Û > δ do

3: Solve (3.13) to obtain x̂i

4: Set L̂ = Fk(x̂
i), Û = FS(x̂

i)

5: (i,Nn,No) + +

6: end while

iterative procedure ends when the relative error (∣Uk − Lk ∣/Uk) is smaller than some predefined

bound (ε2). If the relative error is greater than ε2, an optimality cut (3.11) is added to the master

problem, and the procedure repeats.

The solutions obtained from solving relaxations (3.12) and (3.13) of the master problem

(3.5) in the initial iterations of the Benders algorithm are typically of low quality. This is mainly

because initially, due to the limited number of optimality cuts (3.11), the feasible region of the master

problem is not well defined. The quality of the solutions found improves as the algorithm progresses.

Therefore, in order to reduce the running time of the algorithm, we initially solve (3.12) since it

is computationally less challenging. As the algorithm progresses, we search for better solutions by

solving (3.13).

Algorithm 3 Extended Benders Decomposition Algorithm

1: Initialize:
k ← 0; L0 ← −∞, U0 ← +∞, ε2 > ε1 > 0

2: while ∣Uk −Lk ∣/Uk > ε1 do
3: if ∣Uk −Lk ∣/Uk ≤ ε2 then
4: Call Algorithm 1 to obtain xk

5: else
6: Solve (3.12) to obtain xk

7: end if
8: for ω̃s ∈ Ω, s = 1, . . . , S do
9: Solve (3.7)

10: Obtain γnτs
k, γoτs

k ιitτs
k, and λks

11: end for
12: Update (3.11)
13: Set Lk = Fk(x

k), Uk = FS(x
k)

14: k + +
15: end while
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3.5.5 Evaluation of the Algorithm

Since selecting a good sample size S is critical and problem specific, we replicate the whole

process (Algorithm 2) using different number of scenarios. Doing this, we increase the probability

of obtaining a solution which is truly optimal to the original problem. Assume that ΩrS represents

the set of scenarios and xrS , F
r
S are the optimal solution and corresponding objective function value

obtained using the extended Bender’s decomposition algorithm in replication r = 1, . . . ,R. We define

F
R

S = 1
R ∑

R
r=1 F

r
S to be a point estimate of the optimal objective function value to the true problem

(3.5).

In addition to this, the first-stage optimal solution of each replication (xrS) is evaluated

by simulating the second-stage problem using a set of scenarios different than ΩrS . This process

is termed the out-of-sample evaluation. This evaluation is terminated when (1 − α)% confidence

interval is built on F rS′ with ΩS′ /= ΩS . Let ∆r = F
r
S −F

r
S′ be an estimator of the optimality gap with

mean and variance of:

∆
R
=

1

R

R

∑
r=1

∆r, σ2
∆ =

1

R(R − 1)

R

∑
r=1

(∆r −∆
R
)
2. (3.14)

Since this estimator overestimates the optimality gap we can argue that it is a pessimistic gap.

3.6 Numerical Study

This section the results of our numerical study. In Section (3.6.1) we describe the experimen-

tal setup. In Section (3.6.2) we present a case study. In Section (3.6.3) we compare the performance

of Algorithm 2 to the solutions found by an exact approach when solving some special cases of

problem (3.5), and in Section (3.6.5) we summarize the results of the sensitivity analysis. While the

experiments in Section (3.6.6) consider one supplier the experiments in Section (3.6.7) examine dual

sourcing.

3.6.1 Experimental setup

Algorithm 2 is implemented on a 64 bit Intel Core i4 processor @ 800 MHz with 8 GB RAM.

The linear and mixed integer quadratic programs are solved using CPLEX callable subroutines. In

our experimentations, we first obtain an optimal or near optimal first stage-solution with a relative
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Table 3.1: Input data

Suppliers
Costs 1 2
si U[150,250] U[250,350]
ri U[25,30] U[20,25]

error ε1 ≤ 0.01 using Algorithm 2. Next, we verify the quality of these first-stage solutions by fixing

them and solving subproblem (3.7) on a different set of scenarios. We use the same distribution

to generate scenarios in both, optimization and evaluation processes. The evaluation process is

replicated a few times (R = 10). In each replication, we use independent samples of random scenarios.

Evaluation terminates when a 95% confidence interval is built on the recourse function values. The

evaluation results are presented in our computations. The results presented in Figures 3.1 to 3.10

are averages over these replications.

3.6.2 Case Study

We construct our experimental study based on a dataset described in Table 3.1 and used

in [114] who study a similar problem. This data considers 2 suppliers and a planning horizon that

is (T =)7 periods long. The deterioration rate ρt,t+1 = 0.02 and the unit inventory holding cost h =

$1/(unit*time period). Products are marked down after being in the shelf for (` =)3 days.

The random elements ωn and ωo follow truncated normal distribution ([0,150] and [0,175])

with positive standard deviations σn = 10, σo = 20. Thus, demand Dnt and Dot follow truncated

normal distribution with constant standard deviations σn, σo. These inputs are taken from [40] who

study a similar problem.

The penalties for shortage and wastage are initially set high (ft = gt = 1,000 ∀t ∈ T ) to

minimize lost demand and wastage. We conduct sensitivity analysis to evaluate their impact on the

performance of this system.

3.6.3 Model Validation

Existing models for joint inventory replenishment and pricing of perishable products make

simplifying assumptions about deterioration rate and demand distribution. These models either

assume that product shelf life is two periods long, or demand is stationary. In order to demonstrate

the advantage of the proposed model we compare it to a recent model by [40].
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[40] derived analytical results about the optimal inventory replenishment policy to a special

case of our problem when the product shelf life is 2 periods long and the planning horizon is 1

period long, that is, l = 2, T = 1. In this model, the relationship between price and demand is

represented using the same linear functions (3.1) and (3.2). Given the size of the initial inventory,

the model decides on the replenishment quantity which minimizes total costs. [40] shows that the

optimal policy derived for this problem is myopic, thus not optimal, when the product’s shelf life

and planning horizon are longer.

We conducted an experiment using the same data set and we let l = 2, T = 1 to mimic the

problem setting of [40]. Figure 3.1a depicts the relationship between the optimal price of new and

old products for different levels of initial inventory. It is observed that the price of old products

decreases as the initial inventory level increases. Figure 3.1b depicts the relationship between the

optimal price of new and old products for different levels of initial inventory. It is observed that

the price of old products decreases and the price of new products increases as the initial inventory

level increases. Figure 1b shows that the size of orders for new products decreases and the total

profit increases as the initial inventory level increases. These observations are similar to the results

presented in [40]; which is a validation of the model we propose.

We compare the results of an optimal solution from using Algorithm 2 to the results of

implementing the myopic policy for the case when the product shelf life is 3 periods and planning

horizon is 2 periods long. We test both models for the same levels of initial inventory. Figure 3.2a

depicts the relationship between the optimal price of new and old products and the initial inventory

level. This relationship is similar in both approaches. Figure 3.2b represents the relationship between

replenishment quantity and initial inventory level; and profits and initial inventory level. Since the

planning horizon is 2 periods long, both models try to minimize ending inventories. However, the

replenishment quantities under the myopic policy are higher since this policy tries to ensure that the

requirement about the initial inventory level for the second period is met. Figure 3.2c compares the

profits from both models. These profits are consistently smaller for the myopic policy. These results

demonstrate the value of the model proposed in this study, and it is expected that the benefits will

be greater when solving problems that consider longer planning horizon and non-stationary demand.
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Figure 3.1: Evaluating solution quality of Algorithm 2 when ` = 2, T = 1.

Table 3.2: Comparison of solution quality.

Total Costs CPU Time

T S Algorithm 1 COUENNE Algorithm 1 COUENNE

1 100 -46,663.91 -13,343.96 74 80

2 100 -230,544.38 -88,179.50 86 89

7 100 -310,747.81 -106,943.10 138 162

3.6.4 Analyzing the Performance of Algorithm 1

The goal of these experiments is to evaluate the performance of the piecewise linear ap-

proximation algorithm (Algorithm 1) which we use in line 4 of Algorithm 2 to solve model (3.13).

We also solve model (3.12) using COUENNE [18], an open source software and compare their per-

formance. Note that COUENNE does not guarantee the optimality. We conduct the experiments

in rather small problem instances since COUENNE was not able to solve larger problem instances.

Table (3.2) summarizes the objective function values (total costs) and the corresponding running

times. The results indicate that implementing the piecewise linear approximation algorithm results

in higher quality solutions compared to COUENNE.
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Figure 3.2: Comparing the quality of solutions from Algorithm 2 to the model by [40] for ` = 3, T = 2.

3.6.5 Sensitivity Analysis

3.6.5.1 Scenario Selection:

To identify an appropriate number of scenarios for our experimentations we use two methods.

These methods analyze the difference between the optimal solutions obtained when using different

number of scenarios. The first approach assesses the impact of the optimal solution on the recourse

objective function value. To accomplish this, during the evaluation phase we use the optimal solution

and simulate the subproblem to find the recourse function value over the two sets of scenarios. We

then perform a paired t-test on the corresponding objective function values. Table 3.3 presents

p−values for each pair of scenarios tested. If the p−value is greater than 0.05 we conclude that

the impacts of solutions x̂S and x̂S
′

(S /= S′) on the value of the recourse objective function are
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Table 3.3: Paired t-test and relative Euclidean distance for different number of scenarios.

S;S’ p-value (95% CI) ∥x̂S − x̂S′∥ / ∥x̂S∥

10;50 0.1 0.0026
50;100 0.01 0.0025
100;200 0.004 0.0002

not statistically different. The second approach finds the relative Euclidean distance between the

two solutions. A small value implies that the solutions are statistically indistinguishable. Table 3.3

presents the results.

We observe that increasing the number of scenarios from 100 to 200 results in a p−value

smaller than 0.05 and in the smallest relative Euclidean distances. Thus, it is not necessary to

increase the number of scenarios used from 100 to 200. This is the reason why in our experiments

we use 100 scenarios.

3.6.6 Does a Price Markdown Impact Profits in the Supply Chain?

To answer this question we conducted the following two experiments. In the first experiment

we consider no price markdown in the supply chain. This implies that all the products are priced

as new. Next, we increase the perishability rate and observe the performance of the supply chain.

Retailer’s profit for each perishability rate are presented in Figure 3.3a. In the second experiments

we consider a price markdown in period 3. The remaining problem parameters did not change. We

conducted a similar sensitivity of perishability rate and observe the performance of the supply chain.

The results are summarized in Figure 3.3b. Figure 3.3c presents the increase in profits in the supply

chain due to the price markdown. These results indicate that a price markdown positively impacts

profits in the supply chain.

3.6.6.1 Analyzing the Impact of Deterioration Rate:

Figure 3.4a indicates that total profits in the supply chain decrease with the perishability

rate. This is due to the deterioration of the inventory which impacts waste and the frequency and

size of replenishment (see Figures 3.4b and 3.4c). Based on Figure 3.4d, the price of both, old and

new products increases to compensate for the inventory losses. The highest profits in the supply

chain are achieved when the product does not deteriorate, ρt,t+1 = 0.
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Figure 3.3: Evaluating the impact of markdown on retailer’s profits.

3.6.6.2 Analyzing the Impact of Service Level:

Service level is defined as the probability of meeting demand via on-hand inventory during

a replenishment cycle. We adjust the service level of the supply chain by changing the value of

the shortage cost gt. Figure 3.5a indicates that increasing shortage cost from $30 to $40 improves

the service level from 90% to 100%. This improvement in service level is achieved by increasing

replenishment quantity (Figure 3.5c).

Increasing replenishment quantity results in additional loss of inventory due to product

perishability, which results in loss of profit (Figure 3.5b). Increasing replenishment quantity results

in a decrease of unit replenishment cost since the fixed ordering cost is distributed among more
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Figure 3.4: Impact of deterioration rate.

products (Figure 3.5e). At the same time, the price of new products decreases. The accumulated

effect of these changes is a decrease in profits in the supply chain.

3.6.6.3 Analyzing the Impact of Markdown Period:

Figure 3.6a indicates that the timing of markdown impacts the profits in the supply chain.

When price is marked down in periods 5 and 6, retailer’s profits are lowest. The average profits do

not change when the price is marked down in periods 1 through 4, however, the deviations from this

profit are smallest when price is marked down in period 4. Figure 3.6c indicates that service level

decreases with markdown period. This is mainly because it becomes difficult to meet demand for
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old products. This is the reason why replenishment quantity increases, and consequently wastage

due to product perishability. Figure 3.6d indicates a decrease in price for new and old products due

to these changes of markdown period.

3.6.6.4 Analyzing the Impact of Demand Pattern:

We evaluate the performance of the supply chain under different patterns of demand which

are presented in Figure 3.7. Patterns A, B and C represent non-stationary demands. To accomplish

this we change the mean of ωn , ωo from one period to the next. However, the mean value of

these random variables overall planning horizon is the same. In pattern D both mean and standard

deviation of ωn , ωo change from one period to the next.

Patterns A and B differ by the standard deviation of ωn , ωo. Both standard deviations are

higher for pattern B. This is the reason why the average profit for both patterns is the same, but

the variations around this profit is higher in pattern B. Pattern D represents erratic demand, and

this is why its profits are lowest.

3.6.6.5 Analyzing the Impact of Unit Inventory Holding Cost:

Increasing the unit inventory holding cost reduces inventory in the supply chain. This

impacts the frequency of orders, thus profits in a supply chain (see Figure 3.9).

3.6.6.6 Analyzing the Impact of Price Sensitivities:

Recall that βn(βo) represents the sensitivity of demand for new (old) products to the price

of new (old) products. In our experiments we maintained βn ≥ βo to ensure that an increase in price

will result in an overall decrease of demand.

Increasing βn represents an increase in price elasticity. Typically, demand for a product is

elastic when there are close substitutes of that product. Revenues from these products are smaller

than revenues from inelastic products. This relationship is captured in Figure 3.10a where the profits

decrease with βn.

3.6.7 Analyzing the Impact of Dual Sourcing:

We consider two suppliers, one that is reliable and expensive; and another who is unreliable

and less expensive. The unreliable supplier has random capacity, thus, the amount supplied is
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represented via a random variable which follows the Normal distribution.

Figure 3.11a and Figure 3.11b summarize the impact of markdown period on dual sourcing.

Mean supply is equal for both suppliers. Postponing product markdown to a later time results in

lower prices for new and old products (see Figure 3.6d). A decrease in price reduces profit margins

which leads to favoring the unreliable supplier because of his lower unit cost.

Figures 3.12a to 3.12d summarize the impact of supply availability on dual sourcing. An

increase of supply available from the reliable supplier results in a decrease of price for new and

old products (see Figure 3.12b), and consequently in an increase of demand which is satisfied via

shipments from the reliable supplier (see Figures 3.12c and 3.12d). Based on Figure 3.12a, the

number of replenishments from the reliable supplier decreases with an increase of supply which

results in reduced replenishment costs.

3.7 Summary of Results

This study proposes a two-stage stochastic optimization model that identifies a replenish-

ment schedule for a periodic-review inventory system with non-stationary demand and dual sourcing.

The model captures the relationship between price and stochastic demands via a linear function.

The model considers a price markdown as the means to stimulate demand and minimize waste of

this perishable product.

In the proposed model, the first-stage problem is bilinear. Thus, we develop a solution

approach which extends the Benders’ decomposition algorithm by employing a piecewise linear

approximation method to solve the first-stage problem.

We develop a case study in order to validate the model and evaluate its performance. We

conducted a thorough sensitivity analysis to observe the impact that timing and size of a price

markdown has on inventory replenishment decisions and retailer’s profits. We analyzed the impact

of deterioration rate, inventory holding cost, and service level on inventory replenishment decisions

and retailer’s profits. Via this model we also evaluated the impact of dual sourcing in replenish-

ment decisions. While the relationships identified via this analysis are intuitive, quantifying these

relationships cannot easily be accomplished without the aid of models similar to the one proposed

here.

Current technological developments (such as RFID tags, point-of-sale data, loyalty pro-
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grams) allow businesses to track the age of products; collect ample amount of data to estimate the

impact of pricing on sales; etc. Businesses can take advantage of this data and the models proposed

in here to develop decision support tools to aid pricing decisions which can potentially lead to a

better align demand and supply, and consequently, higher retailer’s profits.
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Figure 3.5: Sensitivity of the optimal solution to the penalty of shortage.
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Figure 3.6: Evaluating the sensitivity of solution to markdown period.
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Figure 3.7: A summary of demand patterns tested.
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Figure 3.8: Evaluating the impact of demand patterns.
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Figure 3.9: Sensitivity of the optimal solution to the unit inventory holding cost.
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Figure 3.10: Sensitivity of the optimal solution to the ratio βn/βo.
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(a) Reliable supplier.
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(b) Unreliable supplier.

Figure 3.11: Impact of markdown period when the supplier is unreliable.
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(d) Unreliable supplier.

76



Chapter 4

Forecasting Childhood Routine

Immunization Vaccine Demand: A

Case Study in Niger

4.1 Introduction

Over the years, several deadly diseases such as Polio and Diphtheria have been prevented via

vaccines. Every country has developed and implements a childhood routine vaccination program.

This has resulted in a large decrease in the global mortality rate associated with unvaccinated

children. However, the death rate of children under age five is still high in low-income countries. In

2016, the death rate was 73.1 deaths per 1000 live births in low-income countries which is almost 14

times greater than the average mortality rate in high-income countries [109].

In 1974, the WHO initiated the EPI with the goal of providing vaccination to every child

around the world [107]. Later in 1999, the WHO with the help of UNICEF, the World Bank and

other institutions extended the EPI to the GAVI with the objective of saving children’s lives in lower-

income countries [106]. The original standardized vaccination schedule includes 1 dose of BCG after

birth, 3 doses of DTP in primary series within 12-23 months after birth, 3 doses of oral polio vaccine

in primary series within 6-14 weeks after birth, and 1 dose of measles vaccine within 6-9 months

after birth.

77



The success of EPI program depends on the implementation of policies and the structure of

the distribution network design. Distribution network design is an important and difficult task to

accomplish since many new vaccines, such as, Hepatitis B (HepB), Yellow Fever, and Haemophilus

Influenza Meningitis (Hib) have been introduced into the routine immunization since the EPI has

started [69].

The objective of a vaccine distribution network is to ensure an on-time delivery of vaccines

to clinics. In many countries, the vaccine supply chain includes multiple levels. A typical distribu-

tion network consists of four levels. The first layer connects a central storage to the district level

warehouses. The second layer connects the district level warehouses to the regional stores. The

third layer connects the district level warehouses to the clinics where vaccines are administered [14].

For many products, the inventory replenishment and transportation schedule decisions rely

on data forecasts. Demand is typically the most important data that needs to be forecast. The

demand pattern for different types of products are different. For example, the demand for luxurious

products increases with an increase in family income level. However, the demand is not a function

of salary for the basic products such as bread, milk, and egg. Ozawa et al. indicate that the

expected demand for vaccines in northern Nigeria is influenced by factors such as vaccination cost,

lack of vaccine knowledge, media coverage, social norms and religious views, and care seeking [110].

Analyzing the impact of these factors on the expected demand for vaccines is challenging since these

are subjective measures.

Identifying factors which impact demand, and can be measured, is important in developing

functional relationships to predict expected demand for vaccines. Accurate estimates of the demand

pattern for vaccines is critical for the design and implementation of inventory replenishment and

transportation plans. Inventory replenishment and transportation decisions are important because

they impact vaccine wastage and shortage. Vaccine wastage is a result of different factors, such

as, expiration, vial breakage, continuous heat exposure, etc [108]. Well-designed transportation

policies result in lower amount of wastage. For example, decreasing vaccine handling reduces the

chance of vial breakages. Vaccines can be quite expensive and expired vaccines cannot be used

[89]. Therefore, reducing wastage is crucial for cost containment. Moreover, high quality demand

forecasts have a great impact on the development of high quality replenishment schedules since these

forecasts prevent shortages.

Various studies have assessed the factors which impact expected demand for vaccines [110,
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121, 99, 54]. However, they do not prescribe any prediction model for vaccination demand. The

analysis of demand is vital when designing a vaccine distribution network. To do that, the authors

in [14] estimated the demand at Integrated Health Centers (IHC) using the birth registry at the

district level. In another study of Benin’s vaccine supply chain, the authors modeled the expected

demand for vaccines using Poisson distribution [24]. However, these papers ignore the monthly

demand variations as well as the difference in monthly demand across various regions in the country.

Therefore, analysis of expected demand for vaccine represents a research need. In this regard, we

contribute to the literature by developing a regression-based estimate of the future demand for CIV.

This model is characterized by different vaccine types as well as region.

The models developed are used to analyzes the demand for CIV in Niger. We used data

from DHS to develop these models. The current vaccine supply chain in Niger comprises of four tiers

which consists of 1 central store, 8 regional stores, 42 district stores, and over 600 IHC. UNICEF

replenishes the inventory of the central store every two month via air transportation. Vaccines are

shipped from the central store to the regional stores every three month via cold trucks. The district

stores pick up the vaccines from the regional stores on a monthly basis via 4 × 4 trucks. The IHC

picks up the vaccines from the district stores monthly using motorcycles, bikes, or private cars. We

study the monthly demand pattern for CIV in 8 different region of Niger.

4.2 Methods

4.2.1 Data input

This study used data from DHS and also the census data for Niger. The DHS population-

based and nationally representative surveys from large samples of sizes between 5,000 and 30,000

households.[5]. A household survey provides information related to women and children in a house-

hold, such as, weight, height, vaccination dates within the last 5 years, etc. The vaccination data is

provided by the survey respondents for the EPI vaccines for children younger than 5 years old. The

household survey for Niger was collected in 2012 by interviewing each household. The census data

provides the demographical information including population density, poverty level, and education

level. The census data in Niger is updated every 5 years, and it is only available at the national

level [46]. The data about population density, as well as, poverty and education level at the regional

level is only provided for certain years [16, 42]. We used the world bank data portal to extrapolate
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population size for the remaining years. Population size is estimated based on the annual birth and

death rate [8]. The data about the number of integrated health centers in each region was collected

from [33].

Using the DHS data, we enumerated the number of children per household. We used each

child vaccination date to estimate the number of vaccinations in a month for different types of

vaccines and for each region in Niger. The vaccination dates range from 2007 to 2011. The number

of vaccinations was divided by the total number of children (provided by the survey) to estimate

the vaccination rate. It should be noted that, we excluded any household for which the date of

vaccination was unknown.

In order to estimate the total number of vaccines, we used the most recent Niger census

records. The regional level records are only available for 2012. We used the 2012 records to es-

timate the distribution of population by region [42]. This distribution for 2012 was: 2.85% of

total population lived in Agadez, 3.46% of total population lived in Diffa, 11.89% of total popula-

tion lived in Dosso, 19.85% of total population lived in Maradi, 19.42% of total population lived

in Tahoua, 15.89% of total population lived in Tillaberi, 20.65% of total population lived in Zin-

der, and 5.99% of total population lived in Niamey. The total population of Niger during 2002 to

2011 is estimated as follows: 10,639,740; 11,058,590; 11,360,540; 11,665,940; 12,525,090; 12,894,870;

13,272,680; 15,306,250; 15,878,270; 16,468,890; 16,344,690. Using the population distribution by

region, we estimated the regional population during 2002 to 2011.

The birth rate of Niger during 2002 to 2011 is the following: 49.95, 49.54, 48.91, 48.3, 50.73,

50.16, 49.62, 51.6, 51.08, 50.54, 50.06 [8]. These rates indicate the number of births per 1000 people.

To estimate the number of children younger than 5 years old in a particular year, we summed the

number of birth in the corresponding year and over the last 5 years. The total number of vaccines

per region was calculated by multiplying the regional population of children under 5 years old by

the vaccination rate. In all regions there are some data point for which the number of vaccines

administered were not available.

4.2.2 Data analysis

The data analysis presented in this study is conducted using the statistical software SAS. In

all the analysis, the significance level is set at p = 0.05. We decided to discard missing data since they

induce bias, and this bias negatively impacts the data analysis. Therefore, we used imputation to
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deal with missing data points. Imputation substitutes a missing value with a predicted value. There

are different methods to predict the missing value, such as, hot-deck, cold-deck, mean substitution,

and regression. Repeating imputation is called multiple imputation, which results in reducing the

standard error of prediction outcome. In multiple imputation, the missing values are filled by the

mean of results [148]. In this study we used multiple imputation of regression to predict the missing

data points.

In order to detect any non-randomness in the number of vaccines administered during 2007

to 2011, autocorrelation tests were conducted. A single autocorrelation test was conducted for each

vaccine type and each region using the Durbin-Watson test in the “Autoreg” procedure in SAS.

In order to address the effect of population size on the expected demand for vaccines, a

linear regression model is developed. In this model, the independent variable is the population size

and the dependent variable is expected demand for vaccines. Each vaccine type in each region was

examined via a single regression model. The intercept of these regression models was forced to

zero since population of size zero would require zero vaccines. For this analysis, we used the data

about monthly number of vaccines administered as the dependent variable. Since the population

size per region in each month of a year is not available, the yearly population size was divided using

a mid-year split that used the difference in annual population estimates and split the difference at

the mid year.

There are other variables that have previously been identified as factors influencing expected

demand for vaccines [121]. These factors include maternal education level, wealth index, and clinic

availability. A linear regression model at the national level was conducted to analyze the impact

of these factors as well. In this model, the dependent variable is expected demand for vaccines,

and the independent variables are percentage of population below the national poverty line, adult

literacy rate, and the number of clinics. The data about the percentage of population below the

national poverty line and adult literacy rate is available only for 2008. The adult literacy rate is

defined as “the percentage of population aged 15 years and over who cannot both read and write

with understanding a short simple statement on their everyday life” [6].
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Figure 4.1: Total administered Measles vaccine through 2007-2011 in three different regions of Niger

4.3 Results

The total number of Measles vaccine administered in Maradi, Tahoua, and Agadez from

2007 to 2011 increases with the time as it is shown in figures (4.1a) and (4.1b). However, the

results of autocorrelation analysis indicate that the Durbin-Watson test with the hypothesis of

no autocorrelation is not significant (P > 0.05). That is, the expected demand for vaccines is not

autocorrelated when the lag is 1. These results are consistent for different vaccine types and different

regions. It is observed that the demand pattern differs for the three regions even though Maradi

and Tahoua have pretty close population sizes. For example, in the mid year of 2009, there is a

big upward shift in the number of vaccines administered in Maradi, but this is not observed in

Tahoua and Agadez. This confirms the differences between the magnitude of parameter estimates

for individual simple linear regression models predicting the expected demand for vaccines based on

the regional population size per month in Table (4.1).

The impact of population size on the expected demand for vaccines in all regions is significant

(p < 0.001). The parameter estimates reveal the contrast between different vaccine types and different

regions (Table (4.1)). The parameter estimates are different for Agadez and Diffa although these
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Table 4.1: Parameter estimate (standard error, and R-square) for all individual simple linear re-
gression models predicting the vaccine demand based on the monthly population size in different
regions.

Regions Agadez Diffa Dosso Maradi

Vaccines Parameter Estimate (%) (Standard Error) R-squared Parameter Estimate (%) (Standard Error) R-squared Parameter Estimate (%) (Standard Error) R-squared Parameter Estimate (%) (Standard Error) R-squared

BCG 1.176 (0.0009) 0.75 0.463 (0.0004) 0.71 0.838 (0.0006) 0.77 0.450 (0.0708) 0.43

DPT1 1.151 (0.0008) 0.79 0.447 (0.0004) 0.72 0.952 (0.0006) 0.80 0.513 (0.0788) 0.44

POLIO1 1.12 (0.0008) 0.79 0.447 (0.0004) 0.73 0.918 (0.0006) 0.79 0.500 (0.0774) 0.44

DPT2 1.138 (0.0007) 0.84 0.424 (0.0003) 0.73 0.888 (0.0005) 0.83 0.468 (0.0707) 0.45

POLIO2 1.112 (0.0007) 0.83 0.423 (0.0003) 0.73 0.879 (0.0005) 0.83 0.461 (0.0691) 0.46

DPT3 1.094 (0.0006) 0.85 0.413 (0.0003) 0.73 0.796 (0.0006) 0.78 0.4058 (0.0612) 0.45

POLIO3 1.062 (0.0006) 0.86 0.413 (0.0003) 0.73 0.788 (0.0005) 0.79 0.390 (0.0595) 0.45

MEASLES 0.956 (0.0006) 0.80 0.397 (0.0003) 0.72 0.672 (0.0006) 0.71 0.326 (0.0508) 0.44

Regions Tahoua Tillaberi Zinder Niamey

Vaccines Parameter Estimate (%) (Standard Error) R-squared Parameter Estimate (%) (Standard Error) R-squared Parameter Estimate (%) (Standard Error) R-squared Parameter Estimate (%) (Standard Error) R-squared

BCG 0.636 (0.0005) 0.78 0.971 (0.0006) 0.81 0.565 (0.0004) 0.80 1.378 (0.0007) 0.89

DPT1 0.701 (0.0005) 0.78 1.037 (0.0006) 0.87 0.632 (0.0005) 0.74 1.306 (0.0007) 0.87

POLIO1 0.686 (0.0004) 0.81 0.998 (0.0005) 0.87 0.605 (0.0005) 0.75 1.298 (0.0006) 0.88

DPT2 0.642 (0.0004) 0.79 0.974 (0.0006) 0.84 0.564 (0.0004) 0.74 1.219 (0.0006) 0.87

POLIO2 0.635 (0.0004) 0.81 0.938 (0.0005) 0.85 0.557 (0.0004) 0.74 1.209 (0.0006) 0.88

DPT3 0.577 (0.0004) 0.76 0.906 (0.0005) 0.84 0.556 (0.0005) 0.73 1.16 (0.0006) 0.86

POLIO3 0.578 (0.0004) 0.77 0.886 (0.0005) 0.85 0.546 (0.0004) 0.74 1.145 (0.0006) 0.87

MEASLES 0.469 (0.0003) 0.81 0.796 (0.0005) 0.80 0.383 (0.0004) 0.65 0.957 (0.0005) 0.85

regions have similar population sizes. For example, if the population size of both regions is equal to

1000, the region of Agadez would require around 12 BCG vaccines while the region of Diffa would

require only 5. In contrast, the parameter estimates for the population size within the region of

Diffa does not substantially change for different vaccine types. For example, the parameter estimate

of populations size for DPT3 and POLIO3 vaccines equals 0.413%. Additionally, in all regions, the

impact of population size decreases for the final dose in the childhood immunization schedule. For

example, the parameter estimates of the population size for the first dose of DPT (DPT1) is lower

than the second dose (DPT2) and the third dose (DPT3). The values of R − squared indicate that

the models developed (except the ones for the region of Maradi) provide a pretty good fit to the

data.

In order to understand the factors that impact expected demand for vaccines at the national

level, we developed regression models with parameter estimates and standard errors presented in

Table (4.2). These regression models were built using the national level data available in 2008. It is

observed that the impact of population size, as well as, the number of clinics are not significant for

all vaccine types (p > 0.05). Note that ∗ indicates that the impact of a parameter is not statistically

significant (p > 0.05). The results show that, the adult literacy rate does not influence the demand

for DPT3, and POLIO3. The impact the adult literacy rate on BCG, DPT1, POLIO1, DPT2, and

POLIO2 vaccines is similar. In contrast, the impact of the percentage of population under poverty

line is different for various vaccine types. Also, MEASLES vaccine is not affected by any parameter

in the model. The R-squared values indicate that, the models provide a good fit to the data for all

vaccine types.
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Table 4.2: Parameter estimate (standard error, and R-squared) for the national level linear regression
models predicting the vaccine demand based on the regional population size, percentage of people
under poverty line, adult literacy rate in 2008.

Vaccines
Intercept Percentage of people under poverty line Adult literacy rate

R-square
Parameter Estimate (thousands) Standard Error Parameter Estimate (thousands) Standard Error Parameter Estimate (thousands) Standard Error

BCG -106.505 40.333 2.695 0.625 2.241 0.611 0.91

DPT1 -110.182 39.294 2.821 0.609 2.192 0.596 0.93

POLIO1 -111.421 44.099 2.754 0.684 2.202 0.668 0.91

DPT2 -103.684 41.249 2.549 0.641 2.103 0.625 0.91

POLIO2 -104.484 46.411 2.586 0.720 2.107 0.703 0.90

DPT3 * * 1.813 0.774 * * 0.84

POLIO3 * * 1.831 0.819 * * 0.82

MEASLES * * * * * * 0.79

Note: * indicates that the parameter is not significant in the model.

4.4 Discussion

The main objective of this study is to develop regression models to predict the demand

for CIV in different regions based on population size. The results indicate that, population size

significantly impacts the expected demand for vaccines at the regional level. Our analysis suggests

that, this impact differs by region and vaccine type. It was expected that the regression models

developed for Maradi and Tahoua would be similar since their population size is very close. However,

the results do not support our expectations. This is mainly because, on addition to population size,

there are other factors which impact expected demand for vaccines.

The difference between parameter estimates for Agadez and Diffa are mainly due to differ-

ences in population size and education level. While the adult literacy rate in Agadez was 47.7%

in 2008, this level was 36.9% in Diffa. Additionally, Diffa has the lowest percentage of population

below the national poverty line. These estimates indicate that, families in Diffa are more likely to

fully immunize their children as compared to the other regions in Niger. Within Diffa, the parame-

ter estimates are similar for different vaccine types. However, we observe a decreasing trend in the

parameter estimate for the series of a vaccine type (such as, DPT1, DPT2 and DPT3; or POLIO1,

POLIO2 and POLIO3). This trend may be the result of some new societal issues (as discussed in

[110]) and should be further investigated.

It is well recognized that, expected demand for vaccines in developing countries is not only

influenced by population size. To account for this, we used the national level data of 2008 to

evaluate the impact of a number of factors, including the total population size, the percentage of

population below the national poverty line, the adult literacy rate, and the number of clinics. The

study highlights the difference between the regions. The results suggest that, at the national level,
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the population size and the number of clinics are not significant. This highlights the importance of

developing a single, region-based regression model as presented in Table (4.1). The percentage of

people under poverty line and the adult literacy rate are significant factors that impact the demand

for several vaccines.

In 2008, the immunization coverage for MEASLES in Niger is highest among CIV [7].

Therefore, MEASLES might not be affected by the percentage of people under poverty line and

adult literacy rate. The results suggest that, regardless of vaccine type, the adult literacy rate has

the same impact on the expected demand for vaccines. However, this impact is not significant for

the final series of DPT and POLIO. This outcome may be due to other societal issues which are not

discussed in this study.

The results of our data analysis provide insights about the influence of population size,

poverty and education level in the expected demand for vaccines. That means, the availability of

region-based data about population size is important to estimate the expected demand for vaccines,

which in turn, is important information to design a vaccine distribution network and shipping polices.

There are a number of limitations associated with this analysis, such as, (i) we used the DHS data

which is a representative sample and may not have accounted for some of the variability in vaccine

usage; (ii) we estimated population size using a mid-year split; (iii) the low R-squared value in

regression models for Maradi suggests that there might be other factors which impact expected

demand for vaccines at the regional level. Future analysis of more comprehensive data may help us

understand the regional differences in expected demand for vaccines.
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Chapter 5

Stochastic Optimization Models

For Childhood Vaccine

Distribution Network Design: A

Case Study In Niger

Vaccines have been used for more than 50 years to prevent childhood diseases. In 1974,

The World Health Organization (WHO) launched the Expanded Program on Immunization (EPI)

with the goal of providing vaccines to every child and pregnant woman around the world [142].

Nevertheless, today, many children do not receive the necessary vaccinations required by the routine

immunization schedule as defined by EPI. In 2015, 56.4% of deaths in Africa were due to infectious

diseases [144].

EPI members are non-profit organizations such as the World Bank, WHO, UNICEF, and

public health department of several countries and vaccine manufacturers. Health departments in

developing countries are facing a number of challenges managing their vaccine supply chain. These

challenges include introduction of a new vaccine to the routine immunization schedule, changing the

vial size of a vaccine, and global vaccine shortage. Introducing a new vaccine to an existing immu-

nization schedule requires additional capacity in the cold chain. However, acquiring the necessary
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investments to increase capacity in developing countries is challenging. When a single-dose vaccine

is replaced with a multi-dose vaccine, the OVW increases. Furthermore, when a global vaccine

shortage happens, an effective use of resources is required. These challenges affect their effectiveness

in managing EPI. This negatively impacts immunization coverage levels in these countries.

The goal of EPI is to achieve the predefined targeted immunization coverage rate. For

example, the Global Vaccine Action Plan signed by the World Health Assembly in 2012, established

a target immunization coverage of 90% for EPI vaccines by 2020 [143]. To achieve this objective,

efficient vaccine supply chains should be established to guarantee a timely delivery of vaccines to

clinics and eliminate wastage. Efficient supply chains eliminate missed opportunities due to vaccine

unavailability.

The typical EPI vaccine supply chain consists of procurement, storage, and distribution

activities. This supply chain usually comprises of four tiers, which are, a central store, regional

stores, district stores and clinics. UNICEF replenishes the inventory of the central store annually.

Vaccines are shipped from the central store to the regional stores using refrigerated trucks. Vaccines

are shipped to district stores using 4 × 4 trucks. The district stores ship vaccines to clinics using

cars, and motorcycle. Vaccination is done only at these clinics. The number of tiers in the supply

chain might be more or less than four depending on the country. For example, Vietnam has one

additional tier between the regional and district stores. However, the typical supply chain structure

is composed of one central or national level store where vaccines are inventoried and delivered to

downwards members of the supply chain. Including more tiers, while decreases transportation costs,

increases the costs of collecting and storing vaccines. Removing a tier in the structure of this supply

impacts on the system-wide costs and reduces vial breakage due to fewer times vaccines are touched.

Designing an effective and robust vaccine supply chain requires accurate prediction of patient

arrivals and of the corresponding variations. This is because underestimating vaccination needs

results in shortages and overestimating vaccination needs results in unused inventory and wastage.

Therefore, accounting for stochastic patient arrivals is necessary to develop an accurate inventory

replenishment schedules in the supply chain.

This study develops a stochastic optimization model to design a vaccine supply chain which

maximizes the number of fully immunized children. The model determines vial distribution strategy

and storage capacity in each location. The goal is to design an efficient cold chain to deliver vaccines

from manufactures to clinics. This is a data driven model which is developed using real life data
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from Niger. We use our data-driven model to evaluate different supply chain designs and vaccine

administration policies.

This study is organized as follows. In §(5.1), a review of the relevant literature on vaccine

supply chain design is discussed, and a research gap is identified. The proposed model is presented

in §(5.2). In §(5.4), data and computational results are presented.

5.1 Literature Review

Prior research about vaccine supply chain design proposed simulation models which were

build to evaluate the supply chain performance of a specific country. For example, [13] developed a

custom designed discrete event simulation model, namely Highly Extensible Resource for Modelling

Supply Chains (HERMES), to simulate the the vaccine distribution network for EPI vaccines in

Niger. The authors used HERMES to analyze the impact of changing the Measles vaccine vial size

on the performance of Niger’s vaccine supply chain. Similarly, [58] utilized HERMES to compare

the impact of adding stationary storage capacity with increasing transport capacity on the vaccine

availability at clinics in Niger. Research conducted by [14], [79], and [24] used HERMES to explore

the impact of different vaccine distribution strategies on the supply chain costs and vaccine avail-

ability in clinics. A An important observation made by these researchers is that changing a four-tier

to a three-tier supply chain increases the vaccine availability in clinics.

Optimization tools for vaccine supply chain design have rarely been used in the literature.

Most of the optimization models proposed have focused on a single developing country and for one

specific disease. For example, [39] proposed an integrated supply chain and health economic model

to improve the supply of Influenza vaccine. The authors point to the need for providing incentives

to help governments improve the distribution network. In the context of developing countries, [34]

proposed a deterministic model model to analyze the impact of several distribution strategies and

vaccination policies on Niger’s vaccine supply chain. One of the findings is that the performance

of a three-tier supply chain is almost identical to the performance of a four-tier supply chain. This

observation is different from the finding of HERMES.

Models that use the expected value to approximate the demand for vaccines do overesti-

mate/underestimate the actual demand in a time period. These estimations result in vaccine wastage

or vaccine shortage. Additionally, simulation-based approaches provide approximate policies which

88



are often different from exact strategies. Therefore, there is a need for stochastic optimization mod-

els to help decision makers identify efficient supply chain strategies. In this regard, we contribute

to the literature by proposing a chance constrained programming (CCP) model for vaccine supply

chain design. To the best of our knowledge, stochastic optimization models in vaccine distribution

network design has not been addressed in the literature.

CCP models have been developed to optimize problems with several uncertainties. The CPP

modeling approach ensures that the probability of meeting a specific constraint is above a predefined

level. This approach is proven to be robust, but, difficult to solve [132]. CPP have been used in

the literature to model problems in various fields such as renewable energy generation, unmanned

autonomous vehicle navigation, and financial risk management [53].

When the random variable can be decoupled, the constraint is relaxed to deterministic

constraints via probability density functions. One strategy used in the literature is to obtain the

probability from the true distribution and substitute the chance constraint with a deterministic

expression [126]. However, when calculating probabilities is not straightforward, converting the

chance constraints to the corresponding deterministic constraints is challenging [61]. Therefore,

approximate solution approaches like SAA have been developed to address these computational

challenges. Via SAA the stochastic optimization model can be formulated as a deterministic model

[111]. This DEF is obtained via replacing the original distribution of the random variable with an

empirical distribution. The empirical distribution is found by generating realizations for the random

variables in the chance constraints via random samples. The obtained DEF guarantees that the

number of failures in the independent trials of random sampling is below a certain level. [111] have

studied the theoretical properties of SAA. The authors presented methods to find statistical lower

and upper bounds to the optimal value of CCP problem.

5.2 Problem Statement

We consider a vaccine supply chain via which EPI vaccines are distributed to clinics for

administration. The planning horizon considered is one year, and the planning period is one month.

We use a network design model to represent this supply chain. We define the vaccine supply chain at

time period t ∈ T on a directed graph Gt = (J,A), where J is the set of nodes and A is the set of arcs.

This model assumes that vaccine vial size (dose/vial) is predefined and there is no manufacturing
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capacity limitation. Vaccines have different characteristics, and therefore, some vaccines can be

stored in both, refrigerators and freezers, others must only be stored in refrigerators. Some vaccines

must be restored using diluent before injection. The diluents are also refrigerated.

Some EPI vaccines require one dose for a complete immunization, others require multiple

doses at different stages of childhood. For example, to be fully immunized against Measles two doses

are used. The first dose is administered when a child is 12 to 14 months old, and the second dose

is administered at least 4 months later. The number of doses needed to fully immunize children is

termed ”vaccine regimen”.

It is assumed that a fraction of vaccines is lost during transportation due to breakage. Also,

OVW in clinics depends on the mean patient arrivals and vial size. The OVW is zero for single-dose

vials and is typically positive for multi-dose vials. In the model presented here, the OVW rates are

calculated offline. Finally, vaccines are only administered in clinics. It is assumed that demand for

vaccines is zero for the rest of facilities in the supply chain.

In Table 1 we summarize the decision variables and parameters used in our mathematical

model. Note that we use similar notation as in [34] our model since we are extending this model to

capture additional characteristics of the supply chain. Particularly, in our model, demand for vaccine

i ∈ I at clinic j ∈ J in time period t ∈ T is represented via µijt+ ˜ωijt. µijt is the meand and ˜ωijt is the

random variable with mean 0 and constant standard deviation. This relationship is observed from

the real data in Niger and obtained via the regression models proposed in Chapter 4. This allows us

to capture the uncertainty in the demand for vaccines. The authors in [34] consider the randomness

of demand for vaccines via a simulation process. This provides approximated vaccine distribution

strategies. Therefore, there is a need to capture the uncertainty via exact methods. In this study we

use the chance constraint method to represent the uncertainty. This method is used to ensure that

the probability of satisfying a certain constraint is beyond a certain level[132]. By using the chance

constraints, this method enables us to ensure that the predefined targeted immunization coverage

(e.g. 90%) by WHO is met.

Figure 5.1 provides a schematic representation of the modeling approach used for this prob-

lem. This network represents a three tier supply chain with 1 central store, 2 district stores, and 1

clinic which only use refrigerators for storing the vaccines. This network is shown for one vaccine

type over two time periods. The grey, green, and yellow shaded circles represent the central sore,

district stores, and clinics respectively. These circles in successive time periods are connected to
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Table 5.1: Decision variables and parameters.

Set of Indices

Set Description

I Set of vaccine types

IR Set of vaccines that can only be stored in a refrigerator, IR ⊂ I
J Set of the nodes in the network

T Set of periods in the planning horizon

Parameters

Parameter Description

µijt Mean demand for doses of vaccine type i at location j in time period t

ω̃ijt Random variable which represents the demand for doses of vaccine type i at location j in time period t

CRj Effective refrigerator capacity at location j

CFj Effective freezer capacity at location j

CVkj Effective transport capacity from location k to location j

qi Effective packed volume of one dose of vaccine i

ri Diluent volume for vaccine i

ı Number of doses administered of vaccine i within the vaccine regimen

βij Minimum fraction of demand for vaccine i at location j that must be met each period

wRijt Fraction of vaccine i inventory in refrigerators lost at location j in period t

wFijt Fraction of vaccine i inventory in freezers lost at location j in period t

wRRikjt Fraction of vaccine i going from a refrigerator at location k to a refrigerator at location j in time period t that is lost

wRFikjt Fraction of vaccine i going from a refrigerator at location k to a freezer at location j in time period t that is lost

wFRikjt Fraction of vaccine i going from a freezer at location k to a refrigerator at location j in time period t that is lost

wFFikjt Fraction of vaccine i going from a freezer at location k to a freezer at location j in time period t that is lost

wOijt Fraction of open vial wastage for vaccine i at location j in time period t

ε Positive constant used to ensure that maximizing the number of fully immunized children (FIC) is preferred to partial immunization

Decision variables

Variable Description

xRijt Units of vaccine i used from a refrigerator to satisfy demand at location j in period t

xFijt Units of vaccine i used from a freezer to satisfy demand at location j in period t

nj Number of fully immunized children (FIC) at location j

IRijt Inventory of vaccine i in a refrigerator at location j at end of time period t

IFijt Inventory of vaccine i in a freezer at location j at end of time period t

SRRikjt Units of vaccine i shipped from a refrigerator at location k to a refrigerator at location j in time period t

SRFikjt Units of vaccine i shipped from a refrigerator at location k to a freezer at location j in time period t

SFRikjt Units of vaccine i shipped from a freezer at location k to a refrigerator at location j in time period t

SFFikjt Units of vaccine i shipped from a freezer at location k to a freezer at location j in time period t

represent the inventory flow which are shown by red arcs. The black arcs represent the shipment

decisions.
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Figure 5.1: Vaccine supply chain network with 3 tiers: 1 central store, 2 district stores, and 1 clinic
having only refrigerators and for 2 time periods and 1 vaccine type.

The chance-constrained programming model is defined as follows:
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max∑
j∈J

nj + ε∑
i∈I
∑
j∈J
∑
t∈T

(xRijt + x
F
ijt) (5.1a)

s.t.

IRijt = (1 −wRijt−1)I
R
ijt−1 + ∑

k∈J,k/=j
(1 −wFRikjt−1)S

FR
ikjt−1

+ ∑
k∈J,k/=j

(1 −wRRikjt−1)S
RR
ikjt−1 − ∑

k∈J,k/=j
SRFijkt − ∑

k∈J,k/=j
SRRijkt − x

R
ijt/(1 −w

O
ijt) ∀i ∈ I, j ∈ J, t ∈ T ∖ {0}

(5.1b)

IFijt = (1 −wFijt−1)I
F
ijt−1 + ∑

k∈J,k/=j
(1 −wRFikjt−1)S

RF
ikjt−1

+ ∑
k∈J,k/=j

(1 −wFFikjt−1)S
FF
ikjt−1 − ∑

k∈J,k/=j
SFRijkt − ∑

k∈J,k/=j
SFFijkt − x

F
ijt/(1 −w

O
ijt) ∀i ∈ I, j ∈ J, t ∈ T ∖ {0}

(5.1c)

∑
i∈I
qi(I

R
ijt + ∑

k∈J,k/=j
(1 −wFRikjt)S

FR
ikjt + ∑

k∈J,k/=j
(1 −wRRikjt)S

RR
ikjt) ≤ CRj ∀j ∈ J, t ∈ T (5.1d)

∑
i∈I
qi(I

F
ij + ∑

k∈J,k/=j
(1 −wRFikjt)S

RF
ikjt + ∑

k∈J,k/=j
(1 −wFFikjt)S

FF
ikjt) ≤ CFj ∀j ∈ J, t ∈ T (5.1e)

IRij0 = 0 ∀i ∈ I, j ∈ J (5.1f)

IFij0 = 0 ∀i ∈ I, j ∈ J (5.1g)

IFij∣T ∣ = 0 ∀i ∈ IR, j ∈ J (5.1h)

∑
i∈I
qi(S

RR
ikjt + S

RF
ikjt + S

FR
ikjt + S

FF
ikjt) ≤ C

V
kj ∀j, k ∈ J ; j ≠ k, t ∈ T (5.1i)

nj ≤ ∑
t∈T

(xRijt + x
F
ijt)/ai ∀i ∈ I, j ∈ J (5.1j)

P(xRijt + x
F
ijt ≥ µijt + ω̃ijt) ≥ βij ∀i ∈ I, j ∈ J, t ∈ T (5.1k)

All Variables ≥ 0 (5.1l)

In the above model, the first term in the objective function maximizes the number of FIC in

each clinic. This results in maximizing the number of required doses in the vaccine regimen that are

sent downward to the clinics. The second term maximizes the total number of doses used for partial

immunization. The coefficient ε is used to ensure that maximizing the number of FIC is preferred to

partial immunization. In other words, the second term represents the flow of vaccines in the supply
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chain.

Equations (5.1b) and (5.1c) are the inventory balance constraints for refrigerators and freez-

ers at each facility in the supply chain. It is assumed that the lead time for shipping is one week.

The model accounts for specific shipment schedules between locations j and k by fixing variables

SRRikjt, S
RF
ikjt, S

FR
ikjt, and SFFikjt to zero during those time period when there are no shipments. Doing

this, allows us to model situtatios, such as, Niger’s vaccine supply chain where shipments between

the central store and regional stores are currently scheduled every three months.

Constraints (5.1d) and (5.1e) limit the storage capacity of refrigerators and freezers, respec-

tively. Constraints (5.1f) and (5.1g) initialize the inventory of vaccines in refrigerator and freezer,

respectively. Constraint (5.1h) guarantees that vaccines that are not stable at freezer temperature

must only be stored in refrigerators. Constraint (5.1i) limits the transportation capacity between

two locations. Note that the model assumes that both freezable and non-freezable vaccines are

shipped via the same vehicle type. Constraint (5.1j) determines FIC for each location. The right

hand side of this inequality represents the average number of individuals to whom a full set of doses

of vaccine i is administered at clinic j over the planning horizon. This is found by dividing the total

number of vaccine i doses administered at clinic j by the number of required doses defined in the

vaccine regimen. Therefore, FIC is bounded by the smallest value among all vaccine types.

Finally, (5.1k) is a chance constraint which indicates that the total number of vaccine type

i delivered to clinic j in period t should be greater than the total demand for vaccines at least βij of

the time. This constraint captures the random nature of patient arrivals. All of the children would

not be vaccinated if the available inventory is less than the total demand. The goal is to to maintain

the necessary inventory to vaccinate at least βij (i.e. 90%) of the patients.

5.3 Approximating The Chance Constraints

The proposed model is a CPP Due to constraints (5.1k). CPP models are challenging to

solve due to the non-convexity of the feasible region [111]. One of the methods to which is frequently

used to solve CPPs is the SAA. This method represents the uncertain parameter ω̃ijt via a finite

number of realizations (scenarios) [111]. Let Ω denote this finite set of scenarios.

Using SAA, we approximate model (5.1) with the corresponding DEF. This DEF is a linear

program. To develop DEF, we introduce additional variables and constraints. We introduce the
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slack variables and replace (5.1k) with (5.2b) and (5.2c). In these new equations, the stochastic

parameter ω̃ijt is substituted with the corresponding realization ωijt obtained from the random

sample s ∈ Ω. One could use Monte Carlo simulation to randomly generate the observations. The

additional term in the objective function minimizes the cost of violating constraints (5.1k) [88, 111].

We use πijt to denote the penalty for not serving demand of vaccine i at clinic j in time

period t. Thus, we can build the DEF of model (5.1) as following.

max ∑j∈J nj + ε∑i∈I ∑j∈J ∑t∈T ((xRijt + x
F
ijt) −∑s∈Ω πijtV

s
ijt) (5.2a)

s.t.(5.1b) − (5.1g), (5.1i) − (5.1l)

xRijt + x
F
ijt + V

s
ijt −W

s
ijt = µijt + ω

s
ijt ∀i ∈ I, j ∈ J, t ∈ T, s ∈ Ω (5.2b)

VsijtW
s
ijt ≥ 0 ∀i ∈ I, j ∈ J, t ∈ T, s ∈ Ω (5.2c)

Identifying the values for the penalty cost π is challenging. πijt = 0 results in V sijt > 0 for all

s ∈ Ω, and consequently xRijt + x
F
ijt ≤ µijt +ω

s
ijt for all s ∈ Ω. πijt = inf results in V sijt = 0 for all s ∈ Ω,

and consequently xRijt+x
F
ijt ≥ µijt+ω

s
ijt for all s ∈ Ω. Thus, the value of πijt should be determined so

that constraints (5.2b) are satisfied at least in (β)% of the scenarios generated. To achieve this, we

propose a binary search algorithm which identifies the value of πijt such that the number of FIC is

maximized and constraints (5.2b) are violated in βij% of the scenarios generated. In this algorithm

we solve problem (5.2) iteratively until Mijt = α∣Ω∣ ± σ, ∀i ∈ I, j ∈ J, t ∈ T .

Proposition 2 Algorithm (4) generates a lower bound for problem (5.1).

Proof: Algorithm (4) iteratively changes the values of πijt so that P(xRijt + x
F
ijt ≥ µijt + ω̃ijt) ≥ βij

for ω̃ijt ∈ Ω. If Ω were to represent all the potential realizations of random variable ω̃ijt, then, the

solution obtained by the Algorithm (4) would be optimal for (5.1) as σ goes to zero. Therefore,

Algorithm (4) provides only a lower bound to the problem (5.1). ∎

5.4 Numerical Experiments

The stochastic model presented in §(5.2) is used to analyze the current vaccine distribution

network in Niger. The vaccine supply chain in Niger comprises of four tiers. The central government
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Algorithm 4 Binary Search Algorithm

Notation: Let πLijt and πUijt denote the lower and upper bounds of the penalty term πijt. Also, let
σ and δ be small positive constants.

1: while ∣πijt −
πLijt+π

U
ijt

2
∣ > δ ∀i ∈ I, j ∈ J, t ∈ T do

2: πijt ←
πLijt+π

U
ijt

2
3: Solve (5.2) and let W̄s

ijt, ∀i ∈ I, j ∈ J, t ∈ T be the corresponding incumbent solution.

4: M ← 0, N ← 0
5: for i ∈ I, j ∈ J, t ∈ T do
6: for s ∈ Ω do
7: if W̄s

ijt > 0 then

8: Mijt ←Mijt + 1
9: end if

10: end for
11: if Mijt ≥ α∣Ω∣ + σ then

12: πLijt ←
πLijt+π

U
ijt

2
13: else if Mijt ≤ α∣Ω∣ − σ then

14: πUijt ←
πLijt+π

U
ijt

2
15: end if
16: end for
17: end while
18: Return πijt, and the solution to (5.2)

of Niger purchases vaccines from UNICEF headquarters in Denmark. UNICEF replenishes the

inventory of the central store every two month via plane. Vaccines are shipped from the central

store to the regional stores every three month via cold trucks. The district stores pick up the

vaccines from the regional stores on a monthly basis via 4×4 trucks. The Integrated Health Centers

(IHC) or clinics then pick up the vaccines from the district stores monthly using motorcycle, bikes,

or private cars. This network comprises of 8 regional stores, 42 district stores, and 642 clinics.

The central and regional stores are equipped with cold rooms. While the district stores have chest

refrigerators and freezers, the clinics have smaller refrigerators and/or freezers.

Public health authorities in Niger are interested in evaluating the impact of converting

the current four-tier supply chain to a three-tier one by removing the regional stores, and chang-

ing Measles’s vial size from multi-dose to single-dose on the vaccine availability and immunization

coverage. We use the proposed model in (5.2) to address these questions. To this end, we use

two performance measures: (a) Supply Ratio (SR) for each clinic, and (b) Average percentage of

fully immunized children (FIC) for each region. These measure are calculated using the following

equations.
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SRsi = (∑j∈J ∑t∈T (x
R
ijt + x

F
ijt))/∑j∈J ∑t∈T (µijt + ω̃

s
ijt),∀i ∈ I, s ∈ Ω, (5.3a)

FICsj = 100nj/φsj ,∀j ∈ J, s ∈ Ω, (5.3b)

where φsj is the total number of children vaccinated at clinic j and is equal to xRijt + x
F
ijt −W

s
ijt.

Furthermore, we illustrate the value of stochastic solution (VSS) by comparing with the

expected value solution.

5.4.1 Input Data

In our numerical experiments, we consider EPI vaccines which consist of Bacillus Calmette-

Gurin (BCG), Tetanus, Measles, Oral Polio, Yellow Fever, and Diphtheria-Tetanus-Pertussis (DTP).

The characteristics of each vaccine type is summarized in Table (1). These inputs are obtained from

[34].

Table 5.2: Vaccine characteristics.

Vaccine type Num. of doses per vial Volume (c.c./dose) Dilunet volume (c.c./dose) Num. of doses in regimen Storage

BCG 20 1.2 0.7 1 Refrigerator/freezer

Tetanus 10 3.0 3 Refrigerator

Measles 10 2.1 0.5 2 Refrigerator

Oral polio 20 1.0 4 Freezer

Yellow fever 10 2.5 6.0 1 Refrigerator/freezer

DTP 1 16.8 3 Refrigerator

To estimate the monthly demand for vaccines in different regions of Niger, we conducted a

comprehensive data analysis which is presented in Chapter 4. Via this analyses, we fitted regression

models to the available data about monthly demand for vaccines to identify factors that impact the

demand and represent the demand as a function of known parameters. The regression indicated that

demand is a function of population size and as the value of the independent variable, population

size, increases, the mean of the dependent variable, demand for vaccine, also tends to increase. This

allows us to estimate the mean demand for vaccine, µijt given the population size. Moreover, ω̃ijt

represents the error term in the regression function. Our analysis indicates that this error term

follows the Normal distribution with mean 0 and a constant standard deviation. These values differ

by regions and vaccine types. Note that, population data is available only at the regional level, thus
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Table 5.3: Relative distance between objective function values for different number of scenarios.

S;S’ Relative distance between objective function values
30;40 0.010
40;50 0.008

we assume that the clinics in a district serve equal proportions of the demand. The storage capacity

at each location is estimated based on an study by [13].

5.4.2 Experimental Setup

Problem formulation (5.2) is developed using JuMP programming language and solved using

Gurobi 7.0.2. The experiments are implemented using high-performance computing (HPC) resources

at Clemson University. We consider a total horizon of 12 months for the analyses of Niger’s supply

chain. Furthermore, to implement Algorithm (4), both δ and σ are set to 0.01.

5.4.2.1 Scenario Selection:

To identify an appropriate number of scenarios for our experimentations we use the following

method. This methods analyze the difference between the optimal solutions obtained when using

different number of scenarios S and S′. This approach finds the relative distance between the two

objective function values. A small value implies that the solutions are statistically indistinguishable.

Table 5.3 presents the results.

We observe that increasing the number of scenarios from 40 to 50 results in a relative

distance smaller than 0.01 . Thus, it is not necessary to increase the number of scenarios used from

40 to 50. This is the reason why in our experiments we use 40 scenarios.

5.4.3 VSS

In this section we evaluate the performance of stochastic solutions obtained from solving

problem (5.2). To this goal, we compute the VSS for the current vaccine supply chain in Niger.

VSS measures the impact of random demand for vaccine to the performance of the system [20].

VSS is is calculated as the difference between the objective function value of (5.2) and the expected

value solution (EEV). To calculate EEV we solve the deterministic version of our problem which

uses the expected value of demand for vaccines in a time period. Then, we use the total num-
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ber of vaccine type i delivered to clinic j in period t obtained from the deterministic solution to

resolve the stochastic model. The corresponding objective function value is EEV. The objective

function value of (5.2) equals 11,126,993 and EEV equals −33,458,721. Therefore, VSS is equal

to (−33,458,721) − (11,126,993) = −44,585,714. VSS indicates that, on the average, the deter-

ministic solution overestimates the number of children fully immunized by as much as 40%. This

indicates that there is value in solving the proposed stochastic model formulation rather than the

corresponding mean value problem.

5.4.4 Analyzing The Current System

To analyze the capabilities of the current system, we used FIC across all regions summa-

rized in Figure 5.2a for low standard deviation of demand for vaccines and Figure 5.2b for high

standard deviation. The results indicate that the average FIC does not exceed 52%, which im-

plies low vaccination coverage in the country. Due to the stochastic nature of patient arrivals to

the clinics, as well as, storage capacity limitations, fully immunizing children, as recommended by

the vaccine regimen, is challenging. This analyses provides a tool to aid public health authorities

estimate the number of additional cold rooms, refrigerators and freezers needed to achieve higher

immunization coverage. Moreover, when the standard deviation of patient arrivals to the clinics is

high the vaccination coverage decreases. This motivates policy makers to develop policies which

encourage high participation in vaccination.

5.4.5 Removing Regional Level

In this section we explore the effects of removing the regional stores from the current four-tier

Niger’s vaccine supply chain on FIC and SR. In the three-tier hierarchy, the district stores receive

shipments of vaccines directly from the central store. Also, the cold rooms at the regional stores are

eliminated to save costs. Figure (5.3) shows the countrywide percentage of FIC for the four-tier and

the three-tier supply chains. The results indicate that the three-tier supply chain design increases

the FIC from 44.28% to 44.41%. A paired t-test at p − value = 0.05 was conducted to determine if

there is a statistically significance difference between the two designs. The results indicated that,

the difference in the percentage of FIC in these supply chains is statistically insignificant. This

observation is similar to the results presented in [34].
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(a) Low standard deviation.
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(b) High standard deviation.

Figure 5.2: Regional FIC for the current supply chain for low and high standard deviations of
demand for vaccine.

5.4.6 Changing the Vial Size of Measles Vaccine

Health care administrators suggest replacing multi-dose vaccine vials with single-dose vials

to improve safety and eliminate OVW. Since single-dose vials are accessed only once, the chance

that needles are contaminated is minimized. In this section, we analyze the impact of replacing

ten-dose Measles vials with single-dose vials on FIC and SR. The results are illustrated in Figure

(5.5). Figure 5.4 indicates that the average countrywide FIC percentage decreases by about 41%,

from 43.76% to 30.85% with single-dose vials. Figure 5.5b indicates that that SR of every vaccine is

reduced, including Measles. In particular, SR decreases by about 13% for Oral polio, 21% for BCG,

23% for Yellow fever, 23% for Measles, and 24% for DTP when single-dose vials of Measles vaccine

are used. One might expect that eliminating OVW would increase vaccine availability. However,

single-dose vaccine vials are presented in larger volumes and require additional storage space. This

increase in space requirement for Measles impacts the availability of storage space for other vaccines

in the case when storage space is limited.

5.5 Conclusion and Future Research

This paper presents a stochastic optimization model that identifies distribution strategies

for vaccine vials in developing countries. This is a data driven model which is developed using real
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Figure 5.3: Countrywide FIC for the four- and three-tier vaccine supply chains.

life data from Niger. To the best of our knowledge, this is the first stochastic optimization model

used in the literature to capture vaccine distribution decisions in the supply chain. The model

captures uncertainties of demand for vaccination via chance constraints. Public health authorities

can use this model to evaluate different supply chain designs and vaccine administration policies.

After developing a case study using real-world data from Niger, a sensitivity analysis is

conducted to evaluate the impact of converting the current four-tier to a three-tier supply chain by

removing regional stores, and changing Measles’s vial size from multi-dose to single-dose on FIC

and SR. Our observation can be summarized as follows:

1. Changing vaccine supply chain hierarchy dose not impact immunization rates and vaccine

availability.

2. Replacing ten-dose vials of Measles vaccine with single-dose vials reduces immunization cov-

erage rate and supply ratio for all vaccine types including Measles itself.

Removing regional stores decreases the inventory holding holding costs, but increases trans-

portation costs due to longer trips. Therefore, an economic analysis is required to identify the

trade-offs between inventory holding and transportation costs. We plan to extend the model to

evaluate the economical impact of eliminating regional stores. Moreover, the proposed model only

captures the randomness in patient arrivals. We plan to extend the model to evaluate the impact

of other stochastic problem parameters like capacity utilization on vaccination coverage.
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Figure 5.4: Countrywide FIC for ten-dose Measles vials and single-dose Measles vials.
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Figure 5.5: SR for all vaccine types when either ten-dose Measles vials are used or single-dose vials.

102



Chapter 6

Conclusions and Future Research

The cost, environmental and social impacts of perishable products wastage have drawn

global attention. While a number of efficient models and algorithms to manage these products exist,

shortage of supply and product’s wastage are still challenging issues. This study contributes to

various research areas, such as, supply chain design, inventory management, pricing, and stochastic

optimization.

6.1 Research Summary

In my dissertation I focus on three major areas of research. The goal of these studies is to

optimize inventory replenishment decisions for perishable products.

First, we presented a 2-SIP model for inventory replenishment and the administration of

childhood vaccines in targeted outreach immunization sessions. To our knowledge, this is the first

stochastic optimization model which captures the relationships that exist among these decisions.

The proposed model minimizes replenishment and OVW costs. Different from the current practice

which relies on the use of a single multi-dose vial, this study models the performance of an inventory

replenishment policy that allows the use of mix of multi-dose vials for vaccination. Motivated by

the solutions obtained from the proposed model we developed simple-to-implement vaccine adminis-

tration policies. Statistical analysis indicated that the performance of some policies is not different

than the optimal policy and others outperform the optimal policy. In order to solve the proposed

2-SIP, the LS method was extended by incorporating GMI and MRI cuts in the first-stage problem.
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Via an extensive numerical study we showed that the proposed algorithm is scalable; it outperforms

the LS method by providing high quality solutions in a much shorter CPU time.

Second, we proposed a two-stage stochastic optimization model that identifies a replenish-

ment schedule for a periodic-review inventory system for perishable products with non-stationary

demand and dual sourcing. The model captures the relationship between price and stochastic de-

mands via a linear function. The model considers a price markdown as the means to stimulate

demand and minimize waste of this perishable product. In the proposed model, the first-stage prob-

lem is bilinear. Thus, we developed a solution approach which extends the LS method by employing

a piecewise linear approximation of the bilinear term in order to solve the first-stage problem. We

developed a case study in order to validate the model and evaluate its performance. We conducted

a thorough sensitivity analysis to observe the impact that timing and size of a price markdown has

on inventory replenishment decisions and retailer’s profits. We analyzed the impact of deterioration

rate, inventory holding cost, and service level on inventory replenishment decisions and retailer’s

profits. Via this model we also evaluated the impact of dual sourcing in replenishment decisions.

While the relationships identified via this analysis are intuitive, quantifying these relationships can-

not easily be accomplished without the aid of models similar to the one proposed in this research.

Finally, we proposed a data-driven stochastic optimization model that identifies distribution

strategies for vaccine vials. To the best of our knowledge, this is the first stochastic optimization

model that integrates transportation, inventory and replenishment decisions of vaccine supply chain.

The model captures uncertainties of demand for vaccination via chance constraints. The objective is

to maximize the number of fully immunized children in developing countries. Public health author-

ities can use this model to evaluate the impact of different supply chain designs on immunization

coverage; evaluate the impact of introducing a new vaccine on vaccine inventory at a clinic; and

develop vaccine administration policies which reduce OVW. We developed a case study using real-

life data from Niger. We conducted an extensive statistical analysis of the data in order to identify

the factors which impact immunization in different regions of Niger. Population size, poverty and

education levels do impact expected demand for vaccination. Analyzing the national level data sug-

gested that the country-wide population size does not significantly impact the expected demand for

vaccination. This highlights the importance of developing a single, region-based regression model

as presented in this study. The results of region-based regression models were incorporated on the

optimization model. This model allowed us to evaluate the impact of converting the current four-tier
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supply chain to a three-tier one by removing the regional stores , and changing Measles’s vial size

from multi-dose to single-dose on FIC and SR.

Overall, the main contributions of this dissertation can be summarized as follows:

1. Development of a two-stage SP model for integrating vial replenishment and vaccine admin-

istration which captures (a) the order frequency for respective quantities of different-sized

vials, (b) the opening schedule for these vials, and (c) the administration of available doses to

patients.

2. Development of simple to use and economic vaccine administration policies for outreach ses-

sions. The performance of these policies is evaluated and benchmarked with existing practice

via an extensive simulation analysis.

3. Development of a new solution approach for two-stage stochastic integer programs (2-SIP)

with continuous recourse by using GMI and MIR cuts to address the non-convexity of the

first-stage problem.

4. Development of a two-stage stochastic optimization model that integrates inventory replenish-

ment and pricing decisions for age-dependent perishable products in a periodic-review inven-

tory system.

5. Development of a solution approach for a two-stage stochastic, bilinear model with linear

recourse by using extensions of McCormick relaxation to approximate the non-linear first

stage problem.

6. Development of a regression-based estimate of the future demand for CIV for each vaccine

type and region in Niger.

7. Development of a data-driven chance constrained programming model for the vaccine supply

chain in developing countries.

8. Application of the data-driven chance constrained programming model to manage transporta-

tion, inventory and OVW of vaccine supply chain in Niger.
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6.2 Future Research

In the future we plan to extend this research in two directions. First, we plan to investigate

methods which will lead to an improvement of the algorithms proposed for solving 2-SIPs. Second,

we plan to model and solve other supply chains of perishable products.

Algorithm: Over the past several decades, different algorithms have been proposed to solve

two-stage stochastic programs. To achieve computational tractability, many of these methods repre-

sent uncertainty through a finite number of realizations or scenarios. In a scenario-based approach,

different realizations of uncertainty are associated with a probability of occurrence. However, the

probability of strategic uncertainties, such as earthquakes, wars, and pandemic outbreaks, are not

easy to determine. Moreover, no clear guidelines determine the number of scenarios used. Thus, we

plan to further the study of sequential sampling algorithms, such as the two-stage and multiple-stage

stochastic decomposition (SD) method. Current methods assume linearity in order to preserve the

convexity of the problem. However, only a few works assume integer and binary first-stage variables,

and, to the best of our knowledge, no algorithms exist for problems with integer and binary second-

stage problems. We plan to tackle these problems and contribute to the literature by incorporating

cuts such as, GMI, MIR, etc., which linearize these nonconvexities.

Application: We plan to extend our modeling framework to consider pharmaceutical lo-

gistics. Pharmaceutical products are perishable, and their demand is stochastic. Logistic costs have

been identified as one of the largest expense for hospitals. These costs constitute up to 40% of

the total operating budget because of the high prices of prescription drugs [120]. In the existing

distribution networks, each hospital pharmacy typically uses its own wholesaler to replenish its in-

ventory. This decentralized decision-making approach, while giving the pharmacies flexibility to

select suppliers and determine inventory-replenishment schedules, is costly. Ample literature exists

on supply chain optimization and several successful implementations of these strategies in the retail

sector, such as at Walmart and Amazon. However, implementing these models in healthcare should

be done cautiously because the objective of retailers is to maximize their profits. However, a public,

not-for-profit academic healthcare delivery systems strategy is to provide medical excellence through

clinical care, education, and research. This strategy will impact the supply chain decisions. We plan

to extend the current work by building stochastic optimization models for pharmaceuticals.
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Appendix A Two-stage stochastic programming model

Table 1: Decision variables and parameters.

Set of Indices

Set Description

T Set of ordering decision epochs

N Set of consumption decision epochs

V Set of vials of different sizes

Parameters

Parameter Description

N Number of consumption decision epochs within an ordering period

T Number of ordering decision epochs

ft Ordering fixed cost at time period t

cνt Variable purchase cost of vial size ν at time period t

dνt Unit inventory holding cost of vial size ν at time period t

qν Number of doses in vial ν

ω̃ Random patient arrival

Mt Limit on the number of vials ordered in time period t

τ Safe open vial use time in periods

g Unit wastage cost

p Unit penalty cost of an unserved patient

Decision variables

Variable Description

zt A binary decision variable which takes 1 if an order is placed at time period t and takes 0 otherwise

rνt Replenishment quantity for vial size ν at time period t

uνn Number of vials of size ν to open at time period n

sνn Number of vials of size ν in the inventory at time period n

ynm Number of doses obtained from vials opened in period n, and used in period m

min ∑
t∈T

(ftzt + ∑
ν∈V

cνrνt) + ∑
ν∈V
∑
n∈N

dνsνn +E{H(x,ω)}, (1a)

s.t.

sνNt = sν(Nt−1) + rνt − uνNt ∀t ∈ T , (1b)

sνn = sνn−1 − uνn ∀n ∈ N ∖ {N,2N, . . . , TN}, (1c)

∑
ν∈V

rνt ≤Mtzt ∀t ∈ T , (1d)

zt ∈ {0,1}; sνn, uνn, rνt ∈ Z+ ∀t ∈ T , ν ∈ V, n ∈ N , (1e)
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where,

H(x,ω) = min ∑
n∈N

(gyn(n+τ) + p`n) (2a)

s.t.

n+τ−1

∑
m=n

ynm + yn(n+τ) = ∑
ν∈V

qνuνn ∀n ∈ N , (2b)

n

∑
m=n−τ+1

ymn + `n = ω ∀n ∈ N , (2c)

ymn, `n ∈ Z+ ∀m,n ∈ N . (2d)
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Appendix B Performance evaluation of stochastic solutions

In this section we evaluate the performance of stochastic solutions obtained from solving the

2-SIP with a first-stage problem (2.6) and a second-stage problem (2.7). To this goal, we compute

metrics such as expected value of perfect information (EVPI) and the value of stochastic solution

(VSS). We obtain EVPI and VSS for a problem instance created by using data from the Barisal

region. The number of scenarios generated for these experiments is S = 1000.

EVPI measures the price one is willing to pay to gain access to perfect information. EVPI is

the difference between the objective function value of the wait-and-see and here-and-now problems.

To calculate the objective function value of the wait-and-see problem, we solve the SAA problem in

(2.9) for each single scenario separately. Next, we calculate the corresponding expected value over

the scenarios generated. The here-and-now problem is indeed the SAA problem in (2.9). We find

EV PI = $3300− $2870 = $428. This means, if the number of patients arriving in a session is known,

the total costs would only be $2870. Thus, the cost of not knowing the future is EV PI = $428.

VSS measures the impact of random patient arrivals to the performance of the system [20].

VSS is the difference between the objective function value of SAA problem in (2.9) and the determin-

istic mean value problem. To compare the objective function values of SAA and deterministic mean

value problem, we initially solve both problems for a given set of scenarios. Next, we fix the values of

the first-stage solutions, and simulating the second-stage problem (2.7) in a different set of scenarios.

The corresponding objective function values are reported in Figure 1. We observe less variations

in the objective function values obtained from the stochastic solution. Also, the average objective

function value of stochastic solution is lower than solutions to the mean value problem. These results

indicate that there is value in solving the proposed stochastic model formulation (rather than the

corresponding mean value problem).
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Figure 1: The value of stochastic solution.
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Appendix C McCormick relaxations

The following are the McCormick relaxations of the bilinear termsW = pnpo, Yit = p
nyit, Vit =

poyit.

W ≥ popn + pnpo − popn (3a)

W ≥ popn + pnpo − popn (3b)

W ≤ popn + pnpo − popn (3c)

W ≤ popn + pnpo − popn (3d)

Piecewise linear approximation via bivariate partitioning

pn = ∑
Nn

i=1 d
nBni , (4a)

po = ∑
No

j=1 d
oBoj , (4b)

W = ∑
Nn

i=1 ∑
No

j=1 d
ndoΥij , (4c)

∑
No

j=1 Υij = B
n
i , ∀i = 1, . . . ,Nn, (4d)

∑
Nn

i=1 Υij = B
o
j , ∀j = 1, . . . ,No, (4e)

∑
Nn−1
i=1 Eni = 1, (4f)

∑
No−1
j=1 Eoj = 1, (4g)

Bn1 ≤ En1 , (4h)

Bni ≤ Eni−1 +E
n
i , 2 ≤ i ≤ Nn − 1, (4i)

BnNn ≤ E
n
Nn−1, (4j)

Bo1 ≤ Eo1 , (4k)

Boi ≤ E
o
i−1 +E

o
i , 2 ≤ i ≤ No − 1, (4l)

BoNo ≤ E
o
No−1, (4m)

Eni ,E
o
j ,B

n
i ,B

o
j ∈ {0,1}, ∀i = 1, . . . ,Nn, j = 1, . . . ,No (4n)

(4o)
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