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Abstract 

A key feature of food products is their perishability.  Within the short marketing window that 
characterizes most food and ag products, demand is typically highly stochastic and difficult to 
predict.  This combination of features poses substantial challenges to retailers when pricing 
products and has implications for performance that ripples through vertical food chains.  For 
many food products, processing to forms that can be preserved and held in inventory has 
traditionally been used as a means of coping with these conditions, despite its high costs and 
ancillary risks introduced such as change in product attributes and deterioration. This paper 
presents an alternative ERM strategy that focuses on dynamic pricing to control the rate of sale 
for perishable products.  The paper considers a retailer that has market power to price and 
supplies perishable products to a market with substitute products and demand originating from 
heterogeneous consumers. Perishability implies a finite horizon for the marketing of the 
products over which demand across market segments of consumers is both dynamic and 
stochastic. Faced with uncertainty, we suppose the firm has limited information about the 
stochastic properties of demand and must choose a pricing strategy that projects over the 
market horizon.  This price trajectory represents a key control mechanism to cope with 
uncertainty of both the perishability of the product and of demand.  

 
A variety of mechanisms for setting prices has been pursued in the past and can be imagined.  
Given substantial waste associated with food retailing, it seems evident that retailers may not 
incorporate the social or food supply network interests in optimal performance.  Uniform 
pricing within the marketing horizon is typical for most food retailers.  At the horizon, or shelf-
life, the product is often removed from the shelves and either disposed of, or diverted into a 
secondary market.  Despite such practice, lessons exist from other industries where dynamic 
pricing approaches have been pursued.  Here, we consider pricing rules derived from robust 
optimization that sets price trajectories over the market horizon that explicitly consider two 
features that appear to be of particular interest for food: 1) sales of all available supply (i.e. 
eliminate disposal) and 2) existence of close substitutes (i.e. fresher product).  An important 
innovation in many industries for dynamic is the concept of price assurance.  We consider two 
types of price assurance.  Under ex-post price assurance, prices are set subject to the constraint 
that refunds will be paid if future prices are reduced below levels paid by consumers.  This is an 
intriguing variation on “everyday low pricing”.  Next, we introduce a novel alternative that we 
label as ex-ante price assurance where the firm sets the dynamic price trajectory subject to the 
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constraint that prices will not decrease. Though perhaps counter-intuitive in perishable good 
context, we show this novel approach has merit under particular demand conditions.  Thus, we 
compare three dynamic pricing strategies to manage uncertain demand given perishability: i) 
robust dynamic pricing, ii) ex-post price assurance, and iii) ex-ante price assurance. Numerical 
experiments show that our robust optimization model prevents loss when a firm encounters 
the worst case demand and outperforms a deterministic pricing model.   Comparison across 
different pricing strategies identifies conditions under which particular strategies are superior 
to the others. 

    
Keywords: Dynamic pricing, demand substitution, consumer choice model, robust optimization, 
price assurance. 
 
1    Introduction 

Enterprise Risk Management (ERM), focuses on integration of process control to mitigate risk.  
A critical source of risk faced by enterprises originates from uncertain demand.  Control of the 
implication of such uncertainty has often focused on coping strategies such as diversification, 
inventory holding, or off-putting through contracting in a variety of forms.  In each case, such 
coping incurs high costs.  In this paper, we explore alternative policies that integrate inventory 
policy for perishable products with their pricing.  Faced with demand uncertainty, we show 
results that confirm that the firm can benefit by adopting robust pricing strategies to manage 
sales of the products across heterogeneous consumers.  We consider robust dynamic pricing 
and extend it to incorporate ex-post and ex-ante price assurance thereby introducing new tools 
for applying ERM to marketing operations. 
The possibility of using price as a control of sales for perishable products has been widely 
recognized as useful.  However, where substitutes exist, such dynamic price policy must be 
constrained to recognize the potential for product switching.  Further, perishability suggests the 
firm faces a constraint to sell all available inventories.  When opening season supply is pre-
determined by earlier time intensive production, the absence of inventory replenishment over 
the marketing season implies prices will likely vary.  It has been traditional that in this case 
prices decrease to ensure inventory clearance.  When unanticipated demand shocks threaten 
to reduce sales, substantial price decreases may be pursued.  If consumers are strategic and 
anticipate the possibility of price decreases, purchases may be postponed shifting sales into the 
future and rendering season sales more uncertain.  In this context, ERM strategies for managing 
the marketing of perishables are of great interest and are the subject of this paper.  Here we 
consider dynamic pricing strategies to mitigate demand uncertainty and show that strategies 
based on robust optimization admitting uncertainty offer an important alternative to dynamic 
pricing based on point forecasts of demand.  We consider robust dynamic pricing first and then 
consider price assurance policies that seek to mitigate the possibility that consumers postpone 
purchases resulting in expanded risk.  Two types of price assurance are considered.  Under ex-
post price assurance prices are set subject to the constraint that refunds will be paid if future 
prices are reduced below levels paid by consumers.  Next, we introduce a novel alternative we 
label as ex-ante price assurance where the firm sets the dynamic price trajectory subject to the 
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constraint that prices will not decrease. Though perhaps counter-intuitive in perishable good 
context, we show this novel approach has merit under particular demand conditions.   

The plan of the paper is as follows.  Section 2 reviews relevant literature regarding 
perishable product pricing, customer behavior, price assurance, as well as robust optimization. 
Section 3 provides a robust dynamic pricing model and then compares the robust policy with a 
dynamic pricing policy based on point forecasts.  Section 4 provides robust models for price 
assurance policy (ex-post and ex-ante). Section 5 presents numerical experiment results and 
compares the revenue implications of the alternative dynamic pricing models. Section 6 
provides conclusions.   
 
2    Literature Review 

The revenue management and dynamic pricing problem for perishable products has considered 
dynamic pricing, inventory control or a capacity control, for dominant firms with monopolistic 
pricing power.  The models have been developed in a certain environment such as a fixed-
inventory, no-replenishment, perishable multi-products, price-sensitive demand and price-
sensitive customers (see Elmaghraby and Keskinocak 2003, Bitran and Caldentey 2003, Talluri 
and Van Ryzin 2005).  
The implications of substitute goods for dynamic pricing have been considered by Bitran et al. 
2006 using a consumer choice model that incorporates budget constraints.  Gallego et al. 2004 
and Liu and van Ryzin 2008 proposed a choice-based deterministic linear programming (CDLP) 
model using multinomial logit model (MNL) to describe customer strategic behavior.   Zhang 
and Cooper 2005 proposed an approximation of the dynamic pricing for the multi-
substitutable-flight problem and provided bounds to the optimal revenue.  Zhang and Cooper 
2009 extend this earlier work using a discrete-time Markov decision process model.  Dong et al. 
2009 present a dynamic pricing model where customer’s behavior has been formulated in a 
multinomial logit model and consider the implications of stock-out risk.  Su 2007 introduce 
strategic consumer behavior in an intertemporal pricing model which considers customers’ 
different valuations and different degrees of patience to show that strategic waiting by 
customers is sometimes beneficial to firms.  Su and Zhang 2008 consider a similar specification 
within the context of supply chain performance under demand uncertainty. Aviv and Pazgal 
2008 consider impatient and patient customers in a dynamic pricing context.  Levin et al. 2009 
show results further suggest the importance of considering customer strategic behavior.  
Levin et al. 2007 present a price assurance model in a monopolistic setting where customers 
would be reimbursed for the price difference between a purchase time and a future time. In 
this paper, customers are partitioned into three segments: 1) do not buy, 2) buy without and 3) 
buy with a price guarantee option. These studies are based on the concept of the option in 
finance to mitigate the risk by future price uncertainty that customers feel. Purchase of the 
option by paying the extra payment can reduce consumers’ anxiety and enhance  revenues. Lai 
et al. 2009 studied the impacts of posterior price assurance policy considering strategic 
consumers under total demand uncertainty. They found that the policy eliminates strategic 
consumers’ action (buy now or wait). 
The majority of past literature has developed deterministic models, while a limited segment has 
considered demand to be characterized by known distributions.  Importantly, we need to notice 
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that solutions to optimization problems can be remarkably sensitive to how uncertainty is 
characterized (Bertsimas and Sim 2004).  Under risk neutrality, the approach of using expected 
values fails to reflect the worst case scenarios or is difficult to use when information concerning 
underlying distributions is limited. Therefore, within a deterministic framework, Soyster 1973 
proposed initially the concept of a robust optimization considering simple perturbations on 
parameters in a linear optimization system. The idea behind robust optimization is to consider 
the worst case scenario without a specific distribution assumption.  Following this work, Ben-Tal 
and Nemirovski 1999 and Bertsimas and Sim 2003, Ben-Tal et al. 2004 presented models that 
can adjust for loss aversion by defining different uncertainty sets such as an ellipsoidal, 
polyhedral and cardinality set. The robust optimization method has been widely used in many 
different applications such as finance and discrete event problems such as the evacuation 
problem.  Efforts to determine robust policies in revenue management area have recently been  
highlighted by Lan et al. 2008 and Birbil et al. 2009. Their studies develop robust models for a 
single leg problem and compares to other traditional pricing models. However, these models 
for robust policy fail to consider substitutes, customer behavior, or price assurance policy.  
 
3    Dynamic pricing strategies 

In this section, we derive and compare optimal dynamic pricing from a revenue management 
models for substitutable, perishable products based two approaches to considering stochastic 
over a finite marketing season.   In the first, we consider a model consistent with pricing based 
on point forecasts of demand.   In the second, we explicitly acknowledge uncertainty that 
characterizes demand and suppose the decision maker derives a robust dynamic pricing policy.  
Our results highlight the potential benefits of strategies to manage under uncertain demand 
using robust optimization.   
Consider a supplier that coordinates production of J perishable products marketable within a 
finite season with dates Tt ,...1,0 .  Demand is heterogeneous and is characterized by S 

consumer segments with each segment noted as },...,2,1{0 SSs  where the value of s is 

interpreted as indicating market segment such that as s increases, the quality and therefore the 
price products increases.  We define demand for each market segment as  

)}(),.....,(),({)( 21 tttt S
jjj

s
j  for product j  for Jj ,...,1 . We consider only the marketing 

problem and suppose initial stocks are pre-determined by prior production decisions.  At any 

time t in the season, the supplier offers a 1 x J vector of fixed supplies ))(),...,(()( 1 tqtqtq J
sss  to 

each segment s that represents remaining inventory given initial stocks of )0(j
sq .  Thus, 

operationally the firm is faced with sunk costs for an inventory that must be sold before the end 
of the season.   Here, we suppose the control available to achieve this goal is the intertemporal 

price policy.  That is, at each time t the firm chooses a price vector incorporating a price )(tp j
s  

for each product j  for Jj ,...,1  and for each market segment s for Ss ,...,1 to maximize 

revenue.    
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3.1  Forecast-based, deterministic pricing model for substitutable products 

We first consider the case where the firm forecasts demand and accepts those forecasts as its 
expectations.  Where the firm’s objective is linear in the stochastic factors, such an approach is 
equivalent one where the firm is risk neutral, having preferences only for the first moment of a 
known distribution over the stochastic factor.  Given its dominance in the market, the firm 
seeks a pricing strategy to maximize revenue by controlling inventories. Product substitutability 
implies that demand for a product j depends on the price for a product j and the other products 

j  .   We specify demand as follows:   

     )()()()()())(),((
,

tpttpttatptp k
s

k
s

jkJk

j
s

j
s

j
s

j
s

j
s

j
s , tjs ,,    

Our specification considers aggregate demand for segment s such that discrete choices by 
consumers across the product set define a continuous function in prices.  We suppose demand 
is is a negative monotonic function of own price j and substitutes –j.  See Maglaras and 
Meissner 2006 or Perakis and Sood 2006 for similar specifications.   We interpret 

)(ta j
s

)1(TJS  as the market potential (i.e. maximum quantitative scale) for product j and 

segment s at time t.  The parameters )1()( TJSj
s t  and )(tj

s  )1(TJS  represent price 

sensitivity of products j and –j, respectively.  Note that our specification assumes consumers 
prefer to substitute products available in their segment rather than downgrading or upgrading 
to other segments.  This is consistent with loyalty to branded versus private label products, 
particular classes of air line or entertainment tickets, or particular retail stores.   We 
incorporate this specification by requiring that products are differentiated by market segment 
such that each product type j will be differentiated by market segment s such that its price will 
increase with s, see Birbil, et al. 2009 for a similar specification.   
The firm’s pricing problem is complicated by strategic behavior by consumers.  That is, we 
suppose that consumers anticipate that the firm will price goods to drive end of season stocks 
to a minimum.  Within this context, as noted by Su and Zhang 2008 and Lai, et al. 2009, 
strategic customers will postpone purchases to access future prices. We define the proportion 

of strategic customers as )(tj
s

)1(TJS .   From the firm’s perspective, the behavior of 

strategic customers is to shift demand to future periods.  Define the cumulative demand 
function as: 
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In the absence of replenishment, the firm controls available inventory by setting price to 
maximize the season’s revenue according to the following problem:   
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3.2  Optimal control under uncertainty with robust optimization 

By definition, uncertainty describes conditions when a firm anticipates stochastic factors will 
affect its performance, however, the firm has limited knowledge of the mechanism generating 
the stochastic outcomes.  In contrast, full knowledge of such mechanisms is presumed when a 
stochastic environment is described as posing risk.  Given knowledge of characterizing 
moments of data generating mechanism, a natural approach to decision-making under risk is to 
suppose decision-makers have preferences over such moments and set controls to optimize a 
functional representation of those preferences.  In sharp contrast, under uncertainty, 
knowledge of the shape of the distribution of stochastic factors or its moments, are not 
assumed.  Here, we propose use of robust optimization to set performance controls in 
uncertain decision environments.    Robust optimization for a single control problem has been 
recently presented by Lan, et al. 2008 and  Birbil, et al. 2009.  Our specification considers robust 
pricing across a set of substitutable products where demand across a spectrum of 
heterogeneous customer segments is uncertain.  Our approach builds on Soyster 1973 and Ben-
Tal and Nemirovski 1999.  
Define the uncertainty set 

dU   for each demand as  

))](1)(()),(1)(([)( ttattata j
s

j
s

j
s

j
s

j
s  where  )1(

)(
TSJj

s ta , )1(
)(

TSJj
s t .  

Alternative specifications such as ellipsoidal and polyhedral uncertainty sets are considered by  
Ben-Tal and Nemirovski 1999 and Bertsimas and Sim 2004. For a particular uncertainty set, 
suppose an optimal price policy is derived from the revenue maximizing problem describe 
above.   It follows that the control problem has infinite number of constraints that describe 
possible  uncertainty sets.   Since given direct solution of such a problem is intractable, we 
manipulate the specification to transform the control problem to an equivalent form.  
Specifically, we propose the following deterministic problem as equivalent to the robust 
formulation with uncertain demand (see appendix A for derivation): 
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3.3  Evaluation of robust, dynamic pricing policy  

In this section, we compare the robust price policy against the policy by a forecast-based model. 
First, we present optimal price policies and inventories for each models derived from a 
numerical example. Next, we consider how the robust policy varies as the extent of uncertainty 
varies across a set of randomly generated scenarios.  
In our numerical experiments, we assume that consumer segment 1 focuses on the highest 
quality and priced products.  Parameters for numerical experiments are given in Table 1.  We 
limit our consideration to demand parameters satisfying Definition 1.  
Definition 1. Customer segment s is of a rank that is higher than that of segment 's  if 

)()( ' tata j
s

j
s ,  )()( ' tt j

s
j

s , and )()( ' tt j
s

j
s  for tj, .  

We assume demand parameters satisfy Definition 1.  This implies as s decreases, segment rank 
increases, and market potential and price sensitivity decreases.  
 
Table 1. Parameters for 2j , 2s , 10T  

Parameters 
Product 1 Product 2 

Segment 1 Segment 2 Segment 1 Segment 2 

)(ta j
s  60 120 30 100 

)(tj
s  0.5 1.5 0.6 1.6 

)(tj
s  0.1 0.3 0.1 0.3 

)(tj
s  0.2 0.2 0.2 0.2 

)(ts  0.5 0.5 0.5 0.5 

)(tj
s  0.02 0.02 0.02 0.02 

)0(jq  100 400 80 300 

 

The experiments are implemented using MATLAB and GAMS on a machine with Windows XP OS, 
T2300 CPU, 1.66 GHz, and 1 GB RAM. The optimal price strategies and inventory policies are 
shown in Figure 1. In the figure, solid and dotted lines represent optimal strategy based on 
forecasts and robust strategy based on uncertain demand, respectively.  Red lines and blue 
lines are the strategies for segment 1 and 2, respectively.   
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Figure 1. Dynamic price and inventory strategies (a deterministic and a robust model) 

 
Results in Figure 1 show that optimal price strategy under uncertainty sets prices lower than 
one based on forecasts.  This is consistent with aversion to future uncertainty that leads to 
pricing that induces greater sales early in the season to eliminate possible lost sales.  Looking 
across market segments, we find the price for segment 1 is much higher than the price for 
segment 2 reflecting the economic benefits of differentiation.  A similar price difference across 
segments is found under both demand conditions.  For the inventories, we can see that robust 
strategies for product 1 are very similar to forecast-based ones, while the inventory trajectories 
for product 2 are very between to two market segments.  We also see that for product 2, 
inventory is reduced under a robust strategy relative to forecast-based strategy.   

Next, we consider sensitivity of firm revenue to the extent or level of uncertainty.  We 

consider the set of values for )(tj
s as [ 2%, 5%, 7%, 10%, 15%] .  This results in uncertainty 

defined by the limits of possible values increasing by 4%, 10%, 14%, 20% and 30%, respectively. 
Thus, for the uncertainty case, we derive five robust price strategy trajectories that can be 
compared to the forecast-based strategy.  Based on derived price trajectories, we generate 
random demand sets from a uniform distribution to generate demand realizations that define a 
set of scenarios.  We draw our levels of market potential from the interval 

))](1)(()),(1)(([ ttatta j
s

j
s

j
s

j
s .  We derive 50 realizations (scenarios) for each setting.   For 

each scenario, we derive corresponding revenue trajectories based on optimal dynamic price 
trajectories. To compare results, we note the forecast-based trajectories (D) and robust 
trajectories (R) and, for each scenario, consider optimal value (ov), as well as minimum (min), 
maximum (max), average (ave), and standard deviation (sd) of objective values.  Results are 
presented as in Table 2.  
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Table 2. Simulation experiment under randomly generated scenarios 

 
ovD  ovR  maxD  maxR  minD  minR  aveD  aveR  sdD  sdR  

0.02 
4.9712e+
004 

4.6854e+
004 

5.0784e+
004 

5.1757e+
004 

4.9178e+
004 

4.9876e+
004 

4.9861e+
004 

5.0743e+
004 

359.5613 331.9319 

0.05 
4.9712e+
004 

4.4984e+
004 

5.2824e+
004 

5.7034e+
004 

4.8641e+
004 

5.2732e+
004 

5.0463e+
004 

5.4621e+
004 

944.2957 910.4214 

0.07 
4.9712e+
004 

4.3783e+
004 

5.3800e+
004 

6.0095e+
004 

4.6941e+
004 

5.3378e+
004 

5.0089e+
004 

5.6313e+
004 

1.5416e+
003 

1.4640e+
003 

0.1 
4.9712e+
004 

4.1946e+
004 

5.4003e+
004 

6.2711e+
004 

4.7689e+
004 

5.6926e+
004 

5.0485e+
004 

5.9412e+
004 

1.6425e+
003 

1.4787e+
003 

0.15 
4.9712e+
004 

3.7643e+
004 

5.5573e+
004 

6.5213e+
004 

4.5801e+
004 

5.7144e+
004 

5.1140e+
004 

6.1633e+
004 

2.6568e+
003 

2.2816e+
003 

 
From the experiment, robust optimization solutions are more stable (based on standard 
deviation) than forecast-based solutions.   This result supports the recommendation that 
adoption of robust price strategies be pursued relative to forecast-based strategies to stabilize 
revenue.  That is, the robust strategy enables the firm to cope with sudden demand decreases 
as the range of performance that would results is smaller than that under forecast-based 
strategy.   The same recommendation to adopt robust dynamic pricing is supported by 
considering minimum, maximum, and average revenues achievable.  When we compare the 

optimal values ovD  and ovR , the values of ovR  are decreasing in the amount of uncertainty and 

smaller than ovD . But, for random scenarios, the robust model outperforms. This implies that 

forecast-based strategies derived from our model may result in reduced sales relative to robust 
strategies.      
 
4    Price assurance pricing models 

Thus far, we have considered the performance of a robust dynamic pricing strategy when a firm 
faces uncertain demand.  Relative to a forecast-based strategy, we have shown the proposed 
robust dynamic pricing strategy enhances both the level and variation of revenues.  In this 
section, we extend our consideration of robust optimization methods to consider an alternative 
to revenue control from an optimal price policy.  In particular, here we acknowledge that the 
firm may face both demand uncertainty as well as strategic behavior by consumers.  In the 
latter case, price variation may be anticipated by consumers and result in postponement of 
purchases by strategic consumers.  By designing the price policy to accommodate this 
possibility we show the firm’s performance can be further enhanced.  Two price assurance 
policy types are considered, ex-post and ex-ante. The former is a currently used pricing method 
which sets price first and then offers a refund to consumers if the price falls below their 
purchase price.  The later is an approach that is new to the literature and incorporates 
constraints in the price policy derivation that ensure price will not decline sufficiently to induce 
refunds.  Before developing these pricing models, we add an assumption to characterize 
strategic customers.   
 
Assumption 1. The proportion of strategic customers’ waiting under pricing assurance policy, 

)(tj
s  is smaller than that under a forecast-based pricing policy.  
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This assumption can be justified by Lai, et al. 2009 who find that an ex-post price assurance 
policy eliminates strategic consumers’ action (buy now or wait). 
 
4.1  Ex-post price assurance pricing model 

When the price assurance policy is offered, the firm is obliged to refund the price difference 

between each purchase price at time t  ( )(tp j
s ) and lowest prices until a final time ( )(min j

s
t

p ).  

Strategic customers amounting to a proportion TS
s t)( will claim a refund. Thus, the 

penalty associated with a price assurance policy can be expressed as follows: 
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Incorporating this penalty function, we have a robust price assurance model as follows:  
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From this notation, it is clear that price assurance policy implies penalties will be paid, however, 
it is also apparent that by optimal design of the price policy the number of strategic customers 
waiting can be reduced.  
 
4.2  Ex-ante pricing model under price assurance 

As an alternative pricing method over a price assurance policy, a firm can choose to set prices 
pre-empt the possibility of refunds by simply choosing a trajectory such that prices never 
decrease. This pricing scheme can be easily formulated by introducing the following condition.    

)1()( tptp j
s

j
s   for Tt ,...,1 . 

While intuitive with respect to discouraging strategic behavior by consumers, this policy would 
seem counter-intuitive relative to the need to clear inventories.  For this scheme of pricing, by 
incorporating robust optimization, we have:  
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5    Comparison of dynamic pricing strategies under demand uncertainty  

Thus far, we have developed i) a robust model without considering price assurance and ii) a 
robust ex-post and iii) a robust ex-post model.  In this section, we will investigate conditions 
under which one model is superior the others by numerical experiments.   
 
5.1  Impacts of different customer behaviors  

A key element in our specification is the behavior of customers under each pricing strategy.   
Thus, in this subsection, we study and compare three different pricing models with respect to 
variation in customer behavior.  
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Let contR , postR , anteR  be the revenue associated with robust, an ex-post, and an ex-ante pricing 

strategies. Here, we know that )(tj
s  and )(tws  are important factors to differentiate  those 

pricing schemes and to represent the customers’ behavior. How many customers would wait 
strategically might differ depending on whether a firm would offer price assurance policy or not. 
Also, how many customers would claim refunds does not matter to a firm if it would adopt an 
ex-ante model. For this reason, we compare the solutions for different parameter values of 

)(tj
s  and )(tws . The experiments are conducted for parameters in Table 1 and the results are 

shown in Table 3.  
 
Table 3. Simulation experiments for different customer behavior 

)(tj
s  0 0.1 0.2 0.2 

)(tws  postR  
anteR  postR  

anteR  postR  
anteR  contR  

0.3 
5.9556e+00
4 

6.3480e+00
4 

4.8749e+00
4 

8.5010e+00
3 

4.6388e+00
4 

8.1104e+00
3 

4.6854e+00
4 

0.5 
5.8568e+00
4 

6.3480e+00
4 

4.8453e+00
4 

8.5010e+00
3 

4.6077e+00
4 

8.1104e+00
3 

4.6854e+00
4 

0.7 
5.7059e+00
4 

6.3480e+00
4 

4.8158e+00
4 

8.5010e+00
3 

4.5766e+00
4 

8.1104e+00
3 

4.6854e+00
4 

0.9 
5.6251e+00
4 

6.3480e+00
4 

4.7862e+00
4 

8.5010e+00
3 

4.5456e+00
4 

8.1104e+00
3 

4.6854e+00
4 

 
As shown in Table 3, an ex-post and an ex-ante pricing model incurs smaller revenues than a 
robust pricing model, when the proportion of strategically-waiting customers is the same 

)(tj
s =0.2. This result is quite intuitive because a firm should pay refunds to customers or avoid 

the refunds. However, as mentioned in Assumption 1, addressing a pricing assurance policy can 
reduce customers’ strategic waiting actions (Lai, et al. 2009). Thus, when we compare solutions 

of the price assurance models for )(tj
s =0 to the robust model for )(tj

s =0.2, the price 

assurance model is superior to the robust model. Between two pricing models for price 

assurance, the ex-ante model outperforms the ex-post model, for )(tj
s =0 and the ex-post 

model is better for )(tj
s =0.1, respectively. Thus, if a firm can eliminate the customers’ strategic 

waiting significantly, the ex-ante pricing model performs best.  
Moreover, consistent with our intuition, we can see that the revenues are generally decreasing 
when the proportion of customers’ claims increases. However, the rate of reduction  is not 

significant, compared to the change of )(tj
s  implying that the proportion of waiting is more 

critical than the proportion of claim.       
 
5.2  Time-variant demand  

Numerical experiments so far were conducted for time-invariant demands. However, in the real 
world, a firm might have increasing or decreasing demand over time. Thus, in this subsection, 
we investigate how revenues change for increasing or decreasing demand. First, we consider 
the case of increasing demand, in other words,  

 )1()( tata j
s

j
s , Tt ,...,1  
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Then, we examine which policy would be more beneficial, when demand decreases. For 
numerical experiments, we assume parameters as follows and keep other parameters the same 
as in Table 1: 

ktta 60)(1
1 , ktta 120)(1

2 , ktta 30)(2
1 , and ktta 100)(2

2 , for k .   

)(tj
s =0.2 for a robust model,  

)(tj
s =0 for an ex-ante and an ex-post model 

)(tws =0.7 for an ex-ante model  

The results for decreasing demands are described in Table 4 and Figure 2(a). Like our intuition, 
the revenues for all pricing models are decreasing. As shown in Figure (a), revenues for all 
pricing models are decreasing steadily for smaller changing rate (k) and then drastically for 
higher k. However, more important results are the rate of decreasing revenue, which value is in 
parenthesis in Table 4. The rate of ex-ante pricing model is smaller (between 7% and 40%) than 
others and the rate of ex-post pricing model is very sensitive to the change of decreasing 
demands (between 16% and 80%). Thus, when a firm faces a decreasing demand, ex-ante 
pricing model can incur more stable revenues.  
 
Table 4. Simulation experiments for different customer behaviors 

)(tj
s  0 0.1 0.2 0.2 

)(tws  postR  
anteR  postR  

anteR  postR  
anteR  contR  

0.3 
5.9556e+00
4 

6.3480e+00
4 

4.8749e+00
4 

8.5010e+00
3 

4.6388e+00
4 

8.1104e+00
3 

4.6854e+00
4 

0.5 
5.8568e+00
4 

6.3480e+00
4 

4.8453e+00
4 

8.5010e+00
3 

4.6077e+00
4 

8.1104e+00
3 

4.6854e+00
4 

0.7 
5.7059e+00
4 

6.3480e+00
4 

4.8158e+00
4 

8.5010e+00
3 

4.5766e+00
4 

8.1104e+00
3 

4.6854e+00
4 

0.9 
5.6251e+00
4 

6.3480e+00
4 

4.7862e+00
4 

8.5010e+00
3 

4.5456e+00
4 

8.1104e+00
3 

4.6854e+00
4 
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Figure 2. The impact of time-varying demand on different pricing models (a) decreasing demand (left), 
(b) increasing demand (right) 

 
Similarly, we will investigate the impact of increasing total demand over time and compare 
three models. To express increasing demand over time, we assume parameters as follows: 

ktta 60)(1
1 , ktta 120)(1

2 , ktta 30)(2
1 , and ktta 100)(2

2  for k .   

The results can be found in Table 5 and Figure 2(b). Similarly to the case of decreasing demands, 
the ex-ante model is most stable (rates are around 10%) and ex-post is most sensitive changing 
up to 30.2%. However, differently from the decreasing demands, if a firm use the ex-post 
pricing scheme appropriately, it can accomplish more revenues.   
 
Table 5. Simulation experiments for increasing demands (values in parenthesis represents rate of 
increment) 

k  
conR  postR  

anteR  

0 4.6854e+004 5.7059e+004 6.3480e+004 
1 4.7128e+004 (0.6%) 5.9136e+004 (3.6%) 7.0074e+004 (10.4%) 
2 5.1732e+004 (9.8%) 6.0781e+004 (2.8%) 7.6802e+004 (9.6%) 
3 6.2379e+004 (20.6%) 7.9116e+004 (30.2%) 8.3775e+004 (9.1%) 

 
6    Conclusions and further studies 

In this paper, we have presented three robust pricing models: i) a robust optimization with 
uncertainty without consideration of price assurance  ii) ex-post price assurance, and iii) ex-ante 
price assurance. By applying a robust optimization method, we can have robust dynamic pricing 
policies under demand uncertainty which guarantee a certain level of performance for possible 
scenarios, even for the worst case scenario. In other words, our robust models can prevent a 
risk that demand falls significantly. Then, we compared different pricing schemes, especially 
focusing on the price assurance policy under which a firm can reduce customers’ strategic 
actions such as waiting for a future cheaper price.  
Our experiments for these proposed pricing models provides us interesting implication that 
price strategies under a robust model are very stable for many different randomly generated 
scenarios. Even if a firm encounters sudden demand fall, a certain range of performance would 
be guaranteed and the robust policy can incur more revenues than a policy given by a 



Robert. D. Weaver and Yongma Moon 

 

227 

 

deterministic model. Also, we have studied the impact of customer’s behavior such as how 
many customers wait for a future discounted price and claim the refund under price assurance 
policy. Our results show that price assurance policy outperforms a robust pricing model, when 
it can eliminate or significantly reduce the customer’s strategic waiting. Also, we can see that 
the proportion of waiting is more important than the proportion of claim. Besides, when a firm 
faces a decreasing or increasing demand, the ex-ante pricing model is the least sensitive to 
revenues, the robust is intermediate, and the ex-post model is highly sensitive. Therefore, as 
demand is expected to decrease over time, the ex-ante price assurance model could be a good 
scheme that a firm can take. For the opposite case, the ex-post price assurance model could 
make more revenue.         
In this paper, even though we propose robust pricing models, from the robust optimization 
modeling perspective, we can improve current demand uncertainty set. As discussed in 
Bertsimas and Sim 2004, different definitions of uncertainty set can make the models less 
conservative and more realistic. Also, uncertainty in other parameters can be another extension. 
For example, a firm might want to have a robust policy against customer’s behavior.      
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APPENDIX. Derivation of Robust Optimization model 
By addressing uncertainty set (A.12) and manipulating objective function, we have 
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Note that the constraint (A.12) makes infinite number of constraints for the revenue 
maximizing problem. Thus, we need to manipulate this constraint.  
Here, we know that constraint (A.5) over (A.12) can be reformulated as follows: 
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Also, manipulation of (A.11) and (A.4) gives us: 
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The constraint (A.6) and the above equation becomes  
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From the (A.7), we have (A.6)  over (A.12) as follows: 
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for sjt ,, . 

Also, the constraint (A.2) 

Vpptp
T

t

t
j

s
j
s

j
s

tj
s

j
s

j
s

j
s

t
j
s

S

s

J

j 0 1
1

11

))(),(())(1()0())1())((1()(  

Vtpttpttta

tp

t
k
s

k
s

jkJk

j
s

j
s

j
s

j
s

tj
s

T

t

j
s

j
s

j
s

t
j
s

S

s

J

j

1 ,

0
1

11

)()()()())(1)(())(1(

)0())1())((1()(

 

Finally, we have (11)-(16). 
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