12,874 research outputs found

    Technology transfer: Transportation

    Get PDF
    The application of NASA derived technology in solving problems related to highways, railroads, and other rapid systems is described. Additional areas/are identified where space technology may be utilized to meet requirements related to waterways, law enforcement agencies, and the trucking and recreational vehicle industries

    Technology transfer: Transportation

    Get PDF
    The successful application of aerospace technology to problems related to highways and rail and rapid transit systems is described with emphasis on the use of corrosion resistant paints, fire retardant materials, and law enforcement. Possible areas for the use of spinoff from NASA technology by the California State Department of Corrections are identified. These include drug detection, security and warning systems, and the transportation and storage of food. A communication system for emergency services is also described

    Tester capacity control at Qimonda Portugal

    Get PDF
    Estágio realizado na Qimonda Portugal e orientado pelo Eng.º Jorge SousaTese de mestrado integrado. Engenharia Industrial e Gestão. Faculdade de Engenharia. Universidade do Porto. 200

    Applications of aerospace technology in biology and medicine

    Get PDF
    Utilization of National Aeronautics and Space Administration (NASA) technology in medicine is discussed. The objective is best obtained by stimulation of the introduction of new or improved commercially available medical products incorporating aerospace technology. A bipolar donor/recipient model of medical technology transfer is presented to provide a basis for the team's methodology. That methodology is designed to: (1) identify medical problems and NASA technology that, in combination, constitute opportunities for successful medical products; (2) obtain the early participation of industry in the transfer process; and (3) obtain acceptance by the medical community of new medical products based on NASA technology. Two commercial transfers were completed: the Stowaway, a lightweight wheelchair that provides mobility for the disabled and elderly in the cabin of commercial aircraft, and Micromed, a portable medication infusion pump for the reliable, continuous infusion of medications such as heparin or insulin. The marketing and manufacturing factors critical to the commercialization of the lightweight walker incorporating composite materials were studied. Progress was made in the development and commercialization of each of the 18 currently active projects

    Capacity Planning For Mixed-Load Tester Under Demand And Testing Time Uncertainty

    Get PDF
    Capacity planning is an important decision in production planning as it determines the capacity to install in order to satisfy customer demands and also to allocate products to those capacities.This research is based on mixed-load machine problem which is categorized by multiple products that can be processed simultaneously with different processing time.The problem is further complicated with high product varieties and high demand variabilities.This research was conducted based on a case company from a multinational manufacturing company in Malaysia that produces hard disk drives.The study focused on the automated testing process characterized by long lead time and high product variability.Each testing machine with 2880 slots is a mixed load tester with the ability to load and test multiple product families simultaneously.In addition,the uncertain demand and testing time makes the problem more challenging. Currently,the company’s issue is low tester utilization of about 71%,well below the target of 96%.The objective of this research is to improve tester utilization while achieving the production target under uncertain demand and testing time and also to determine the break-even point on the testers required.A novel approach of integrating a mathematical model,robust optimization model,genetic algorithm,simulation model and cost–volume –profit analysis was developed.Firstly,a mathematical model of mixed-load tester was formulated.Next,a set of discrete scenarios was proposed to address uncertain demand and testing time.A robust optimization and genetic algorithm model was developed to optimize the number of testers under the described uncertainties.Next,these scenarios were simulated using the Pro Model simulation software to validate the proposed models and to evaluate throughput and tester utilization.Finally,the cost–volume–profit analysis was performed for scenarios that require additional testers at various levels of uncertainties.The results showed that the proposed solution improved tester utilization by 25% compared to the current system.This research has contribution by developing novel hybrid methodology and able to provide useful insights to assist company’s managers to plan and allocate resources according to variations in customers’ demands and testing time

    Pembinaan konstruk instrumen penilaian pasca penghunian untuk perumahan bertingkat yang dibina menggunakan kaedah Sistem Binaan Berindustri (IBS)

    Get PDF
    Post Occupancy Evaluation (POE) is an activity of the building evaluation process with a focus on quality, operational performance and satisfaction of the occupants. The POE is important to evaluate completed and occupied buildings to identify weaknesses and potential for future improvement. To date, there have been various variations of POE instruments and tools to evaluate occupied buildings. However, the POE instrument for assessing high-rise housing constructed using the industrialized building system (IBS) method has not been developed specifically. In this regard, this study aims to discuss the construction of an effective POE instrument to measure the quality and performance of high-rise housing built using the IBS method. For this purpose, the 3 round Delphi method was adapted by involving 15 experts selected based on their background and experience related to IBS. The results of a three-round Delphi study found that 33 out of all sub-constructs were dropped because of low mean scores (<4.2 in two rounds) while 75 sub-constructs were identified as final items. The results of the Delphi study also found that all 10 constructs were 1) Spatial; 2) Design and aesthetics; 3) Physical; 4) Building materials; 5) Quality of work; 6) Comfort and well-being; 7) Environment and health; 8) Maintenance; 9) Value and 10) Cost is the most significant construct for developing PPP instruments. Accordingly, an effective Post-Occupancy Assessment Instrument for measuring the quality, performance and value of a home built using the IBS method should include all of these constructs

    Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering

    Get PDF
    Background: The production of bioethanol from lignocellulose hydrolysates requires a robust, D-xylose-fermenting and inhibitor-tolerant microorganism as catalyst. The purpose of the present work was to develop such a strain from a prime industrial yeast strain, Ethanol Red, used for bioethanol production. Results: An expression cassette containing 13 genes including Clostridium phytofermentans XylA, encoding D-xylose isomerase (XI), and enzymes of the pentose phosphate pathway was inserted in two copies in the genome of Ethanol Red. Subsequent EMS mutagenesis, genome shuffling and selection in D-xylose-enriched lignocellulose hydrolysate, followed by multiple rounds of evolutionary engineering in complex medium with D-xylose, gradually established efficient D-xylose fermentation. The best-performing strain, GS1.11-26, showed a maximum specific D-xylose consumption rate of 1.1 g/g DW/h in synthetic medium, with complete attenuation of 35 g/L D-xylose in about 17 h. In separate hydrolysis and fermentation of lignocellulose hydrolysates of Arundo donax (giant reed), spruce and a wheat straw/hay mixture, the maximum specific D-xylose consumption rate was 0.36, 0.23 and 1.1 g/g DW inoculum/h, and the final ethanol titer was 4.2, 3.9 and 5.8% (v/v), respectively. In simultaneous saccharification and fermentation of Arundo hydrolysate, GS1.11-26 produced 32% more ethanol than the parent strain Ethanol Red, due to efficient D-xylose utilization. The high D-xylose fermentation capacity was stable after extended growth in glucose. Cell extracts of strain GS1.11-26 displayed 17-fold higher XI activity compared to the parent strain, but overexpression of XI alone was not enough to establish D-xylose fermentation. The high D-xylose consumption rate was due to synergistic interaction between the high XI activity and one or more mutations in the genome. The GS1.11-26 had a partial respiratory defect causing a reduced aerobic growth rate. Conclusions: An industrial yeast strain for bioethanol production with lignocellulose hydrolysates has been developed in the genetic background of a strain widely used for commercial bioethanol production. The strain uses glucose and D-xylose with high consumption rates and partial cofermentation in various lignocellulose hydrolysates with very high ethanol yield. The GS1.11-26 strain shows highly promising potential for further development of an all-round robust yeast strain for efficient fermentation of various lignocellulose hydrolysates

    NASA Tech Briefs Index, 1977, volume 2, numbers 1-4

    Get PDF
    Announcements of new technology derived from the research and development activities of NASA are presented. Abstracts, and indexes for subject, personal author, originating center, and Tech Brief number are presented for 1977

    A methodology for full-system power modeling in heterogeneous data centers

    Get PDF
    The need for energy-awareness in current data centers has encouraged the use of power modeling to estimate their power consumption. However, existing models present noticeable limitations, which make them application-dependent, platform-dependent, inaccurate, or computationally complex. In this paper, we propose a platform-and application-agnostic methodology for full-system power modeling in heterogeneous data centers that overcomes those limitations. It derives a single model per platform, which works with high accuracy for heterogeneous applications with different patterns of resource usage and energy consumption, by systematically selecting a minimum set of resource usage indicators and extracting complex relations among them that capture the impact on energy consumption of all the resources in the system. We demonstrate our methodology by generating power models for heterogeneous platforms with very different power consumption profiles. Our validation experiments with real Cloud applications show that such models provide high accuracy (around 5% of average estimation error).This work is supported by the Spanish Ministry of Economy and Competitiveness under contract TIN2015-65316-P, by the Gener- alitat de Catalunya under contract 2014-SGR-1051, and by the European Commission under FP7-SMARTCITIES-2013 contract 608679 (RenewIT) and FP7-ICT-2013-10 contracts 610874 (AS- CETiC) and 610456 (EuroServer).Peer ReviewedPostprint (author's final draft

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 130, July 1974

    Get PDF
    This special bibliography lists 291 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1974
    • …
    corecore