6,911 research outputs found

    A MATLAB SMO implementation to train a SVM classifier: Application to multi-style license plate numbers recognition

    Get PDF
    This paper implements the Support Vector Machine (SVM) training procedure proposed by John Platt denominated Sequential Minimimal Optimization (SMO). The application of this system involves a multi-style license plate characters recognition identifying numbers from “0” to “9”. In order to be robust against license plates with different character/background colors, the characters (numbers) visual information is encoded using Histograms of Oriented Gradients (HOG). A reliability measure to validate the system outputs is also proposed. Several tests are performed to evaluate the sensitivity of the algorithm to different parameters and kernel functions.Fil: Negri, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación En Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación En Ciencias de la Computacion; Argentin

    Applying machine learning methods for characterization of hexagonal prisms from their 2D scattering patterns – an investigation using modelled scattering data

    Get PDF
    This document is the Accepted Manuscript version of the following article: Emmanuel Oluwatobi Salawu, Evelyn Hesse, Chris Stopford, Neil Davey, and Yi Sun, 'Applying machine learning methods for characterization of hexagonal prisms from their 2D scattering patterns – an investigation using modelled scattering data', Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 201, pp. 115-127, first published online 5 July 2017. Under embargo. Embargo end date: 5 July 2019. The Version of Record is available online at doi: https://doi.org/10.1016/j.jqsrt.2017.07.001. © 2017 Elsevier Ltd. All rights reserved.Better understanding and characterization of cloud particles, whose properties and distributions affect climate and weather, are essential for the understanding of present climate and climate change. Since imaging cloud probes have limitations of optical resolution, especially for small particles (with diameter < 25 μm), instruments like the Small Ice Detector (SID) probes, which capture high-resolution spatial light scattering patterns from individual particles down to 1 μm in size, have been developed. In this work, we have proposed a method using Machine Learning techniques to estimate simulated particles’ orientation-averaged projected sizes (PAD) and aspect ratio from their 2D scattering patterns. The two-dimensional light scattering patterns (2DLSP) of hexagonal prisms are computed using the Ray Tracing with Diffraction on Facets (RTDF) model. The 2DLSP cover the same angular range as the SID probes. We generated 2DLSP for 162 hexagonal prisms at 133 orientations for each. In a first step, the 2DLSP were transformed into rotation-invariant Zernike moments (ZMs), which are particularly suitable for analyses of pattern symmetry. Then we used ZMs, summed intensities, and root mean square contrast as inputs to the advanced Machine Learning methods. We created one random forests classifier for predicting prism orientation, 133 orientation-specific (OS) support vector classification models for predicting the prism aspect-ratios, 133 OS support vector regression models for estimating prism sizes, and another 133 OS Support Vector Regression (SVR) models for estimating the size PADs. We have achieved a high accuracy of 0.99 in predicting prism aspect ratios, and a low value of normalized mean square error of 0.004 for estimating the particle’s size and size PADs.Peer reviewe

    Stability, Structure and Scale: Improvements in Multi-modal Vessel Extraction for SEEG Trajectory Planning

    Get PDF
    Purpose Brain vessels are among the most critical landmarks that need to be assessed for mitigating surgical risks in stereo-electroencephalography (SEEG) implantation. Intracranial haemorrhage is the most common complication associated with implantation, carrying signi cant associated morbidity. SEEG planning is done pre-operatively to identify avascular trajectories for the electrodes. In current practice, neurosurgeons have no assistance in the planning of electrode trajectories. There is great interest in developing computer assisted planning systems that can optimise the safety pro le of electrode trajectories, maximising the distance to critical structures. This paper presents a method that integrates the concepts of scale, neighbourhood structure and feature stability with the aim of improving robustness and accuracy of vessel extraction within a SEEG planning system. Methods The developed method accounts for scale and vicinity of a voxel by formulating the problem within a multi-scale tensor voting framework. Feature stability is achieved through a similarity measure that evaluates the multi-modal consistency in vesselness responses. The proposed measurement allows the combination of multiple images modalities into a single image that is used within the planning system to visualise critical vessels. Results Twelve paired datasets from two image modalities available within the planning system were used for evaluation. The mean Dice similarity coe cient was 0.89 ± 0.04, representing a statistically signi cantly improvement when compared to a semi-automated single human rater, single-modality segmentation protocol used in clinical practice (0.80 ±0.03). Conclusions Multi-modal vessel extraction is superior to semi-automated single-modality segmentation, indicating the possibility of safer SEEG planning, with reduced patient morbidity

    GPU Accelerated Number Plate Localization in Crowded Situation

    Get PDF
    Number Plate Localization (NPL) has been widely used as part of Automatic Number Plate Recognition (ANPR) system. NPL method determines the accuracy of ANPR system. Although it is a mature research, the challenge stills persist especially in crowded situation where many vehicles present. Therefore, a method is proposed to localize number plate in crowded situation. The proposed NPL method uses vertical edge density to extract potential region of number plate then detect the number plate using combination of Histogram of Oriented Gradients (HOG) and Support Vector Machine (SVM). The method employs GPU to deal with multiple number plate detection, to handle multi-scale detection window, and to perform real time detection. The test result shows good results, 0.9883 value of AUC (Area Under Curve), and 0.9362 of BAC (Balance Accuracy). Moreover, potential real time detection is foreseen because total process is executed in less than 50 ms. Errors are mainly caused by background that contain letters, non-standard number plate and highly covered number plat

    MCViNE -- An object oriented Monte Carlo neutron ray tracing simulation package

    Get PDF
    MCViNE (Monte-Carlo VIrtual Neutron Experiment) is a versatile Monte Carlo (MC) neutron ray-tracing program that provides researchers with tools for performing computer modeling and simulations that mirror real neutron scattering experiments. By adopting modern software engineering practices such as using composite and visitor design patterns for representing and accessing neutron scatterers, and using recursive algorithms for multiple scattering, MCViNE is flexible enough to handle sophisticated neutron scattering problems including, for example, neutron detection by complex detector systems, and single and multiple scattering events in a variety of samples and sample environments. In addition, MCViNE can take advantage of simulation components in linear-chain-based MC ray tracing packages widely used in instrument design and optimization, as well as NumPy-based components that make prototypes useful and easy to develop. These developments have enabled us to carry out detailed simulations of neutron scattering experiments with non-trivial samples in time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. With simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.Comment: 34 pages, 14 figure

    Recognition and Detection of Vehicle License Plates Using Convolutional Neural Networks

    Get PDF
    The rise in toll road usage has sparked a lot of interest in the newest, most effective, and most innovative intelligent transportation system (ITS), such as the Vehicle License Plate Recognition (VLPR) approach. This research uses Convolutional Neural Networks to deliver effective deep learning principally based on Automatic License Plate Recognition (ALPR) for detection and recognition of numerous License Plates (LPs) (CNN). Two fully convolutional one-stage object detectors are utilized in ALPRNet to concurrently identify and categorize LPs and characters, followed by an assembly module that outputs the LP strings. Object detectors are typically employed in CNN-based approaches such as You Only Look Once (YOLO), Faster Region-based Convolutional Neural Network (Faster R-CNN), and Mask Region-based Convolutional Neural Network (Mask R-CNN) to locate LPs. The VLPR model is used here to detect license plates using You Only Look Once (YOLO) and to recognize characters in license plates using Optical Character Recognition (OCR). Unlike existing methods, which treat license plate detection and recognition as two independent problems to be solved one at a time, the proposed method accomplishes both goals using a single network. Matlab R2020a was used as a tool

    Recognition and Detection of Vehicle License Plates Using Convolutional Neural Networks

    Get PDF
    The rise in toll road usage has sparked a lot of interest in the newest, most effective, and most innovative intelligent transportation system (ITS), such as the Vehicle License Plate Recognition (VLPR) approach. This research uses Convolutional Neural Networks to deliver effective deep learning principally based on Automatic License Plate Recognition (ALPR) for detection and recognition of numerous License Plates (LPs) (CNN). Two fully convolutional one-stage object detectors are utilized in ALPRNet to concurrently identify and categorize LPs and characters, followed by an assembly module that outputs the LP strings. Object detectors are typically employed in CNN-based approaches such as You Only Look Once (YOLO), Faster Region-based Convolutional Neural Network (Faster R-CNN), and Mask Region-based Convolutional Neural Network (Mask R-CNN) to locate LPs. The VLPR model is used here to detect license plates using You Only Look Once (YOLO) and to recognize characters in license plates using Optical Character Recognition (OCR). Unlike existing methods, which treat license plate detection and recognition as two independent problems to be solved one at a time, the proposed method accomplishes both goals using a single network. Matlab R2020a was used as a tool
    corecore