26 research outputs found

    Suppression of Noise in Classical and Quantum Optics

    Get PDF

    Long-Baseline Laser Interferometry for the Detection of Binary Black-Hole Mergers

    Get PDF
    Late in 2015, gravitational physics reached a watershed moment with the first direct detections of gravitational waves. Two events, each from the coalescence of a binary black hole system, were detected by the Laser Interferometer Gravitational-wave Observatory (LIGO). At present, LIGO comprises two 4 km laser interferometers, one in Washington and the other in Louisiana; a third detector is planned to be installed in India. These interferometers, known as Advanced LIGO, belong to the so-called “second generation” of gravitational-wave detectors. Compared to the first-generation LIGO detectors (Initial and Enhanced LIGO), these instruments use multi-stage active seismic isolation, heavier and higher-quality mirrors, and more laser power to achieve an unprecedented sensitivity to gravitational waves. In 2015, both Advanced LIGO detectors achieved a strain sensitivity better than 10-23/Hz1/2 at a few hundred hertz; ultimately, these detectors are designed to achieve a sensitivity of a few parts in 10-24/Hz1/2 at a few hundred hertz. This thesis covers several topics in gravitational physics and laser interferometry. First, it presents the design, control scheme, and noise performance of the Advanced LIGO detector in Washington during the first observing run (O1). Second, it discusses some issues relating to interferometer calibration, and the impact of calibration errors on astrophysical parameter estimation. Third, it discusses the prospects for using terrestrial and space-based laser interferometers as dark matter detectors. This thesis has the internal LIGO document number P1600295.</p

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    Interference Mitigation and Localization Based on Time-Frequency Analysis for Navigation Satellite Systems

    Get PDF
    Interference Mitigation and Localization Based on Time-Frequency Analysis for Navigation Satellite SystemsNowadays, the operation of global navigation satellite systems (GNSS) is imperative across a multitude of applications worldwide. The increasing reliance on accurate positioning and timing information has made more serious than ever the consequences of possible service outages in the satellite navigation systems. Among others, interference is regarded as the primary threat to their operation. Due the recent proliferation of portable interferers, notably jammers, it has now become common for GNSS receivers to endure simultaneous attacks from multiple sources of interference, which are likely spatially distributed and transmit different modulations. To the best knowledge of the author, the present dissertation is the first publication to investigate the use of the S-transform (ST) to devise countermeasures to interference. The original contributions in this context are mainly: • the formulation of a complexity-scalable ST implementable in real time as a bank of filters; • a method for characterizing and localizing multiple in-car jammers through interference snapshots that are collected by separate receivers and analysed with a clever use of the ST; • a preliminary assessment of novel methods for mitigating generic interference at the receiver end by means the ST and more computationally efficient variants of the transform. Besides GNSSs, the countermeasures to interference proposed are equivalently applicable to protect any direct-sequence spread spectrum (DS-SS) communication

    Sensing and Signal Processing in Smart Healthcare

    Get PDF
    In the last decade, we have witnessed the rapid development of electronic technologies that are transforming our daily lives. Such technologies are often integrated with various sensors that facilitate the collection of human motion and physiological data and are equipped with wireless communication modules such as Bluetooth, radio frequency identification, and near-field communication. In smart healthcare applications, designing ergonomic and intuitive human–computer interfaces is crucial because a system that is not easy to use will create a huge obstacle to adoption and may significantly reduce the efficacy of the solution. Signal and data processing is another important consideration in smart healthcare applications because it must ensure high accuracy with a high level of confidence in order for the applications to be useful for clinicians in making diagnosis and treatment decisions. This Special Issue is a collection of 10 articles selected from a total of 26 contributions. These contributions span the areas of signal processing and smart healthcare systems mostly contributed by authors from Europe, including Italy, Spain, France, Portugal, Romania, Sweden, and Netherlands. Authors from China, Korea, Taiwan, Indonesia, and Ecuador are also included

    RF impairments in multiple antenna OFDM : influence and mitigation

    Get PDF

    Waveform Design and Processing for Joint Wireless Communications and Sensing

    Get PDF
    Since the advent of radar/sensing systems, they have always had fixed frequencies for operation. Due to the exponential growth of communications systems, the need for dedicated spectrum for them also increased, causing spectrum scarcity for both communications and sensing. It was obvious that some form of flexible spectrum sharing was necessary between these two functionalities. Soon enough, this led the researchers to focus on joint communications and sensing (JCAS) systems that share spectral resources efficiently. The hardware convergence due to the similar functioning of the two systems complemented the frequency convergence of JCAS systems. In fact, JCAS is one of the prominent requirements in future sixth-generation (6G) communications systems. This thesis focuses on integrating the sensing functionality on top of wireless mobile communications systems, such as in fifth-generation (5G). To facilitate effective JCAS, the thesis provides signal processing techniques for designing waveforms that optimally share the spectral resources, for single-input single-output (SISO) as well as multiple-input multiple-output (MIMO) systems. In addition, novel radar processing techniques are investigated for MIMO systems to better detect the targets in the environment. The standard waveform in 5G, that is, orthogonal frequency-division multiplexing (OFDM), is also considered for joint waveform design. In such a communications system, the resources are usually not fully utilized and there exist unused subcarriers within the OFDM waveform. These subcarriers are filled with optimized samples to minimize the lower bounds of delay and velocity estimates’ error variances of sensing, for SISO JCAS systems. The simulations with standard-compliant 5G waveforms illustrate the improvements possible in sensing, while also helping to maximize the efficiency in the transmit power amplification process, along the same optimization scheme. The simulation results are complemented through practical radio-frequency measurements of an outdoor environment depicting the significant gains that can be obtained in the range–angle map of sensing, due to the waveform optimization. For MIMO JCAS systems, apart from conventional communications streams, separate transmit (TX) streams are used to improve sensing performance through two separate schemes. One scheme involves optimizing the sensing streams to minimize the lower bounds of delay and angle estimates’ error variances of sensing. Simulation results indicate that the errors of sensing can be minimized while striking a good balance with the communications capacity. The other scheme depicts that the target detection can be enhanced using sensing streams on top of a communications stream. Specifically, the number of false targets detected can be significantly reduced in comparison to single-stream communication. The antenna arrays in MIMO communications systems nowadays are a combination of analog and digital architectures, i.e., hybrid, instead of consisting of a fullydigital architecture, for reduced costs and power consumption. Radar processing in such a hybrid architecture with multiple TX streams is not straightforward in comparison to the conventional fully-digital MIMO radar. Hence, this thesis also provides novel radar processing techniques to obtain the range–angle and range–velocity maps of the sensed environment. The simulation results illustrate that the targets can be reliably detected through the proposed MIMO processing, while also providing super-resolution in the angular domain

    Optimisation des performances de réseaux de capteurs dynamiques par le contrôle de synchronisation dans les systèmes ultra large bande

    Get PDF
    The basic concept of Impulse-Radio UWB (IR-UWB) technology is to transmit and receive baseband impulse waveform streams of very low power density and ultra-short duration pulses (typically at nanosecond scale). These properties of UWB give rise to fine time-domain resolution, rich multipath diversity, low power and low cost on-chip implementation facility, high secure and safety, enhanced penetration capability, high user capacity, and potential spectrum compatibility with existing narrowband systems. Due to all these features, UWB technology has been considered as a feasible technology for WSN applications. While UWB has many reasons to make it a useful and exciting technology for wireless sensor networks and many other applications, it also has some challenges which must be overcome for it to become a popular approach, such as interference from other UWB users, accurate modelling of the UWB channel in various environments, wideband RF component (antennas, low noise amplifiers) designs, accurate synchronization, high sampling rate for digital implementations, and so on. In this thesis, we will focus only on one of the most critical issues in ultra wideband systems: Timing Synchronization.Dans cette thèse nous nous sommes principalement concentrés sur les transmissions impulsion radio Ultra Large Bande (UWB-IR) qui a plusieurs avantages grâce à la nature de sa bande très large (entre 3.1GHZ et 10.6GHz) qui permet un débit élevé et une très bonne résolution temporelle. Ainsi, la très courte durée des impulsions émises assure une transmission robuste dans un canal multi-trajets dense. Enfin la faible densité spectrale de puissance du signal permet au système UWB de coexister avec les applications existantes. En raison de toutes ces caractéristiques, la technologie UWB a été considérée comme une technologie prometteuse pour les applications WSN. Cependant, il existe plusieurs défis technologiques pour l'implémentation des systèmes UWB. A savoir, une distorsion différente de la forme d'onde du signal reçu pour chaque trajet, la conception d'antennes très larges bandes de petites dimensions et non coûteuses, la synchronisation d'un signal impulsionnel, l'utilisation de modulation d'onde d'ordre élevé pour améliorer le débit etc. Dans ce travail, Nous allons nous intéresser à l'étude et l'amélioration de la synchronisation temporelle dans les systèmes ULB

    Ultra Wideband Communications: from Analog to Digital

    Get PDF
    Ultrabreitband-Signale (Ultra Wideband [UWB]) können einen signifikanten Nutzen im Bereich drahtloser Kommunikationssysteme haben. Es sind jedoch noch einige Probleme offen, die durch Systemdesigner und Wissenschaftler gelöst werden müssen. Ein Funknetzsystem mit einer derart großen Bandbreite ist normalerweise auch durch eine große Anzahl an Mehrwegekomponenten mit jeweils verschiedenen Pfadamplituden gekennzeichnet. Daher ist es schwierig, die zeitlich verteilte Energie effektiv zu erfassen. Außerdem ist in vielen Fällen der naheliegende Ansatz, ein kohärenter Empfänger im Sinne eines signalangepassten Filters oder eines Korrelators, nicht unbedingt die beste Wahl. In der vorliegenden Arbeit wird dabei auf die bestehende Problematik und weitere Lösungsmöglichkeiten eingegangen. Im ersten Abschnitt geht es um „Impulse Radio UWB”-Systeme mit niedriger Datenrate. Bei diesen Systemen kommt ein inkohärenter Empfänger zum Einsatz. Inkohärente Signaldetektion stellt insofern einen vielversprechenden Ansatz dar, als das damit aufwandsgünstige und robuste Implementierungen möglich sind. Dies trifft vor allem in Anwendungsfällen wie den von drahtlosen Sensornetzen zu, wo preiswerte Geräte mit langer Batterielaufzeit nötigsind. Dies verringert den für die Kanalschätzung und die Synchronisation nötigen Aufwand, was jedoch auf Kosten der Leistungseffizienz geht und eine erhöhte Störempfindlichkeit gegenüber Interferenz (z.B. Interferenz durch mehrere Nutzer oder schmalbandige Interferenz) zur Folge hat. Um die Bitfehlerrate der oben genannten Verfahren zu bestimmen, wurde zunächst ein inkohärenter Combining-Verlust spezifiziert, welcher auftritt im Gegensatz zu kohärenter Detektion mit Maximum Ratio Multipath Combining. Dieser Verlust hängt von dem Produkt aus der Länge des Integrationsfensters und der Signalbandbreite ab. Um den Verlust durch inkohärentes Combining zu reduzieren und somit die Leistungseffizienz des Empfängers zu steigern, werden verbesserte Combining-Methoden für Mehrwegeempfang vorgeschlagen. Ein analoger Empfänger, bei dem der Hauptteil des Mehrwege-Combinings durch einen „Integrate and Dump”-Filter implementiert ist, wird für UWB-Systeme mit Zeit-Hopping gezeigt. Dabei wurde die Einsatzmöglichkeit von dünn besetzten Codes in solchen System diskutiert und bewertet. Des Weiteren wird eine Regel für die Code-Auswahl vorgestellt, welche die Stabilität des Systems gegen Mehrnutzer-Störungen sicherstellt und gleichzeitig den Verlust durch inkohärentes Combining verringert. Danach liegt der Fokus auf digitalen Lösungen bei inkohärenter Demodulation. Im Vergleich zum Analogempfänger besitzt ein Digitalempfänger einen Analog-Digital-Wandler im Zeitbereich gefolgt von einem digitalen Optimalfilter. Der digitale Optimalfilter dekodiert den Mehrfachzugriffscode kohärent und beschränkt das inkohärente Combining auf die empfangenen Mehrwegekomponenten im Digitalbereich. Es kommt ein schneller Analog-Digital-Wandler mit geringer Auflösung zum Einsatz, um einen vertretbaren Energieverbrauch zu gewährleisten. Diese Digitaltechnik macht den Einsatz langer Analogverzögerungen bei differentieller Demodulation unnötig und ermöglicht viele Arten der digitalen Signalverarbeitung. Im Vergleich zur Analogtechnik reduziert sie nicht nur den inkohärenten Combining-Verlust, sonder zeigt auch eine stärkere Resistenz gegenüber Störungen. Dabei werden die Auswirkungen der Auflösung und der Abtastrate der Analog-Digital-Umsetzung analysiert. Die Resultate zeigen, dass die verminderte Effizienz solcher Analog-Digital-Wandler gering ausfällt. Weiterhin zeigt sich, dass im Falle starker Mehrnutzerinterferenz sogar eine Verbesserung der Ergebnisse zu beobachten ist. Die vorgeschlagenen Design-Regeln spezifizieren die Anwendung der Analog-Digital-Wandler und die Auswahl der Systemparameter in Abhängigkeit der verwendeten Mehrfachzugriffscodes und der Modulationsart. Wir zeigen, wie unter Anwendung erweiterter Modulationsverfahren die Leistungseffizienz verbessert werden kann und schlagen ein Verfahren zur Unterdrückung schmalbandiger Störer vor, welches auf Soft Limiting aufbaut. Durch die Untersuchungen und Ergebnissen zeigt sich, dass inkohärente Empfänger in UWB-Kommunikationssystemen mit niedriger Datenrate ein großes Potential aufweisen. Außerdem wird die Auswahl der benutzbaren Bandbreite untersucht, um einen Kompromiss zwischen inkohärentem Combining-Verlust und Stabilität gegenüber langsamen Schwund zu erreichen. Dadurch wurde ein neues Konzept für UWB-Systeme erarbeitet: wahlweise kohärente oder inkohärente Empfänger, welche als UWB-Systeme Frequenz-Hopping nutzen. Der wesentliche Vorteil hiervon liegt darin, dass die Bandbreite im Basisband sich deutlich verringert. Mithin ermöglicht dies einfach zu realisierende digitale Signalverarbeitungstechnik mit kostengünstigen Analog-Digital-Wandlern. Dies stellt eine neue Epoche in der Forschung im Bereich drahtloser Sensorfunknetze dar. Der Schwerpunkt des zweiten Abschnitts stellt adaptiven Signalverarbeitung für hohe Datenraten mit „Direct Sequence”-UWB-Systemen in den Vordergrund. In solchen Systemen entstehen, wegen der großen Anzahl der empfangenen Mehrwegekomponenten, starke Inter- bzw. Intrasymbolinterferenzen. Außerdem kann die Funktionalität des Systems durch Mehrnutzerinterferenz und Schmalbandstörungen deutlich beeinflusst werden. Um sie zu eliminieren, wird die „Widely Linear”-Rangreduzierung benutzt. Dabei verbessert die Rangreduzierungsmethode das Konvergenzverhalten, besonders wenn der gegebene Vektor eine sehr große Anzahl an Abtastwerten beinhaltet (in Folge hoher einer Abtastrate). Zusätzlich kann das System durch die Anwendung der R-linearen Verarbeitung die Statistik zweiter Ordnung des nicht-zirkularen Signals vollständig ausnutzen, was sich in verbesserten Schätzergebnissen widerspiegelt. Allgemeine kann die Methode der „Widely Linear”-Rangreduzierung auch in andern Bereichen angewendet werden, z.B. in „Direct Sequence”-Codemultiplexverfahren (DS-CDMA), im MIMO-Bereich, im Global System for Mobile Communications (GSM) und beim Beamforming.The aim of this thesis is to investigate key issues encountered in the design of transmission schemes and receiving techniques for Ultra Wideband (UWB) communication systems. Based on different data rate applications, this work is divided into two parts, where energy efficient and robust physical layer solutions are proposed, respectively. Due to a huge bandwidth of UWB signals, a considerable amount of multipath arrivals with various path gains is resolvable at the receiver. For low data rate impulse radio UWB systems, suboptimal non-coherent detection is a simple way to effectively capture the multipath energy. Feasible techniques that increase the power efficiency and the interference robustness of non-coherent detection need to be investigated. For high data rate direct sequence UWB systems, a large number of multipath arrivals results in severe inter-/intra-symbol interference. Additionally, the system performance may also be deteriorated by multi-user interference and narrowband interference. It is necessary to develop advanced signal processing techniques at the receiver to suppress these interferences. Part I of this thesis deals with the co-design of signaling schemes and receiver architectures in low data rate impulse radio UWB systems based on non-coherent detection.● We analyze the bit error rate performance of non-coherent detection and characterize a non-coherent combining loss, i.e., a performance penalty with respect to coherent detection with maximum ratio multipath combining. The thorough analysis of this loss is very helpful for the design of transmission schemes and receive techniques innon-coherent UWB communication systems.● We propose to use optical orthogonal codes in a time hopping impulse radio UWB system based on an analog non-coherent receiver. The “analog” means that the major part of the multipath combining is implemented by an integrate and dump filter. The introduced semi-analytical method can help us to easily select the time hopping codes to ensure the robustness against the multi-user interference and meanwhile to alleviate the non-coherent combining loss.● The main contribution of Part I is the proposal of applying fully digital solutions in non-coherent detection. The proposed digital non-coherent receiver is based on a time domain analog-to-digital converter, which has a high speed but a very low resolution to maintain a reasonable power consumption. Compared to its analog counterpart, itnot only significantly reduces the non-coherent combining loss but also offers a higher interference robustness. In particular, the one-bit receiver can effectively suppress strong multi-user interference and is thus advantageous in separating simultaneously operating piconets.The fully digital solutions overcome the difficulty of implementing long analog delay lines and make differential UWB detection possible. They also facilitate the development of various digital signal processing techniques such as multi-user detection and non-coherent multipath combining methods as well as the use of advanced modulationschemes (e.g., M-ary Walsh modulation).● Furthermore, we present a novel impulse radio UWB system based on frequency hopping, where both coherent and non-coherent receivers can be adopted. The key advantage is that the baseband bandwidth can be considerably reduced (e.g., lower than 500 MHz), which enables low-complexity implementation of the fully digital solutions. It opens up various research activities in the application field of wireless sensor networks. Part II of this thesis proposes adaptive widely linear reduced-rank techniques to suppress interferences for high data rate direct sequence UWB systems, where second-order non-circular signals are used. The reduced-rank techniques are designed to improve the convergence performance and the interference robustness especially when the received vector contains a large number of samples (due to a high sampling rate in UWB systems). The widely linear processing takes full advantage of the second-order statistics of the non-circular signals and enhances the estimation performance. The generic widely linear reduced-rank concept also has a great potential in the applications of other systems such as Direct Sequence Code Division Multiple Access (DS-CDMA), Multiple Input Multiple Output (MIMO) system, and Global System for Mobile Communications (GSM), or in other areas such as beamforming
    corecore