4,258 research outputs found

    Towards an interactive index structuring system for content-based image retrieval in large image databases

    Get PDF
    Advisors: Muriel Visani, Alain Boucher, Jean-Marc Ogier. Date and location of PhD thesis defense: 2 October 2013, University of La RochelleIn recent years, the expansion of acquisition devices such as digital cameras, the development of storage and transmission techniques and the success of tablet computers facilitate the development of many large image databases as well as the interactions with the users. This thesis [1] deals with the problem of Content-Based Image Retrieval (CBIR) on these huge masses of data. Traditional CBIR systems generally rely on three phases: feature extraction, feature space structuring and retrieval. In this thesis, we are particularly interested in the structuring phase (normally called indexing phase), which plays a very important role in finding information in large databases. This phase aims at organizing the visual feature descriptors of all images into an efficient data structure in order to facilitate, accelerate and improve further retrieval. We assume that the feature extraction phase is completed and the image feature descriptors which are usually low-level features describing the color, shape, texture, etc. of all images are available. Instead of traditional structuring methods, clustering methods which organize image descriptors into groups of similar objects (clusters), without any constraint on the cluster size, are studied. The aim is to obtain an indexed structure more adapted to the retrieval of high dimensional and unbalanced data. Clustering process can be done without prior knowledge (unsupervised clustering) or with a limited amount of prior knowledge (semi-supervised clustering)

    Image mining: trends and developments

    Get PDF
    [Abstract]: Advances in image acquisition and storage technology have led to tremendous growth in very large and detailed image databases. These images, if analyzed, can reveal useful information to the human users. Image mining deals with the extraction of implicit knowledge, image data relationship, or other patterns not explicitly stored in the images. Image mining is more than just an extension of data mining to image domain. It is an interdisciplinary endeavor that draws upon expertise in computer vision, image processing, image retrieval, data mining, machine learning, database, and artificial intelligence. In this paper, we will examine the research issues in image mining, current developments in image mining, particularly, image mining frameworks, state-of-the-art techniques and systems. We will also identify some future research directions for image mining

    TAG ME: An Accurate Name Tagging System for Web Facial Images using Search-Based Face Annotation

    Get PDF
    Now a day the demand of social media is increases rapidly and most of the part of social media is made up of multimedia content cognate as images, audio, video. Hence for taking this as a motivation we have proffer a framework for Name tagging or labeling For Web Facial Images, which are easily obtainable on the internet. TAG ME system does that name tagging by utilizing search-based face annotation (SBFA). Here we are going to select an image from a database which are weakly labeled on the internet and the "TAG ME" assign a correct and accurate names or tags to that facial image, for doing this a few challenges have to be faced the One exigent difficulty for search-based face annotation strategy is how to effectually conduct annotation by utilizing the list of nearly all identical face images and its labels which is weak that are habitually rowdy and deficient. In TAGME we have resolve this problem by utilizing an effectual semi supervised label refinement (SSLR) method for purify the labels of web and nonweb facial images with the help of machine learning techniques. Secondly we used convex optimization techniques to resolve learning problem and used effectual optimization algorithms to resolve the learning task which is based on the large scale integration productively. For additionally quicken the given system, finally TAGME system proposed clustering-based approximation algorithm which boost the scalability considerably

    Exploiting Deep Features for Remote Sensing Image Retrieval: A Systematic Investigation

    Full text link
    Remote sensing (RS) image retrieval is of great significant for geological information mining. Over the past two decades, a large amount of research on this task has been carried out, which mainly focuses on the following three core issues: feature extraction, similarity metric and relevance feedback. Due to the complexity and multiformity of ground objects in high-resolution remote sensing (HRRS) images, there is still room for improvement in the current retrieval approaches. In this paper, we analyze the three core issues of RS image retrieval and provide a comprehensive review on existing methods. Furthermore, for the goal to advance the state-of-the-art in HRRS image retrieval, we focus on the feature extraction issue and delve how to use powerful deep representations to address this task. We conduct systematic investigation on evaluating correlative factors that may affect the performance of deep features. By optimizing each factor, we acquire remarkable retrieval results on publicly available HRRS datasets. Finally, we explain the experimental phenomenon in detail and draw conclusions according to our analysis. Our work can serve as a guiding role for the research of content-based RS image retrieval

    Using video objects and relevance feedback in video retrieval

    Get PDF
    Video retrieval is mostly based on using text from dialogue and this remains the most signi¯cant component, despite progress in other aspects. One problem with this is when a searcher wants to locate video based on what is appearing in the video rather than what is being spoken about. Alternatives such as automatically-detected features and image-based keyframe matching can be used, though these still need further improvement in quality. One other modality for video retrieval is based on segmenting objects from video and allowing end users to use these as part of querying. This uses similarity between query objects and objects from video, and in theory allows retrieval based on what is actually appearing on-screen. The main hurdles to greater use of this are the overhead of object segmentation on large amounts of video and the issue of whether we can actually achieve effective object-based retrieval. We describe a system to support object-based video retrieval where a user selects example video objects as part of the query. During a search a user builds up a set of these which are matched against objects previously segmented from a video library. This match is based on MPEG-7 Dominant Colour, Shape Compaction and Texture Browsing descriptors. We use a user-driven semi-automated segmentation process to segment the video archive which is very accurate and is faster than conventional video annotation

    A human motion feature based on semi-supervised learning of GMM

    Get PDF
    Using motion capture to create naturally looking motion sequences for virtual character animation has become a standard procedure in the games and visual effects industry. With the fast growth of motion data, the task of automatically annotating new motions is gaining an importance. In this paper, we present a novel statistic feature to represent each motion according to the pre-labeled categories of key-poses. A probabilistic model is trained with semi-supervised learning of the Gaussian mixture model (GMM). Each pose in a given motion could then be described by a feature vector of a series of probabilities by GMM. A motion feature descriptor is proposed based on the statistics of all pose features. The experimental results and comparison with existing work show that our method performs more accurately and efficiently in motion retrieval and annotation
    corecore