82 research outputs found

    System design and performance analysis of asymmetrically and symmetrically clipped optical (ASCO)-OFDM for IM/DD optical wireless communications

    Get PDF
    As the quantity of mobile communication devices, such as cellphones, tablets, and laptops, dramatically increase, the demand for high speed wireless service has been growing. Optical wireless communications (OWCs), which offer unlimited transmission bandwidth, have received a lot of attention and been studied in recent decades. They can be an effective alternative to radio frequency communications (RFCs) for indoor high speed data transmission. Intensity modulation direct detection (IM/DD) is a simple way to realize the transmission of optical wireless signals in an indoor environment. Information data streams are modulated into the intensity of optical carriers and transmitted by light emitting diodes (LEDs). At the receiver, the instantaneous power of optical signals can be directly detected by photodiodes. Multipath distortion, especially in an indoor environment, caused by reflection from walls or furniture, severely affects the transmission quality of optical signals. Orthogonal frequency division multiplexing (OFDM) is a promising modulation technique and has been widely used to combat inter-symbol-interference (ISI) resulting from multipath propagation in RFCs. So far, the technique of OFDM has also been successfully applied into IM/DD optical wireless systems. In this dissertation, the author focuses on the system design and performance analysis of a novel power-efficient scheme based on OFDM for IM/DD OWCs. This dissertation is divided into four main sections. In the first part, a novel power-efficient scheme, called asymmetrically and symmetrically clipped optical (ASCO)-OFDM, for intensity modulation direct detection (IM/DD) optical wireless systems is proposed. The average bit rate versus (vs.) normalized bandwidth and the optical power per bit of this novel scheme are expressed by a closed form, respectively. The symbol error rate (SER) performance is investigated when optical signals are transmitted in a flat fading channel. Simulation results show that this proposed scheme can achieve better performances in terms of both power efficiency and symbol error rate (SER) when the optical power of transmitted signals is limited. In the second part, an improved receiving technique is applied into the conventional receiver of ASCO-OFDM to improve the SER performance. This technique can explore and reuse some useful information hidden in the received signals. The detection procedure is described in detail and the improved SER performances are presented for different constellation cases. In the third part, the information rates of ADO-OFDM and ASCO-OFDM are obtained for an additive white Gaussian noise (AWGN) channel with an average transmitted optical power constraint. In the last part, this novel power efficient scheme, ASCO-OFDM, is extended into two-dimensional (2D) IM/DD optical wireless systems. The theoretical analysis and simulation results show that this technique not only achieves high average bit rate, but reduces the Peak-to-average power ratio (PAPR) as well

    Dimming control in visible light communication using RPO-OFDM and concatenated RS-CC

    Get PDF
    Increasing wireless data traffic is creating pressure on the conventional dwindling radio frequency spectrum. A new and reliable communication medium becomes a necessity. Visible Light Communication (VLC), a subset of optical wireless communication uses the visible light spectrum between 400 and 800 THz as a medium for communication. VLC utilizes the illumination of LED to establish a communication medium. The research focused on achieving a successful VLC communication link at low intensities of light without affecting the speed, accuracy and efficiency of VLC. The achievement of the paper was to devise a method to reduce the LED brightness, reducing energy consumption and most importantly maintain a reliable, efficient and successful VLC communication link at low intensities of LED. The research comprises of a Reverse Polarity Optical-Orthogonal Frequency Division Multiplexing (RPO-OFDM) modulator, a Forward Error Correction (FEC) encoder block that uses concatenated Reed Solomon - Convolutional Coding, a digital PWM dimming control circuit, an RPO-OFDM demodulator and a FEC decoder. The decoding is performed using the Berlekamp-Massey algorithm and the Viterbi algorithm. Extensive research on various modulation schemes, coding and error correction techniques along with various driver circuit design for dimming control in VLC were thoroughly investigated to conclude the best reliable solution for dimming control in VLC

    Power Control In Optical CDMA

    Get PDF
    Optical CDMA (OCDMA) is the multiplexing technique over the fiber optics medium to increase the number of users and this is a step towards all optical Passive Optical Networks (PON). Optical OFDM, WDM and Optical TDM have also been studied in this thesis which are also candidates to all optical passive optical networks. One of the main features of Optical CDMA over other multiplexing techniques is that it has smooth capacity. The capacity of OCDMA is constrained by the interference level. Hence, when some users are offline or requesting less data rates, then the capacity will be increased in the network. Same feature could be obtained in other multiplexing techniques, but they will need much more complicated online organizers. However, in OCDMA it is critical to adjust the transmission power to the right value; otherwise, near-far problem may greatly reduce the network capacity and performance. In this thesis Power control concepts are analyzed in optical CDMA star networks. It is applied so that the QoS of the network get enhanced and all users after the power control have their desired signal to interference (SIR) value. Moreover, larger number of users can be accommodated in the network. Centralized power control algorithm is considered for this thesis. In centralized algorithm noiseless case and noisy case have been studied. In this thesis several simulations have been performed which shows the QoS difference before and after power control. The simulation results are validated also by the theoretical computation.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    BER performance study for optical OFDM of optical camera communication

    Get PDF
    In this article, different forms of optical orthogonal frequency division multiplexing (OFDM) were observed which were suitable for optical camera communication (OCC) systems. This research aims to establish the bit error rate (BER) versus signal-to-noise ratio (SNR) of the OCC system. This research will focus on OCC systems and the design that produces the noise of the clipping but will gain SNR as a whole if an optimum clipping factor is chosen. The BER versus SNR analysis was investigated for the different clipping factors 0.7, 1.4, and 2.6. The BER performance of the asymmetrically clipped optical OFDM (ACO-OFDM) was also compared with the direct current optical OFDM (DCO-OFDM) to show the suitable effectiveness of the proposed approach. ACO-OFDM was considered to be better due to lower bit loading, but DCO-OFDM was efficient for higher SNR values. This was because the DC bias used was inefficient in terms of optical capacity, while ACO-OFDM used only half of the subcarriers to transmit the information. Moreover, ACO-OFDM two-dimensional half-subcarriers of mapping rule would introduce the clipping noise to its unused 2D subcarriers, although further data can be provided by the 2D DCO-OFDM mapping rule

    A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications

    Get PDF
    The field of visible light communications (VLC) has gained significant interest over the last decade, in both fibre and free-space embodiments. In fibre systems, the availability of low cost plastic optical fibre (POF) that is compatible with visible data communications has been a key enabler. In free-space applications, the availability of hundreds of THz of the unregulated spectrum makes VLC attractive for wireless communications. This paper provides an overview of the recent developments in VLC systems based on gallium nitride (GaN) light-emitting diodes (LEDs), covering aspects from sources to systems. The state-of-the-art technology enabling bandwidth of GaN LEDs in the range of >400 MHz is explored. Furthermore, advances in key technologies, including advanced modulation, equalisation, and multiplexing that have enabled free-space VLC data rates beyond 10 Gb/s are also outlined

    Ergodic Capacity and Error Performance of Spatial Diversity UWOC Systems over Generalized Gamma Turbulence Channels

    Get PDF
    In this paper, we study the ergodic capacity (EC) and average bit error rate (BER) of spatial diversity underwater wireless optical communications (UWOC) over the generalized gamma (GG) fading channels using quadrature amplitude modulation (QAM) direct current-biased optical orthogonal frequency division multiplexing (DCO-OFDM). We derive closed-form expressions of the EC and BER for the spatial diversity UWOC with the equal gain combining (EGC) at receivers based on the approximation of the sum of independent identical distributed (i.i.d) GG random variables (RVs). Numerical results of EC and BER for QAM DCO-OFDM spatial diversity systems over GG fading channels are presented. The numerical results are shown to be closely matched by the Monte Carlo simulations, verifying the analysis. The study clearly shows the adverse effect of turbulence on the EC & BER and advantage of EGC to overcome the turbulence effect
    corecore