
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OFDM-Based Visible Light Communications

Citation for published version:
Tsonev, D, Islim, M & Haas, H 2016, OFDM-Based Visible Light Communications. in OFDM-Based Visible
Light Communications. Springer.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
OFDM-Based Visible Light Communications

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/77616338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/ofdmbased-visible-light-communications(b7aa35d1-f969-4b4e-b186-ee062a9e7d33).html


Chapter 12

OFDM-based Visible Light Communications

Dobroslav Tsonev, Mohamed Sufyan Islim, and Harald Haas

Abstract This chapter provides an overview of latest enhancements of the or-

thogonal frequency division multiplexing (OFDM) based visible light communi-

cations. The principals of OFDM techniques for intensity modulation and direct

detection (IM/DD) systems are explained in details in [1]. A number of inher-

ently unipolar OFDM techniques were recently proposed as power efficient alter-

natives to the widely deployed direct-current-biased optical orthogonal frequency

division multiplexing (DCO-OFDM). The unipolar orthogonal frequency division

multiplexing (U-OFDM) technique achieves higher power efficiency compared

to DCO-OFDM. However, due to the spectral efficiency loss of U-OFDM tech-

nique, the power efficiency advantage over DCO-OFDM starts to decrease as the

spectral efficiency increases. Multiple U-OFDM streams are superimposed in en-

hanced unipolar orthogonal frequency division multiplexing (eU-OFDM) to dou-

ble the spectral efficiency of U-OFDM technique. For the first time, the novel

eU-OFDM allows unipolar OFDM techniques to have same spectral efficiency of

DCO-OFDM. In this chapter, the concept of eU-OFDM is generalized to GeneR-

alizEd ENhancEd UnipolaR OFDM (GREENER-OFDM), and extended to other

unipolar OFDM schemes (asymmetrically clipped optical orthogonal frequency di-

vision multiplexing (ACO-OFDM) and pulse-amplitude-modulated discrete multi-

tone modulation (PAM-DMT)).

12.1 Introduction

The physical properties of commercially available light emitting diodes (LEDs) and

photodiodes (PDs), which are the foremost candidates for low-cost front-end de-

vices in optical wireless communications (OWC), allow OWC to be realised as
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intensity modulation and direct detection (IM/DD) systems only. This is because

light emitted by of-the-shelf LEDs is incoherent and so information can be reli-

ably encoded only in the signal intensity. The phase and the amplitude of the light

wave cannot be modulated or detected with LEDs and PDs. This limits the set

of conventional modulation schemes that can be adopted from the field of radio

frequency (RF) communications and directly translated into OWC. Signal modu-

lation techniques such as on-off keying (OOK), pulse-position modulation (PPM),

and M-ary pulse-amplitude modulation (M-PAM) are relatively straightforward to

implement as they provide real signals that can be directly mapped to light inten-

sity. However, as transmission rates increase, the limited modulation bandwidth of

the front-end devices and the limited bandwidth of the OWC channel lead to inter-

symbol interference (ISI) in the time-domain modulation signal. Hence, a technique

such as orthogonal frequency division multiplexing (OFDM) becomes more appro-

priate as a modulation scheme. OFDM enables simple cost-effective equalisation

with single-tap equalisers in the frequency-domain. In addition, data and energy can

be loaded adaptively in different frequency bands according to the channel proper-

ties. This results in an optimal exploitation of the communication resources, and it

has been shown that data rates up to 100 Gbps are possible [2]. Furthermore, at a

system level, OFDM provides a straightforward and low-complexitymultiple access

scheme, and this has to be implemented additionally for other modulation schemes

such as OOK, PPM and M-PAM.

In practice, OFDM is realised in a digital signal processor (DSP) by taking an in-

verse fast Fourier transform (IFFT) of a block of symbols from a conventional mod-

ulation scheme such as M-ary quadrature amplitude modulation (M-QAM). This

operation effectively maps the M-QAM symbols to different frequency bands of the

resulting time-domain signal. However, this procedure produces complex-valued

bipolar time-domain samples, while intensity modulation requires real non-negative

signals. Therefore, the OFDM signal has to be modified before it becomes suit-

able for an IM/DD system. A real signal can be obtained by imposing Hermitian

symmetry in the information block on which an IFFT operation is applied dur-

ing the signal generation procedure. The resulting time-domain samples, however,

would still be bipolar. A number of different approaches for obtaining a unipolar

signal are given in the published research. One straightforward method is to add

a bias value to all samples, which would make the resulting signal non-negative.

This approach is known as direct-current-biased optical orthogonal frequency di-

vision multiplexing (DCO-OFDM). The direct current (DC) biasing leads to a sig-

nificant increase in the energy consumption compared to conventional OFDM in

a bipolar system. For example, a minimum bias, resulting in an energy penalty

of about 6 dB compared to bipolar OFDM, is required for 4-QAM DCO-OFDM.

Hence, researchers have explored alternative methods for the generation of unipolar

signals. This has lead to the introduction of new inherently non-negative modula-

tion schemes such as asymmetrically clipped optical orthogonal frequency division

multiplexing (ACO-OFDM) [3] and pulse-amplitude-modulated discrete multitone

modulation (PAM-DMT) [4]. These modulation techniques exploit the properties of

the fast Fourier transform (FFT) and the OFDM frame structure in order to create a
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symmetric time-domain signal. The negative values of these techniques waveforms

can simply be reduced to zero without compromising the information in the OFDM

frame. Therefore, a unipolar signal without the use of biasing can be realised. The

clipping of the negative values in ACO-OFDM and M-PAM leads to an electrical

energy penalty of 3 dB when compared to conventional bipolar OFDM. The scheme

presented in this chapter, unipolar orthogonal frequency division multiplexing (U-

OFDM), is inspired by the concept of subcarrier-index modulation orthogonal fre-

quency division multiplexing (SIM-OFDM) and aims to close the 3 dB gap be-

tween OFDM and ACO-OFDM for bipolar signals, whilst generating a unipolar

signal, which does not require biasing. It should be noted that the concepts pre-

sented for U-OFDM in the first part of this chapter have also been introduced by

another research group as Flip-OFDM in [5] and in [6]. The concepts of U-OFDM

and Flip-OFDM have been developed in parallel completely independently from

each other and broadly within the same time period. It is interesting to note that all

four approaches – ACO-OFDM, PAM-DMT, Flip-OFDM and U-OFDM – achieve

the same performance in both a linear and a non-linear additive white Gaussian

noise (AWGN) channel as will be illustrated later in the context of this work [3–

8]. For an equivalent M-QAM/M-PAM modulation order, the spectral efficiency of

each of these four methods is halved in comparison to DCO-OFDM. However, the

energy penalty in comparison to a bipolar OFDM signal is only 3 dB for any M-

QAM/M-PAM constellation size. Thus, the premise is that a larger constellation

can be used in ACO-OFDM, PAM-DMT and U-OFDM in order to compensate for

the loss in spectral efficiency from the modulation technique, but the energy effi-

ciency can still be better than in DCO-OFDM. Improved decoders which are equiv-

alent in performance have been developed for ACO-OFDM [9], U-OFDM [7] and

Flip-OFDM [6]. Even though, to the best of the authors’ knowledge, such an im-

proved decoder is not presented in the published research for PAM-DMT, it would

be straightforward to design. The improved decoders make the power efficiency

of all four schemes almost equivalent to the case for a bipolar OFDM signal, but

this can only work for a flat-fading communication channel. A serious problem for

the inherently non-negative modulation schemes arises from the decreased spec-

tral efficiency, which requires M-QAM DCO-OFDM to be compared to M2-QAM

ACO-OFDM/U-OFDM/Flip-OFDM and to M-PAM PAM-DMT in order to keep the

achievable data rate equivalent for systems with equivalent bandwidth. This causes

a substantial loss of energy efficiency compared to DCO-OFDM in all four schemes

for a spectral efficiency above 1 bit/s/Hz [10]. Dissanayake et al. have proposed a

technique to simultaneously transmit ACO-OFDM and DCO-OFDM in an attempt

to close the spectral efficiency gap [11]. However, this method still requires a DC-

bias for the generation of DCO-OFDM. The second part of this chapter proposes a

solution to the problem of spectral efficiency loss in U-OFDM, which is extended

to ACO-OFDM and PAM-DMT in a relatively straightforward fashion [12].

The rest of this chapter is organized as follows. In Sect. 12.2, the U-OFDM

modulation concept is presented and then is detailed in the following subsections:

in Sect. 12.2.1, the modulation and demodulation algorithm of U-OFDM is intro-

duced; in Sect. 12.2.2, the analytical framework is presented; and in Sect. 12.2.3,
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the validity of the theoretical bit error rate (BER) estimations is confirmed through

extensive Monte Carlo simulations. In Sect. 12.3, an enhanced U-OFDM algorithm

with an improved frame structure is proposed, this has the following subsections:

in Sect. 12.3.1, the enhanced concept is presented; in Sect. 12.3.3, the analytical

framework for the enhanced U-OFDM algorithm is presented; and in Sect. 12.3.4,

the validity of the theoretical analysis is confirmed. In Sect. 12.4, the concept of

eU-OFDM is generalized and extended to the other inherently unipolar modulation

schemes, and this section is organized as follows: in Sect. 12.4.1, the concept of en-

hanced unipolar orthogonal frequency division multiplexing (eU-OFDM) is gener-

alized to GeneRalizEd ENhancEd UnipolaR OFDM (GREENER-OFDM); The su-

perposition modulation concept of eU-OFDM is extended to enhanced asymmetri-

cally clipped optical OFDM (eACO-OFDM) in Sect. 12.4.2, and to enhanced pulse-

amplitude-modulated discrete multitone modulation (ePAM-DMT) in Sect. 12.4.3;

in Sect. 12.4.4, the superposition OFDM modulated techniques are compared and

the optimal configurations are presented. Finally, concluding remarks are given in

Sect. 12.5.

12.2 Unipolar OFDM (U-OFDM)

12.2.1 Concept

n

s[n]

5

0

5
50 10

Fig. 12.1 A typical real OFDM time-domain signal. The first three samples constitute the cyclic

prefix.

The U-OFDM is an algorithm for the generation of an inherently unipolar modu-

lated signal which presents an alternative to the already familiar techniques of ACO-

OFDM and PAM-DMT. The modulation process begins with the conventional gen-

eration of a real bipolar OFDM signal such as the one given in Fig. 12.1. The sign
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+ - + + + + +- -

s[n]

n0

0

5

5 1510

Sample pair encodes a positive sign

Sample pair encodes a negative sign

Fig. 12.2 A unipolar time-domain signal. The first six samples constitute the cyclic prefix.

+ -
s[n]

n0 5 1510

0

5

Fig. 12.3 A U-OFDM time-domain signal. The first frame contains only positive samples of the

original bipolar OFDM signal. The second frame contains only negative samples of the original

bipolar OFDM signal. First three samples of each frame constitute the cyclic prefix.

of a real time-domain sample amounts to exactly one bit of information. All addi-

tional information in the sample is represented by its absolute value. Absolute values

are always positive. Therefore, the absolute value of a bipolar time-domain signal

is a unipolar signal which can be used for transmission in IM/DD systems. Such

a signal, however, has two problems. Firstly, the one-bit information for all signs

has to be correctly conveyed to the destination. Secondly, the use of a non-linear

transformation, such as obtaining the absolute value of a signal, creates a waveform

whose frequency profile is significantly different than initially intended. This effect

is very detrimental to the OFDM concept where adaptive bit and energy loading in

the frequency-domain is used in order to optimise performance in a non-flat channel.

A solution to the first problem can be found in [13] which introduced a very simple

concept for encoding exactly one bit of information into the position of an arbitrary

information symbol. Following that same approach, each time-domain sample can

be encoded into a pair of new time-domain samples. If the original OFDM sample

is positive, the first sample of the new pair is set as active, and the second sample

is set as inactive. If, on the other hand, the original OFDM sample is negative, the

first sample of the new pair is set as inactive, and the second sample is set as ac-

tive. Active samples are set equal to the absolute value of the bipolar OFDM sample

they correspond to, and inactive samples are set to zero. That is how the signal il-

lustrated in Fig. 12.2 can be obtained from the signal in Fig. 12.1. Fig. 12.2 only

illustrates how the signs of the bipolar samples can be encoded in the position of the

active sample in a pair. The described operation for sign encoding is still non-linear
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and changes the frequency profile of the original OFDM signal. This issue has been

circumvented by an additional change in the signal structure. The actual U-OFDM

signal is obtained when the first samples of each pair are grouped in their original

order to form the so called positive block while the second samples are grouped

in their original order to form the so called negative block. The positive block is

transmitted first and the negative block is transmitted second. That is how the signal

illustrated in Fig. 12.3 is obtained. This operation can also be described as the act

of taking all negative samples from the original bipolar frame, replacing them with

zeros and then flipping their values and transmitting them in a second frame where

the positions of the original positive samples are occupied by zeros. This description

of the signal generation process has given the term Flip-OFDM, used by the authors

in [5]. Alternatively, the same modulation procedure can be expressed as the act of

transmitting two copies of the original bipolar frame one after the other. The first

copy corresponds to the positive block. The second copy corresponds to the negative

block and has been multiplied by−1 in order to switch the signs of the samples. The

signal is made unipolar by removing any negative values from both copies by clip-

ping at zero. After both U-OFDM frames are received at the destination, the original

bipolar frame can be recovered by subtracting the second U-OFDM frame from the

first one. Afterwards, the demodulation process continues with conventional OFDM

demodulation of the reconstructed bipolar signal. In the context of this work, this

demodulation algorithm will be referred to as conventional U-OFDM demodula-

tion. The following paragraph explains why the U-OFDM signal structure avoids

the non-linearity effects from the clipping-at-zero operation.

The clipping of a signal s[n] at zero can be represented as:

s[n] = fclip{s[n]} =
1

2
(s[n]+ |s[n]|). (12.1)

If s[n] represents the samples of the original bipolar frame, then the transmitted

samples from the first corresponding U-OFDM frame would be equal to:

sp[n] =
1

2
(s[n]+ |s[n]|). (12.2)

The values of the second corresponding U-OFDM frame would be equal to:

sn[n] =
1

2
(−s[n]+ |− s[n]|) =

1

2
(−s[n]+ |s[n]|). (12.3)

After the signal is transmitted through the dispersive channel h[n], corrupted by

AWGN, and equalized at the receiver, the respective U-OFDM frames become:

ŝ
E,p[n] =

1

2
(s[n]+ |s[n]|)+n1[n]∗ h−1[n] (12.4)

and
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ŝ
E,n[n] =

1

2
(−s[n]+ |s[n]|)+n2[n]∗ h−1[n], (12.5)

where ∗ denotes the convolution operator; h−1[n] is the inverse of the dispersive

channel h[n]; n1[n] and n2[n] are AWGN realisations at the receiver. The recon-

structed original bipolar frame then becomes:

ŝ
E
[n] = ŝ

E,p[n]− ŝ
E,n[n] =

1

2
(s[n]+ |s[n]|)+n1[n]∗ h−1[n]−

− 1

2
(−s[n]+ |s[n]|)−n2[n]∗ h−1[n] = s[n]+ (n1[n]−n2[n])∗ h−1[n]. (12.6)

The reconstructed signal, ŝ
E
[n], consists of the original signal, s[n], and a Gaus-

sian noise component which is coloured according to the inverted frequency profile

of the channel h[n]. Despite the time-domain representation of (12.4) – (12.6), it

should be noted that the equalisation step does not need to be performed in the time-

domain. The subtraction step can also be performed either in the time-domain or the

frequency-domain, but a time-domain operation would be the preferred choice as it

would halve the number of required FFT operations. Therefore, the most cost effec-

tive sequence of demodulation steps would be subtraction → FFT → equalisation.

Two observations should be made regarding the U-OFDM signal. First, the clipping

term |s[n]| is common for both U-OFDM frames and is completely removed by the

subtraction operation. Any frequency components outside the desired spectrum re-

sulting from the clipping operation would be contained in that component. Hence,

the spectrum of the estimated bipolar signal ŝ[n] would not be adversely affected by
the clipping operation. Second, the noise realisations from both U-OFDM frames

are combined leading to a signal-to-noise ratio (SNR) penalty of 3 dB compared to

conventional bipolar OFDM transmission.

Since U-OFDM employs two frames to transmit the same information as con-

ventional OFDM, the spectral efficiency of U-OFDM:

η
U

=
η

DCO

2
=

log2(M)(NFFT−2)

4(NFFT + Ncp)
bits/s/Hz, (12.7)

is half the spectral efficiency of DCO-OFDM, and roughly the same as the spectral

efficiency of ACO-OFDM. It should be noted that this is true when the FFT size

for all three modulation schemes is the same. Then U-OFDM has double the ini-

tial latency to decode a single information frame because two consecutive frames

need to be received in order for the demodulation process to begin. The authors

in [5] have made the case that Flip-OFDM/U-OFDM is computationally more ef-

ficient than ACO-OFDM as it requires a smaller FFT size for decoding the same

information per frame. This is true for the case when the two U-OFDM/Flip-OFDM

frames have a combined length equal to one ACO-OFDM frame. Then the infor-

mation latency in both schemes would be the same. However, in that case, since

the FFT size of U-OFDM/Flip-OFDM is half the FFT size of ACO-OFDM, the

overhead of the cyclic prefix is doubled. This means that the spectral efficiency of

U-OFDM/Flip-OFDM would be less than the spectral efficiency of ACO-OFDM.
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For a large number of practical scenarios, when the cyclic prefix length is small,

this does not introduce a significant difference. However, it would lead to a signif-

icant decrease of U-OFDM/Flip-OFDM throughput in high-speed communication

scenarios, when the cyclic prefix length is expected to constitute a large portion of

the frame length. Therefore, if equal spectral efficiency between ACO-OFDM and

U-OFDM/Flip-OFDM is assumed for an arbitrary communication scenario, compu-

tational efficiency of U-OFDM/Flip-OFDM over ACO-OFDM cannot be claimed.

As described, the subtraction operation in the demodulation process of U-OFDM

causes the noise in each pair of U-OFDM frames to combine leading to a 3-dB SNR

penalty. An alternative demodulation method can be proposed in an attempt to re-

duce the SNR penalty. Each pair of samples, as illustrated in Fig. 12.2, encodes the

amplitude and the sign of the original bipolar sample. In the same way, the value of

each active sample in Fig. 12.3 encodes the absolute value of the original bipolar

OFDM sample while its position encodes the sign. If the receiver is able to detect

which is the active sample at each position of the U-OFDM frames, it can success-

fully identify the original sign and simply discard the inactive sample since it carries

no further information, just noise. This procedure is ideally expected to remove half

of the AWGN variance from the reconstructed bipolar signal in comparison to the

decoder employing a subtraction operation, and, thus, it is expected to improve the

performance. A simple and efficient way to identify the active sample is by compar-

ing the amplitudes of the two samples at each position in a pair of U-OFDM frames,

and the sample with the higher amplitude is marked as active. After reconstruction

of the bipolar signal, the demodulation process continues with conventional OFDM

demodulation. In the context of this work, this decoding scheme will be referred to

as the improved U-OFDM decoder. A similar approach for ACO-OFDM demodula-

tion has been reported by Asadzadeh et. al. in [9], leading to the equivalent improve-

ment in performance, as illustrated in this work. It would be fairly straightforward to

design the same decoding scheme for PAM-DMT as well, following the logic used

in [9]. The improved decoder is only applicable in relatively flat communication

channels where the ISI is negligible. If the ISI is considerable, then this demodula-

tor requires equalisation to be performed in the time-domain. In addition, since this

method discards half of the U-OFDM samples, the channel attenuation at different

frequency subcarriers is not consistent. This means that the use of adaptive bit load-

ing techniques is difficult. Furthermore, when present, low-frequency noise from

ambient light flickering and the baseline wander effect in electrical circuits would

further hinder the operation of the improved demodulation algorithm. This should

be taken into account in a practical implementation. In OWC, the communication

channel would often be flat, especially when a strong line-of-sight (LoS) propaga-

tion path is present. As a result, the improved decoder could be applied selectively,

when the channel conditions are favourable, as it requires only a small modification

in the processing algorithm compared to the conventional decoder.
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12.2.2 Theoretical Bit-error-rate Analysis

This section presents a theoretical BER analysis of U-OFDM in a linear AWGN

channel. The analysis of the conventional U-OFDM decoder is trivial as the only

difference to conventional bipolar OFDM performance that needs to be taken into

account is the combining of AWGN in the subtraction operation. Therefore, the the-

oretical BER for this demodulation scheme can be obtained by adding 3 dB to the

SNR requirements of conventional bipolar OFDM for an arbitrary desired BER. The

rest of this section presents the theoretical approach for analysing the performance

of the improved demodulator for U-OFDM in an AWGN channel. In the context of

the following mathematical formulas, σn is the standard deviation of the AWGN,

i.e. , σn =
√

BNo, where B denotes the double-sided signal bandwidth and No de-

notes the AWGN power spectral density (PSD); σs is the standard deviation of the

real bipolar OFDM signal, s[n], before it is encoded in U-OFDM; sgn(s) is the sign
function, i.e. ,

sgn(s) =





−1 , s < 0

0 , s = 0

1 , s > 0;

(12.8)

φ(x) is the standard normal distribution probability density function, i.e. ,

φ(x) =
1√
2π

e−
x2

2 , (12.9)

Q(x) is the tail probability of the standard normal distribution, i.e. ,

Q(x) =
1√
2π

∫ ∞

x
e−

u2

2 du, (12.10)

and erf(x) is the error function, i.e. ,

erf(x) =
2√
π

∫ x

0
e−u2du. (12.11)

Modelling the performance of the improved U-OFDM decoder analytically is

complicated due to the fact that during the demodulation procedure each individ-

ual sample in the time-domain is subjected to a varying non-linear transformation,

which depends on two independent random variables from the AWGN. This is

caused by the active-sample selection procedure. The distribution of a pair of re-

ceived active-inactive samples is given in Fig. 12.4. The original inactive sample

at the transmitter has a value of 0, so the received inactive sample, corrupted with

AWGN from the receiver circuit, has a Gaussian distribution centred around the

original value of 0. Similarly, the original active sample at the transmitter has a

value of s, so the received active sample, corrupted with AWGN, has a Gaussian

distribution centred around the original value of s. Let us assume that the received



10 Dobroslav Tsonev, Mohamed Sufyan Islim, and Harald Haas

−4 −3 −2 −1 0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

ŝ[n][σn]

(ŝ
[n
]−

s[
n
])

 

 

Distribution of received inactive sample

Distribution of received active sample (s[n]=s)

0 x |s|

φ
Fig. 12.4 Distribution of the received U-OFDM samples ŝ[n]. The received U-OFDM samples

are expressed in multiples of the AWGN standard deviation. The transmitted active sample has a

value of |sa[n]| = |s| and the transmitted inactive sample has a value of 0. In this example, |s| =
2.5σn. The probability that the received active sample, ŝa[n], has a value of x is expressed by

1/σnφ((x − |s|)/σn)dx, and the probability that the received inactive sample, ŝi[n], has a value

lower than x is denoted in the figure by the shaded area under the blue/left curve and expressed as

1−Q(x/σn). Similarly, the probability that ŝi[n] takes the value x is expressed by 1/σnφ(x/σn)dx,

and the probability that ŝa[n] takes a value lower than x is denoted by the shaded area under the

black/right curve and expressed as 1−Q((x−|s|)/σn).

active sample takes the value of x due to the AWGN. In order to correctly detect

it as active at the demodulator, the value of the inactive sample has to take a value

smaller than x. From Fig. 12.4, the probability that the active sample takes the value

x and at the same time the inactive sample takes a value smaller than x is:

P{ŝa[n] = x∩ ŝi[n] ≤ x} = P{ŝa[n] = x}P{ŝi[n] ≤ x} =

=
1

σn
φ

(
x−|s|

σn

)(
1−Q

(
x

σn

))
dx. (12.12)

This event is equivalent to the joint event of correct detection and the received active

sample having a value of x. The probability of correct detection alone is the sum of

the probabilities of all possible events {ŝa[n] = x∩ ŝi[n] ≤ x}. Hence:

P{ŝa[n] ≥ ŝi[n]} =
∫ ∞

−∞

1

σn
φ

(
x−|s|

σn

)(
1−Q

(
x

σn

))
dx =

1

2
+

1

2
erf

( |s|
2σn

)
.

(12.13)

The probability that the active sample has the value x, given that it has been correctly

detected, is:
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P{ŝa[n] = x|ŝa[n] ≥ ŝi[n]} =
P{ŝa[n] = x∩ ŝi[n]≤ x}

P{ŝa[n] ≥ ŝi[n]} =

=

1
σn

φ

(
x−|s|

σn

)(
1−Q

(
x

σn

))

∫ ∞
−∞

1
σn

φ

(
u−|s|

σn

)(
1−Q

(
u

σn

))
du

dx =

1
σn

φ

(
x−|s|

σn

)(
1−Q

(
x

σn

))

1
2
+ 1

2
erf
(

|s|
2σn

) dx.

(12.14)

Therefore, (12.14) provides the probability that the original bipolar OFDM sample,

s[n] = s, is mapped to sgn(s)x at the receiver when correct detection of the active

sample occurs. This mapping is not deterministic and varies due to the AWGN at

the receiver, even when the same pair of active and inactive samples is transmitted.

In order to create a more deterministic view of the transformation which each orig-

inal bipolar sample undergoes in the event of correct detection, it can be assumed

that each bipolar sample is mapped to the mean of sgn(s)x plus an additional noise

component which represents the variation around that mean. The mean of sgn(s)x
can be calculated as:

fc(s)=

∫ ∞

−∞
sgn(s)x

1
σn

φ

(
x−|s|

σn

)(
1−Q

(
x

σn

))

∫ ∞
−∞

1
σn

φ

(
u−|s|

σn

)(
1−Q

(
u

σn

))
du

dx =

=
s− sgn(s)

∫ ∞
−∞

x
σn

φ

(
x−|s|

σn

)
Q
(

x
σn

)
dx

1
2
+ 1

2
erf
(

|s|
2σn

) =

=

s− sgn(s)

(
|s|
(
1
2
− 1

2
erf
(

|s|
2σn

))
− σn

2
√

π
e
− s2

4σ2
n +

)

1
2
+ 1

2
erf
(

|s|
2σn

) . (12.15)

The variance of the noise component can be calculated as:

vc(s) =

∫ ∞

−∞
x2

1
σn

φ

(
x−|s|

σn

)(
1−Q

(
x

σn

))

∫ ∞
−∞

1
σn

φ

(
u−|s|

σn

)(
1−Q

(
u

σn

))
du

dx− f2c(s) =

=

∫ ∞
−∞

x2

σn
φ

(
x−|s|

σn

)(
1−Q

(
x

σn

))
dx

1
2
+ 1

2
erf
(

|s|
2σn

) − f2c(s) =

=

σ2
n+s2

2

(
1+ erf

(
|s|
2σn

))
+ 3

4
|s|√

π
σne

− s2

4σ2
n

1
2
+ 1

2
erf
(

|s|
2σn

) − f2c(s). (12.16)

The communication channel is assumed to be flat when the improved decoder is

employed. As a result, the original bipolar OFDM frame can be loaded evenly in

the frequency-domain, which means that its time-domain samples can be approx-
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imated by independent identically distributed (i.i.d.) Gaussian random variables

when the FFT size is greater or equal to 64, NFFT ≥ 64, due to the central limit

theorem (CLT) [14]. Due to the flat channel, the received U-OFDM samples would

not experience any dependence in time either. At the same time, the AWGN compo-

nents at each time instance are also independent. Hence, the realisations of the noise

component described in (12.16) are independent from each other. As a result, due

to the CLT, the noise component is transformed into an AWGN component by the

FFT operation in the demodulator. The noise variance is preserved from the time-

domain, and the noise mean value reflects only on the DC subcarrier which is not

used for communication.

Following the reasoning described so far and the description in Fig. 12.4, the

probability that the inactive sample takes the value x and at the same time the active

sample takes a value smaller than x, i.e. , the inactive sample is misinterpreted as

active, is:

P{ŝi[n] = x∩ ŝa[n] < x} = P{ŝi[n] = x}P{ŝa[n] < x} =

=
1

σn
φ

(
x

σn

)(
1−Q

(
x−|s|

σn

))
dx (12.17)

Hence the probability of incorrect detection alone is the sum of the probabilities of

all possible events is {ŝi[n] = x∩ ŝa[n] < x}, we can write:

P{ŝa[n] < ŝi[n]} =

∫ ∞

−∞

1

σn
φ

(
x

σn

)(
1−Q

(
x−|s|

σn

))
dx =

1

2
− 1

2
erf

( |s|
2σn

)
.

(12.18)

Alternatively, this probability can be expressed as 1−P{ŝa[n] ≥ ŝi[n]}. The prob-

ability that the inactive sample has the value x, given that it has been incorrectly

detected as active, is:

P{ŝi[n] = x|ŝa[n] < ŝi[n]} =
P{ŝi[n] = x∩ ŝa[n] < x}

P{ŝa[n] < ŝi[n]} =

=

1
σn

φ

(
x

σn

)(
1−Q

(
x−|s|

σn

))

∫ ∞
−∞

1
σn

φ

(
u

σn

)(
1−Q

(
u−|s|

σn

))
du

dx =

1
σn

φ

(
x

σn

)(
1−Q

(
x−|s|

σn

))

1
2
− 1

2
erf
(

|s|
2σn

) dx.

(12.19)

Therefore, (12.19) provides the probability that the original bipolar OFDM sam-

ple, s[n] = s, is mapped to −sgn(s)x at the receiver when the inactive sample is

incorrectly detected as active. This mapping is not deterministic and varies due to

the AWGN at the receiver, even when the same pair of active and inactive samples

is transmitted. In order to create a more deterministic view of the transformation

which each original bipolar sample undergoes in the event of incorrect detection, it

can be assumed that the bipolar sample is mapped to the mean of −sgn(s)x plus an

additional noise component which represents the variation around that mean. The
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mean of −sgn(s)x can be calculated as:

fw(s)=

∫ ∞

−∞
−sgn(s)x

1
σn

φ

(
x

σn

)(
1−Q

(
x−|s|

σn

))

∫ ∞
−∞

1
σn

φ

(
u

σn

)(
1−Q

(
u−|s|

σn

))
du

dx =

=
sgn(s)

∫ ∞
−∞

x
σn

φ

(
x

σn

)
Q
(

x−|s|
σn

)
dx

1
2
− 1

2
erf
(

|s|
2σn

) =

= −
sgn(s) σn

2
√

π
e
− s2

4σ2

1
2
− 1

2
erf
(

|s|
2σn

) . (12.20)

The variance of the noise component can be calculated as:

vw(s) =

∫ ∞

−∞
x2

1
σn

φ

(
x

σn

)(
1−Q

(
x−|s|

σn

))

∫ ∞
−∞

1
σn

φ

(
u

σn

)(
1−Q

(
u−|s|

σn

))
du

dx− f2w(s) =

=

∫ ∞
−∞

x2

σn
φ

(
x

σn

)(
1−Q

(
x−|s|

σn

))
dx

1
2
− 1

2
erf
(

|s|
2σn

) − f2w(s) =

=

σ2
n
2

+
|s|

4
√

π
σne

− s2

4σ2
n − σ2

n
2
erf
(

|s|
2σn

)

1
2
+ 1

2
erf
(

|s|
2σn

) − f2w(s). (12.21)

As in the case for correct distinction between the active and inactive sample, the

noise component in the case for incorrect detection is transformed into an AWGN

component in the frequency-domain by the FFT operation at the demodulator.

According to the Bussgang theorem, introduced in [15], a zero-mean Gaussian

random variable, X , subjected to a non-linear transformation, z(X), has the follow-
ing properties:

z(X) = αX +Yn (12.22)

E{XYn} = 0 (12.23)

α = const. (12.24)

Based on these properties, the constant α and the variance of the noise Yn can be

calculated for the two separate cases of correct and incorrect detection of the active

and inactive samples. In the case for correct detection, the original bipolar sample,

s[n], is mapped to fc(s). In that case, the variance of Yn and α can be calculated as:
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αc =
E{sfc(s)}

σ2
s

=

∫ ∞
−∞ sfc(s)

1
σs

φ

(
s

σs

)
ds

σ2
s

(12.25)

yc = E{Y 2
n,c}−E{Yn,c}2 = E{f2c(s)}−α2

c σ2
s −E{fc(s)}2 =

= E{f2c(s)}−α2
c σ2

s =

∫ ∞

−∞
f2c(s)

1

σs
φ

(
s

σs

)
ds−α2

cσ2
s . (12.26)

It is apparent from (12.15) that fc(s) is an odd function, so its mean in (12.26) is zero.

In the case for incorrect detection of the active and inactive samples, the variance

of Yn and α can be calculated as:

αw =
E{sfw(s)}

σ2
s

=

∫ ∞
−∞ sfw(s) 1

σs
φ

(
s

σs

)
ds

σ2
s

(12.27)

yw = E{Y 2
n,w}−E{Yn,w}2 = E{f2w(s)}−α2

wσ2
s −E{fw(s)}2 =

= E{f2w(s)}−α2
wσ2

s =

∫ ∞

−∞
f2w(s)

1

σs
φ

(
s

σs

)
ds−α2

wσ2
s . (12.28)

It is apparent from (12.20) that fw(s) is an odd function, so its mean in (12.28) is

zero. The noise component Yn is not correlated with the signal, according to the

Bussgang theorem. At the same time, the detection events at each active-inactive

sample pair are independent as well. Consequently, Yn is transformed by the FFT

operation at the demodulator into AWGN and its variance adds to the variance of

the AWGN in the frequency-domain.

The variances in (12.16) and (12.21) are given as functions of s, the realisation

of the signal s[n]. On average, over the entire duration of the OFDM frame they are

equal to:

v̄c =

∫ ∞

−∞
vc(s)

1

σs
φ

(
s

σs

)
ds (12.29)

and

v̄w =
∫ ∞

−∞
vw(s)

1

σs
φ

(
s

σs

)
ds. (12.30)

Using (12.13), the average probability for correct detection of an active time sam-

ple, dc, is:

dc =
∫ ∞

−∞

1

σs
φ

(
s

σs

)(
1

2
+

1

2
erf

( |s|
2σn

))
ds. (12.31)

For a large number of samples in a U-OFDM frame, the number of correctly and

incorrectly detected active samples will have a ratio which corresponds to the prob-
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Fig. 12.5 Theoretical U-OFDM performance vs. Monte Carlo simulations

abilities for correct and incorrect detection – dc and 1− dc, respectively. Hence,

the average gain factor, ᾱ , and the average noise variance in frequency-domain, N̄,

become:

ᾱ = dcαc +(1−dc)αw (12.32)

N̄ = dc(v̄c + yc)+ (1−dc)(v̄w + yw) (12.33)

The achieved average electrical signal-to-noise ratio (SNRelec) can be plugged in

the well-known formula for the BER of M-QAM [16]. Hence, the performance of

U-OFDM is calculated as:

BERU = BERMQAM

(
M,

α2Eb,elec

N̄

)
(12.34)

The comparison between theoretical model and Monte Carlo simulations of the

system performance is presented in Fig. 12.5. There is close agreement between the

presented model and the conducted simulations.

The ratio between the achieved optical signal-to-noise ratio (SNRopt), and the

achieved electrical SNR ( SNRelec) can be expressed as the ratio between the average

optical power, Pavg
opt

, and the average electrical power, P
avg
elec. Half of the U-OFDM

time-domain samples are equal to zero and the other half follow a clipped Gaussian

distribution. Hence, using the statistics of the clipped Gaussian distribution [14],

the ratio between the optical power and the electrical power of the signal can be

expressed as:

αo−e =
Pavg
opt

P
avg
elec

=
φ(0)σs

σ2
s /2

=
2φ(0)

σs
. (12.35)
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Fig. 12.6 Performance improvement introduced by the improved decoder for U-OFDM. The letter

“i” denotes the curves for the improved decoder. The performance of OFDM for bipolar real signals

is illustrated in this figure.

The ratio αo−e can be used to obtain the equivalent SNRelec for a given value of

SNRopt. Thus, since an analytical formula for the BER performance of the system

as a function of the electrical SNR has been provided, the BER performance of

the system can be evaluated analytically as a function of the optical SNR as well.

This concept applies for both the conventional demodulation algorithm and the im-

proved demodulation algorithm. For the improved algorithm, the BER as a function

of SNRopt is calculated as:

BERU = BERMQAM

(
M,

α2αo−eEb,opt

N̄

)
. (12.36)

12.2.3 Results and Discussion

In this section the performance of U-OFDM in a linear AWGN channel is evaluated.

The AWGN channel is a good approximation of the OWC channel for the system

scenarios considered in this work. Any frequency-dependent channel effects as well

as non-linear distortion effects are specific for a particular system realisation and

a particular deployment scenario. Therefore, they are not included in the analysis,

and the linear AWGN channel is adopted as an appropriate fundamental scenario

for the evaluation of the performance of U-OFDM. Furthermore, in this section,

a comparison is made between the performance of the conventional DCO-OFDM

scheme and the performance of U-OFDM. Since it is practically impossible to avoid

clipping effects from below in DCO-OFDM due to the high peak-to-average power

ratio (PAPR) of the OFDM signal, clipping of any negative values in DCO-OFDM

is the only non-linear distortion adopted in this study.
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Fig. 12.7 Performance of the conventional decoder for U-OFDM in comparison to the perfor-

mance of DCO-OFDM. The presented BER curves are generated as a function of the electrical

SNR. The biasing levels for BPSK/4-QAM, 8-QAM, and 16-QAM DCO-OFDM have been set to

6 dB, 7 dB and 7.5 dB.

The improved U-OFDM decoder is aimed at closing the 3 dB gap between the

performance of a bipolar OFDM signal and the performance of the conventional

U-OFDM decoder. The degree to which the improved decoder is able to complete

the task is given in Fig. 12.6. For an M-QAM constellation size of 4, the improved

decoder closes most of the performance gap, but is still about 1.3 dB away from

the target. As the constellation size increases, the gap is reduced. For example, at

M = 64 performance difference between bipolar OFDM and the improved U-OFDM

is approximately 0.4 dB. For M = 1024, the difference is 0.1 dB. Higher constella-
tion sizes lead on average to more energy per symbol and thus lead to more signal

power per time-domain sample. This in turn, reduces the probability of errors in the

sample selection process conducted in the improved U-OFDM decoding algorithm,

and therefore increases the performance improvement relative to the conventional

U-OFDM decoding algorithm.

The performance of the conventional U-OFDM decoder is compared with the

performance of DCO-OFDM in Fig. 12.7 and Fig. 12.8 in terms of electrical and op-

tical energy requirements, respectively. Note that binary phase-shift keying (BPSK)

OFDM and 4-QAM OFDM perform equivalently in an AWGN channel, and as a

result, BPSK DCO-OFDM and 4-QAM DCO-OFDM perform equivalently. There-

fore, they are represented by a single BER curve. Also note that the biasing levels

for DCO-OFDM have been optimised for BER=[10−4;10−3] through Monte Carlo

simulations, i.e., lower bias levels in any of the presented cases would lead to higher

BER values, and higher bias levels would lead to an increase in the signal power

without reducing the BER. In terms of electrical energy dissipation, the conventional

U-OFDM decoder exhibits performance improvement over DCO-OFDM only in the

case of 4-QAM U-OFDM versus BPSK DCO-OFDM. The improvement is approx-

imately 4 dB. For higher constellations, U-OFDM exhibits either similar or worse

performance than DCO-OFDM. It is evident that, as the constellation size increases,
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Fig. 12.8 Performance of the conventional decoder for U-OFDM in comparison to the perfor-

mance of DCO-OFDM. The presented BER curves are generated as a function of the optical SNR.

The biasing levels for BPSK/4-QAM, 8-QAM, and 16-QAM DCO-OFDM have been set to 6 dB,

7 dB and 7.5 dB.

U-OFDM requires significantly largerM-QAM constellations in order to achieve the

same spectral efficiency, and, as a result, has lower performance. In terms of optical

energy dissipation, U-OFDM again has an advantage over DCO-OFDM only for the

case of 4-QAM U-OFDM versus BPSK DCO-OFDM, where the performance im-

provement is approximately 1.4 dB at a BER of 10−4. For higher constellations, the

optical efficiency of U-OFDM becomes worse than the efficiency of DCO-OFDM.

The improved decoder could improve the performance of U-OFDMwith up to 3 dB,

as shown in Fig. 12.6. However, it is applicable only in favourable communication

channel conditions as described at the end of Sect. 12.2. Furthermore, the improved

decoder would be insufficient to compensate the electrical energy loss for U-OFDM

constellation sizes larger than M=256 and the optical power loss for U-OFDM con-

stellation sizes larger than M=16, as can be inferred from the results presented in

Fig. 12.7 and Fig. 12.8, respectively. Clearly, a solution to the spectral efficiency

loss in U-OFDM is required.

12.3 Enhanced Unipolar Orthogonal Frequency Division

Multiplexing (U-OFDM)

The results in Sect. 12.2.3 show the great potential for energy savings introduced by

a unipolar OFDM-based modulation scheme that requires no biasing. At the same

time, the loss in spectral efficiency, introduced by the proposed OFDM modulation

scheme, clearly diminishes the energy-saving effect of U-OFDM at low spectral

efficiency and even completely eliminates any energy-saving benefit at higher spec-

tral efficiency. Furthermore, if moderately high spectral efficiency, in the order of 4

bit/s/Hz or 5 bit/s/Hz, is required, an impractical constellation size, in the order of
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Fig. 12.9 Illustration of the enhanced U-OFDM concept up to Depth 3. CP denotes the individual

cyclic prefix of a frame. Pdi denotes the unipolar frame which contains the positive samples of

the ith originally bipolar OFDM frame at Depth d. Ndi denotes the unipolar frame which contains

the absolute values of the negative samples of the ith originally bipolar OFDM frame at Depth d.

The digital-to-analog converter (DAC) block represents the required operations, including signal

amplification, for transition from a digital signal to an analog signal, capable of driving the LED

front-end.

65536 or 1048576, would be necessary. Hence, in order for U-OFDM to become

suitable for high-speed communication, an appropriate solution to the problem of

spectral efficiency loss in the generation process has to be devised. The current

section proposes an approach for solving this issue. It is referred to as enhanced

unipolar orthogonal frequency division multiplexing (eU-OFDM).

12.3.1 Concept

The eU-OFDM concept is described in Fig. 12.9. The scheme combines multiple

U-OFDM information streams in a single unipolar time-domain signal. All signal

generation steps are performed in the digital domain and after a conventional digital-

to-analog conversion, the resulting analog signal can modulate the LED without any

biasing apart from the minimum requirement to turn on the LED. A single discrete

U-OFDM signal in the time-domain would look exactly as the information stream

at Depth 1 in Fig. 12.9. A frame P contains the positive samples of an originally

bipolar OFDM frame and zeros in the places of the negative samples. A frame N

holds the absolute values of the negative samples of that same bipolar OFDM frame

and zeros in the places of the positive samples. The signal at Depth 1 is generated

following the procedure described in Sect. 12.2.1. A second U-OFDM information

signal, depicted at Depth 2, is superimposed over the signal at Depth 1, and it does

not affect the ability of the receiver processor to separate the two signals if the

following structure is followed. At Depth 2, each U-OFDM frame is replicated and

transmitted twice, where the second frame instance is an exact copy of the first one.

Hence, in Fig. 12.9, the second frame at Depth 2 is an exact replica of the first

frame, the fourth frame is an exact replica of the third frame, etc. This is denoted

by the frame labels. Since at Depth 2 each U-OFDM frame is transmitted twice, the

amplitude of each frame instance is scaled by
√
1/2 in order to keep the utilised

energy per bit constant. A third signal, at Depth 3, can be introduced similarly to the
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second signal, however, the individual U-OFDM frames are replicated four times

where the amplitude of each frame instance is scaled by
√
1/4, again in order to

preserve the dissipated energy per bit. Analogously, additional information signals

could be introduced, where at Depth d, each U-OFDM frame would be replicated

into 2d−1 consecutive frames whose amplitude is scaled by 1/
√
2d−1.

After the information signal is received, the data signal at Depth 1 can be de-

modulated straight away with the conventional U-OFDM decoding algorithm. Ev-

ery second frame, holding the negative values of the original bipolar OFDM frame,

is subtracted from its preceding frame, holding the positive values of the original

bipolar OFDM frame. Then, the conventional OFDM demodulator is applied on the

obtained bipolar frames. For example, at Depth 1, the first bipolar frame is recovered

with the operation P11−N11, the second bipolar frame is recovered with the opera-

tion P12−N12 and so forth. No additional signals interfere with the successful de-

modulation because the interference that falls on P11 is equivalent to the interference

that falls on N11, caused by P21 + P31 in the presented example. Hence, the subtrac-

tion operation cancels out both interference terms. Analogously, the interference is

removed from all subsequent frames at Depth 1. Hence, the bits encoded at Depth 1

can be successfully recovered with the conventional U-OFDM demodulator. Once

the demodulation at Depth 1 is complete, the demodulated bits can be remodulated

again in order to recover the transmitted U-OFDM signal at Depth 1. This signal

is then subtracted from the overall received signal, and the result contains only the

information streams at Depth 2 and above. Every two equivalent frames at Depth 2

are summed. For example, the first and the second frame at Depth 2 are summed, the

third and the fourth frames are summed, etc.. Afterwards, the demodulation process

continues with conventional U-OFDM demodulation – exactly the same way as for

the recovery of the information at Depth 1. Again, subsequent streams do not hin-

der the process because the interference from all subsequent streams is structured in

such a way that it is completely removed by the subtraction operation. After the bits

at Depth 2 are recovered, they are remodulated and the result is subtracted from the

remaining received signal. This iterative demodulation procedure continues until the

information at all depths is decoded.

12.3.2 Spectral Efficiency

The eU-OFDM scheme has increased spectral efficiency when compared to U-

OFDM. The spectral efficiency of the modified scheme can be calculated as the

sum of the spectral efficiencies of the different streams at all depths:

η
eU

(D) =
D

∑
d=1

η
U

2d−1
= η

U

D

∑
d=1

1

2d−1
, (12.37)

where D is the maximum employed modulation depth in the new scheme. It equals

the total number of U-OFDM streams that are superimposed in the generated mod-
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Table 12.1 Spectral efficiency of eU-OFDM as a function of the maximum modulation Depth D.

D 1 2 3 4 5 6 7
ηeU(D)
ηDCO

[%] 50 75 87.5 93.75 96.88 98.44 99.22

ulation signal. As the maximum modulation depth is increased, the spectral effi-

ciency of eU-OFDM increases, as shown in Table 12.1. For a large modulation

depth, ηeU(D) converges to η
DCO

, the spectral efficiency of DCO-OFDM is:

lim
D→∞

η
eU

(D) = η
U
lim

D→∞

D

∑
d=1

1

2d−1
= 2η

U
= η

DCO
. (12.38)

Two practical issues should be considered at this point. First, OFDM transmis-

sion cannot start before at least a full block of bits, required for the generation of

one full OFDM frame, is available at the transmitter. In real time streaming appli-

cations, this introduces a latency of at least one frame length. When eU-OFDM is

used, the latency increases with the modulation depth because the binary data for

at least 2D−1 OFDM frames has to be available to the processor at the transmitter

before one full eU-OFDM data block (as the one shown in Fig. 12.9) can be mod-

ulated for transmission. At the receiver side, some latency is also expected because

at least 2d frames have to be received before the demodulation at Depth d can be

completed. Second, it can be assumed that the FFT/IFFT operation dominates the

computational complexity at the receiver [5]. The eU-OFDM demodulation process

requires additional FFT/IFFT operations to be performed at the receiver compared

to the demodulation processes in U-OFDM and OFDM. If all subtraction proce-

dures in the eU-OFDM demodulator are performed in the time-domain, the total

number of FFT/IFFT operations is approximately double the number of FFT/IFFT

operations required in OFDM because every demodulated frame has to be remodu-

lated and, therefore, an additional IFFT operation is required. When the communi-

cation channel is not flat, this approachwould introduce additional complexity in the

equalisation process because the remodulated signal components would have to be

distorted by the channel transfer characteristic before they are subtracted from the

overall received signal. Therefore, it may be more practical if all subtraction opera-

tions in the demodulation process are performed in the frequency-domain after the

FFT operation. Then, in every eU-OFDM frame, equalization has to be performed

only once for the entire information signal, and no channel effects would have to

be introduced to the remodulated signal. In such an implementation, however, the

number of required FFT/IFFT operations is approximately four times higher than

in conventional OFDM demodulation. The implementation of eU-OFDM also in-

troduces additional memory requirements compared with OFDM because the data

equivalent of 2D OFDM frames has to be buffered for the complete demodulation

of one full eU-OFDM block as shown in Fig. 12.9. The presented implementation

issues put a practical limit on the highest eU-OFDM modulation depth that can

be implemented with a given hardware budget. In practical applications, the hard-

ware complexity is not expected to be problematic because for a relatively small
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maximum modulation depth, the gap in spectral efficiency between eU-OFDM and

DCO-OFDM is almost completely closed. For example, for D=3 and D= 5, η
eU

is already 87.5% and 96.88% of η
DCO

, respectively, which means the difference is

practically negligible. A more detailed analysis of the eU-OFDM implementation

cost is outside the scope of this work and can be addressed in future research.

12.3.3 Theoretical Bit-error-rate Analysis

12.3.3.1 Electrical Power

A real bipolar time-domain OFDM signal follows a Gaussian distribution with av-

erage electrical power of E{s2(t)}=σ2
s , where σs is the standard deviation of the

time-domain waveform s(t) [8, 17]. Therefore, half of the time-domain samples in

a U-OFDM signal follow a Gaussian distribution truncated at zero, and the other

half of the samples are equal to zero [7, 8]. As a result, it is straightforward to show

that the average power of the time-domain U-OFDM signal is σ2
s /2 [7, 8]. The eU-

OFDM signal is a combination of superimposed independentU-OFDM signals, and,

therefore, its average time-domain electrical power grows with the number of sig-

nals that are superimposed. It can be derived as [8, 18]:

Pavg
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= E{s2eU(t)} = E
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, (12.39)

where seU(t) is the eU-OFDM waveform in the time-domain; sd(t) is the U-OFDM
signal at Depth d; andφ(0) is the probability density function (PDF) of the standard
normal distribution. The time-domain expectation of the U-OFDM signal at Depth d

is E{sd(t)}=φ(0)σs/
√
2d−1. It is used in the calculation of (12.39) and can be

derived from the statistics of the truncated Gaussian distribution described in [14].

The average number of bits that are encoded in an eU-OFDM signal is 2−1/2D−1

times more than the number of bits that are encoded in a U-OFDM signal during

the same time interval. Therefore, the increase in the required SNR per bit in eU-

OFDM compared with U-OFDM for the same M-QAM constellation size is the
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Fig. 12.10 Energy penalty with increasing modulation depth.

ratio of the average electrical power calculated in (12.39) and the average electrical

power of the U-OFDM signal, σs/2, divided by the ratio of the bits encoded in the

two modulation schemes, 2−1/2D−1. Hence, the increase in the required SNR for

eU-OFDM is:

α(D) = 1+
4φ2(0)

2−1/2D−1

D

∑
d1=1

D

∑
d2=1
d1 6=d2

1√
2d1+d2

. (12.40)

The electrical SNR of the system is defined as:

Eb,elec

No
=

P
avg
elec,eU

Bη
eU

No
=

E{s2eU(t)}
Bη

eU
No

, (12.41)

where B is the used double-sided communication bandwidth and No is the double-

sided PSD of the AWGN at the receiver. Fig. 10(a) shows α(D) for different values
of the maximummodulation depth. The average SNR penalty of eU-OFDM in com-

parison with U-OFDM converges to about 4 dB as the spectral efficiency converges

to the spectral efficiency of DCO-OFDM. As described in section 12.2.2, U-OFDM

has a constant SNR penalty of 3 dB in comparison to a bipolar OFDM signal. There-

fore, when this penalty is combined with the maximum penalty of about 4 dB in Fig.

10(a), it can be concluded that irrespective of the employed M-QAM constellation

size, eU-OFDM has a maximum electrical SNR penalty of about 7 dB in comparison

with a bipolar OFDM signal. The results in Sect. 12.2.3 indicate that DCO-OFDM

has a penalty of about 7 dB in terms of electrical SNR requirements relative to a

bipolar OFDM signal for BPSK and 4-QAM. Furthermore, the penalty increases

when larger M-QAM constellations are used because larger constellations are more

sensitive to non-linear distortion, and therefore, higher biasing levels are required
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in order to reduce the clipping effect on any negative signal samples. Therefore,

depending on the M-QAM constellation size used, eU-OFDM is expected to have

comparable or significantly better performance than DCO-OFDM.

At this point, note the additional electrical energy per bit that is introduced at

each modulation depth, d, shown in Fig. 10(b). As shown, the additional electrical

energy per additional bit that is introduced when an additional U-OFDM signal is

introduced to the overall information signal. The results are normalised to the en-

ergy per bit at Depth 1. Since the additional signals are added on top of an already

existing time-domain signal, the additional electrical energy per additional bit that

they introduce increases significantly with the modulation depth. This means that

introducing additional U-OFDM streams to close the spectral efficiency gap be-

tween eU-OFDM and DCO-OFDM becomes inefficient in terms of energy. When

the additional latency, the increased hardware complexity and the size of the spec-

tral efficiency gap, given in Table 12.1, are also taken into consideration, it becomes

evident that a practical implementation of eU-OFDM is likely to be realised for a

maximum modulation depth of not more than a few streams. In case it is important

that the spectral efficiency gap is closed completely, an alternative eU-OFDM im-

plementation can be considered with different M-QAM constellation sizes at each

depth. A detailed study of optimal constellation size combinations is given at Sect.

12.4.1.

A theoretical bound for the BER of eU-OFDM as a function of the electrical

SNR can be estimated using the well-established formula for calculating the BER

of conventional real bipolar M-QAM OFDM [16]. The only necessary modification

in that formula is a scaling of the required SNR by a factor of 1/2α to account for

the 3 dB performance degradation in U-OFDM and to account for the SNR penalty

incurred in eU-OFDM. The proposed theoretical bound is equivalent to the BER

curve for the information stream at Depth 1 in eU-OFDM, because in that stream any

distortion is caused only by the AWGN process at the receiver since any inter-stream

interference is completely removed by the subtraction operation in the demodulation

procedure. The BER of the U-OFDM signals at higher depths increases with the

depth because the performance is affected by the BER at lower depths. Any errors

in the bit demodulation at a given depth translate into imperfections in the iterative

signal cancellation algorithm. This results in reduced signal quality at all subsequent

U-OFDM streams. With an increase in the SNR, the bit errors are reduced. As a

result, the performance at all depths converges to the performance of the stream

at Depth 1. This performance trend is shown in Fig. 12.11. The presented results

also show very close agreement between the theoretical performance bound and the

results of the Monte Carlo simulations undertaken.

12.3.3.2 Optical Power

The average optical power of the time-domain eU-OFDM signal is [8, 18]:
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Fig. 12.11 The performance of 16-QAM eU-OFDM at different depths as a function of the elec-

trical SNR. The curve named ‘Theory’ represents the theoretical performance bound.
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The optical SNR of the system is defined as [8, 18]:
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No
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E{seU(t)}
Bη

eU
No

. (12.43)

The ratio of (12.39) and (12.42) can be used to establish a relationship between the

electrical SNR and the optical SNR. Hence, for a given value of the optical SNR, the

equivalent achieved electrical SNR can be calculated using this relationship. Then,

the closed-form BER bound as a function of the electrical SNR can be used to es-

tablish a performance bound as a function of the optical SNR. Fig. 12.12 shows the

close agreement between the proposed theoretical bound and the conducted Monte

Carlo simulations. Similar to other inherently unipolar OFDM techniques, the eU-

OFDM does not require a DC bias to operate. Therefore, eU-OFDM is suitable for

dimmable-based visible light communications (VLC) applications. However, when

illumination is desired, another arrangement for the time-domain waveform can be

adopted. The PDF of the time-domain waveform can be mapped in a reversed man-

ner so that it can achieve higher illumination levels. This can be done by:

sreveU(t) = IMAX− seU(t), (12.44)
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Fig. 12.12 The performance of 16-QAM eU-OFDM at different depths as a function of the optical

SNR. The curve named ‘Theory’ represents the theoretical performance bound.
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Fig. 12.13 The PDF of eU-OFDM waveform before (red curve) and after reversing (blue curve).

The PDF of DCO-OFDM is also given for comparison purposes.

where IMAX is the maximum allowed current of the linear region of the LED, and

sreveU(t) is the reversed eU-OFDM waveform. The PDFs of eU-OFDM before and

after reversing is given in Fig. 12.13. The proposed eU-OFDM can support both

dimmable-based and illumination-based VLC applications in practical implementa-

tions. It should be noted that sreveU (t) would now be subject to clipping at zero level

for any value of seU(t) higher than IMAX. A more detailed analysis of this concept

is outside the scope of this work and can be addressed in future research. All cal-
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Fig. 12.14 Comparison between the performance of eU-OFDM, U-OFDM and DCO-OFDM for

different M-QAM modulation orders as a function of the electrical SNR: (a) BPSK; (b) 4-QAM;

(c) 8-QAM; (d) 16-QAM. The optimum bias levels for BPSK, 4-QAM, 8-QAM, and 16-QAM

DCO-OFDM are estimated using Monte Carlo simulations and are set at 6 dB, 6 dB, 7 dB and

7.5 dB, respectively.

culations presented in this section are valid for an ideal front-end transmitter device

under the assumption that modulation using eU-OFDM does not require biasing of

the LED. However, a typical LED requires a minimum bias voltage at which the

device ‘turns on’ and begins to emit light. In the estimation of the optical efficiency

of the system, a zero bias can be assumed, because before the LED ‘turns on’ any

light intensity output is negligible. However, when the electrical efficiency of the

system is estimated, the bias should be taken into account. If the bias level is small

relative to the dynamic range of the information signal, it would not introduce con-

siderable variations in the estimated energy efficiency relative to an ideal system.

Furthermore, the ‘turn on’ bias level is device specific. Consequently, for simplicity

it is disregarded in the presented theoretical study.

12.3.4 Results and Discussion

This section presents the performance of eU-OFDM in a linear AWGN channel.

As in Sect. 12.2.3, the only non-linear effect considered in this study is the effect

of clipping any negative values in the information signal due to the electrical char-
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Fig. 12.15 Comparison between the performance of eU-OFDM, U-OFDM and DCO-OFDM for

different M-QAM modulation orders as a function of the optical SNR: (a) BPSK; (b) 4-QAM;

(c) 8-QAM; (d) 16-QAM. The optimum bias levels for BPSK, 4-QAM, 8-QAM, and 16-QAM

DCO-OFDM are estimated using Monte Carlo simulations and set at 6 dB, 6 dB, 7 dB and 7.5 dB,
respectively.

acteristics of an ideal LED. The simulations have been performed in a flat fading

channel because the presented scheme eU-OFDM is a multicarrier technique in the

same way the benchmark technique against which it is compared DCO-OFDM is

a multicarrier technique. When subjected to the same communication channel, the

individual subcarriers between the OFDM-based techniques are subjected to the

same attenuation by the channel. As a result, the SNR penalty due to the channel

in both techniques is the same. The eU-OFDM scheme generates a strictly positive

signal and, therefore, it completely avoids clipping of the signal from below, whilst

DCO-OFDM is subjected to this non-linear effect. In the presented study, the max-

imum depth of eU-OFDM is chosen to be D=3 because at this depth, the larger

part of the spectral efficiency gap between DCO-OFDM and U-OFDM is closed.

In addition, for this value of D, the implementation complexity is still manageable

and the theoretical and simulation results provided in this section can be compared

against experimental results described [19]. Therefore, in all of the results presented

in this section, the spectral efficiency of eU-OFDM is actually 87.5% of the spectral

efficiency of DCO-OFDM in agreement with Table 12.1.

The average BER achieved for the decoded information at all depths in eU-

OFDM is compared against the BER of DCO-OFDM and U-OFDM for different

M-QAM constellation sizes. Fig. 12.14 presents the BER results for constellation
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ferent M-QAM modulation orders as a function of the electrical SNR. The optimum bias levels for
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Fig. 12.17 Performance of eU-OFDM compared against the performance of DCO-OFDM for dif-

ferent M-QAM modulation orders as a function of the optical SNR. The optimum bias levels for

64-QAM, 256-QAM and 1024-QAM DCO-OFDM are estimated using Monte Carlo simulations

and are set at 9.5 dB, 11 dB and 13 dB, respectively.

sizes M = [2,4,8,16] as a function of the electrical SNR. For U-OFDM, an actual

constellation size of M2 is used for each respective value of M, so that equal spec-

tral efficiency can be achieved by the three schemes. The results are presented for

BER values down to 10−4 because in practice most forward error correction (FEC)

codes are able to deliver reliable communication at such BERs [20]. The electrical

efficiency improvement of eU-OFDM over DCO-OFDM begins at around 2 dB for

BPSK and increases to about 4 dB for 16-QAM. In DCO-OFDM, the bias levels
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for the different M-QAM constellations are optimised through Monte Carlo simula-

tions and are in agreement with previous work [14, 21]. The introduced bias levels

are deemed optimal because in each of the presented cases adding less bias leads to

more clipping distortion and therefore to higher BER for a given SNR. At the same

time, adding more bias leads to higher energy dissipation without any reduction of

the BER. The bias levels are expressed as the estimated SNR increase in dB relative

to a bipolar OFDM signal. In eU-OFDM, for a maximum depth of D=3, the SNR

penalty is α≈1.95dB according to Fig. 10(a). This SNR penalty is constant irrespec-

tive of the constellation size. Therefore, the apparent increase in energy efficiency of

eU-OFDM over DCO-OFDMwith an increase in the M-QAMmodulation order can

be explained and quantified. Fig. 12.14 also shows the loss in energy efficiency for

U-OFDM as the spectral efficiency increases. In Fig. 12.14(a), 4-QAMU-OFDM is

more energy efficient than both BPSK eU-OFDM and BPSK DCO-OFDM. In Fig.

12.14(b) and 12.14(c), 16-QAM U-OFDM and 64-QAM U-OFDM are less energy

efficient than 4-QAM eU-OFDM and 8-QAM eU-OFDM, respectively, while at the

same time exhibiting approximately the same efficiency as 4-QAM DCO-OFDM

and 8-QAM DCO-OFDM. In Fig. 12.14(d), 256-QAM U-OFDM is evidently less

energy efficient than both 16-QAM eU-OFDM and 16-QAM DCO-OFDM. Fig.

12.15 presents the same performance trends in all three modulation schemes as a

function of the optical SNR. For BPSK and 4-QAM, eU-OFDM exhibits an effi-

ciency advantage of about 0.5dB over DCO-OFDM. This optical power advantage

reaches almost 2dB for 16-QAM. At the same time, U-OFDM exhibits an advan-

tage only for a constellation size of M = 4 when compared with BPSK eU-OFDM

and BPSK DCO-OFDM, as given in Fig. 12.15(a).

A performance comparison between eU-OFDM and DCO-OFDM is also pre-

sented for higher spectral efficiency values. Fig. 12.16 and Fig. 12.17 show results

for M = [64,256,1024]. In this study, U-OFDM is not considered because it has

already been demonstrated that the scheme loses its energy advantage over both

eU-OFDM and DCO-OFDM for 256-QAMU-OFDM compared with 16-QAM eU-

OFDM/DCO-OFDM. The results presented in Fig. 12.16 and Fig. 12.17 show that

for 1024-QAM, eU-OFDM can attain savings of approximately 7dB in electrical

energy dissipation over DCO-OFDM, and approximately 3dB less in required opti-

cal power. Such results can make a significant difference in future high speed OWC

systems.

12.4 Superposition Modulation for Orthogonal Frequency

Division Multiplexing (OFDM)

An alternative arrangement of the modulation sizes used in eU-OFDM is explored in

this section. The GeneRalizEd ENhancEd UnipolaR OFDM (GREENER-OFDM)

allows the spectral efficiency gap of U-OFDM and DCO-OFDM to be completely

closed with a maximum of three depths. The eU-OFDM concept described in this

chapter is based on the unique time-domain structure in every pair of U-OFDM
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frames. Analogous unique structures are also present in the other two well-known

unipolar OFDM modulation schemes, ACO-OFDM and PAM-DMT. Hence, the

GREENER-OFDM concept is extended to ACO-OFDM and PAM-DMT.

12.4.1 Generalized Enhanced Unipolar Orthogonal Frequency

Division Multiplexing (U-OFDM)

12.4.1.1 Concept

The spectral efficiency of eU-OFDM approaches the spectral efficiency of DCO-

OFDM as the maximum number of depths increases. However, implementation is-

sues, outlined in section 12.3.2, put a practical limit on the maximum number of

depths that can be used. The eU-OFDM was introduced as a special case of the

GREENER-OFDM [22], where it was assumed that the constellation sizes and the

power allocations are the same for all information streams. However, in order for

the spectral efficiency gap between eU-OFDM and DCO-OFDM to be completely

closed, an alternative setting of constellation sizes should be exploited. All possi-

ble combinations of constellation sizes at the different eU-OFDM streams with all

possible power allocations are investigated in this section for a maximum number

of depths D = 3. The modulation concept of GREENER-OFDM is similar to the

modulation concept of eU-OFDM described in section 12.3.1. The only difference

is that, each stream at Depth d is now modulated with an arbitrary modulation size

Md-QAM and scaled with an additional scaling value γd .

12.4.1.2 Spectral Efficiency

The spectral efficiency of the GREENER-OFDM can be expressed as the sum of

the spectral efficiencies of the individual information streams:

ηGO(D) =
D

∑
d=1

ηU(d)

2d−1
bits/s/Hz, (12.45)

where ηU(d) is the spectral efficiency of the U-OFDM streams given in (12.7) for

a modulation size Md at depth d. In order for the GREENER-OFDM spectral ef-

ficiency to match the spectral efficiency of DCO-OFDM, the used combination of

constellation sizes should satisfy the following constraint:

log2(MDCO) =
D

∑
d=1

log2(Md)

2d
, (12.46)

whereMDCO is the constellation size of theMDCO-QAMDCO-OFDM. For example,

two 16-QAM streams match the spectral efficiency of 8-QAM DCO-OFDM; or a
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64-QAM stream at Depth 1 in combination with a 16-QAM stream at Depth 2; or a

combination of a 32-QAM stream at Depth 1 and two subsequent 16-QAM streams

at Depth 2 and Depth 3 is enough to achieve the same spectral efficiency as 16-

QAM DCO-OFDM. The spectral efficiency ratio of the GREENER-OFDM to the

U-OFDM scheme at depth d can be expressed as the ratio of (12.45) to (12.7):

αη (D,d) =
ηGO(D)

ηU(d)
=

∑D

d́=1
(log2(Md́

)/2d́)

log2(Md)/2
. (12.47)

12.4.1.3 Theoretical Bit-error-rate Analysis

The electrical average power of GREENER-OFDM can be written as [22]:
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= σ2
s




D

∑
d=1

γ−2
d

2d
+2φ2(0)

D

∑
d1=1

D

∑
d2=1
d1 6=d2

(γd1γd2)
−1

√
2d1+d2


 , (12.48)

where sGO(t) is the time-domain GREENER-OFDM waveform; sd(t) is the time-

domain U-OFDM signal at depth d; and γ = {γ−1
d ;d = 1,2, . . . ,D} is the set of

scaling factors applied to each corresponding stream. Similarly, the average optical

power for the GREENER-OFDM can be written as [22]:

P
avg
opt,GO(D,γ) =

D

∑
d=1

E[sd(t)] = φ(0)σs

D

∑
d=1

γ−1
d√
2d−1

, (12.49)

The power allocation for each individual stream is optimized with respect to the

average power of the modulation signal, which should satisfy the following con-

straints:

Pavg
elec,GO

(D,γ) ≤ Pavg
elec,GO

(D,11×D),

Pavg
opt,GO

(D,γ) ≤ Pavg
opt,GO

(D,11×D), (12.50)

The electrical power penalty per bit incurred by GREENER-OFDM in comparison

to U-OFDM can be written as:

αelec(D,d,γ) =
αP
elec(D,γ)

αη (D,d)
, (12.51)

where αη(D,d) is given by (12.47), and αP
elec(D,γ) is the increase in average elec-

trical power of GREENER-OFDM to the average electrical power of a scaled U-

OFDM at depth d, P
avg
elec,U(γd) = σ2

s /(2γ2d ), which can be expressed as:
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αP
elec(D,γ) =

P
avg
elec,GO(D,γ)

P
avg
elec,U(γd)

. (12.52)

A theoretical bound on the BER performance of the GREENER-OFDM information

streams can be derived using the previously used formula for the BER of M-QAM

[16]. A closed-form theoretical bound on the BER performance at Depth d, as a

function of the electrical BER, can be estimated by scaling the SNR by a factor

of 1/2αelec(D,d) to account for the SNR loss in U-OFDM and to account for the

electrical SNR penalty in GREENER-OFDM. This can be expressed as:

BERGO
(D,d,γ)

∼= BERMQAM

(
Md ,

Eb,elec

2Noαelec(D,d,γ)

)
. (12.53)

Similar to eU-OFDM, the BER performance of all streams at higher depths is af-

fected by the BER performance of the streams at the lower depths. Therefore (12.53)

is presented as a closed-form theoretical lower bound on the achievable BER. A

closed-form bound on the BER performance of the overall GREENER-OFDM can

be obtained by considering the spectral efficiency contribution of each individual

depth given in (12.47). The overall performance bound can be expressed as:

BERGO
∼=

D

∑
d=1



BERGO

(D,d,γ)

αη (D,d)


 . (12.54)

The BER performance bound as a function of the optical SNR can be obtained

by inserting the ratio of (12.49) and (12.48) into (12.53) and (12.54). The opti-

mal combinations of constellation sizes and their corresponding scaling factors for

GREENER-OFDM are obtained using both the theoretical model and Monte Carlo

simulations. The optimality is defined as the lowest energy requirements among

other spectrally equivalent combinations. The performance of the optimum con-

figurations in GREENER-OFDM is compared with the performance of spectrally

equivalent OFDM techniques in Sect. 12.4.4.

12.4.2 Enhanced Asymmetrically-clipped Optical OFDM

(ACO-OFDM)

The symmetry in U-OFDM lies in frames, whilst in ACO-OFDM and pulse-

amplitude-modulated discrete multitone modulation (PAM-DMT), it lies in sub-

frames. In ACO-OFDM, only the odd subcarriers are modulated. As a consequence,

the samples within one time-domain frame of the bipolar signal, s[n], before the

asymmetrical clipping have the property: s[n]=− s[n + NFFT/2] as shown in [3, 8].

If only the even subcarriers are modulated, the time-domain frame has the property:

s[n]=s[n + NFFT/2] [8]. The opposite relations also hold. Therefore, as long as the
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Depth 1

Depth 2

Depth 3
+

DAC

Fig. 12.18 Illustration of the enhanced ACO-OFDM. CP indicates the unique cyclic prefix of each

frame. Adl indicates the first half, from sample 0 to sample NFFT/2−1, of the lth ACO-OFDM

frame at Depth d. Bdl indicates the second half, from sample NFFT/2 to sample NFFT−1, of the lth

ACO-OFDM frame at Depth d.

interference in the first half of the frame, from sample 0 to sample NFFT/2−1, is

equivalent to the interference in the second half of the frame, from sample NFFT/2
to sample NFFT−1, any distortion due to interference falls only on the even sub-

carriers in the frequency-domain. Hence, it is orthogonal to the information, which

is modulated only on the odd subcarriers. A possible arrangement of the multiple

ACO-OFDM streams is given in Fig. 12.18 [23]. The eACO-OFDM signal gener-

ation starts at the first depth with an ACO-OFDM modulator. The subframes are

defined to be half of the original ACO-OFDM frames in length and they are consid-

ered to be the basis for eACO-OFDM streams. Subsequent streams are generated in

a similar way to the first stream but with an OFDM frame length Nd = NFFT/2d−1.

All generated frames are repeated 2d−1 times and scaled by a factor 1/2γd . An arbi-

trary modulation size Md-QAM is employed at each individual Depth d. The cyclic

prefixs (CPs) are not required to be repeated as they are already included at the

end of each repeated subframe. The demodulation process at the receiver would be

applied in a similar fashion to the GREENER-OFDM. The information at Depth 1

can be recovered directly as in conventional ACO-OFDM because all of the inter-

stream-interference falls into the even-indexed subcarriers. After the first stream is

decoded, the information can be remodulated again and subtracted from the overall

signal. Then, frames which are equivalent at Depth 2 can be recombined and the de-

modulation procedure can continue as for the stream at Depth 1. The algorithm can

be applied until the information from all streams is recovered. The theoretical BER

analysis of eACO-OFDM is identical to the analysis of GREENER-OFDM, there-

fore the optimal modulation sizes and scaling factors are the same. The performance

of the optimum configurations in eACO-OFDM is presented in Sect. 12.4.4.

12.4.3 Enhanced Pulse-amplitude-modulated Discrete Multitone

Modulation (PAM-DMT)

12.4.3.1 Concept

In PAM-DMT, all subcarriers are modulated with imaginary symbols from an M-

PAM scheme as described in [4, 8]. If the interference over a single PAM-DMT
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frame duration possesses a Hermitian symmetry in the time-domain, then its fre-

quency profile is a real signal. Hence, the interference is completely orthogonal

to the useful information which is encoded in imaginary symbols. A possible ar-

rangement of the multiple PAM-DMT streams in ePAM-DMT is given in Fig.12.19

(d) [24]. The generation process starts at Depth 1 with a PAM-DMT modulator,

where each generated frame is composed of a cyclic prefix, CPBdl
, and two sub-

frames, Adl and Bdl , where d denotes the depth index, and l denotes the frame num-

ber, as shown in Fig. 12.19 (a). The bar notation F denotes that the subframe F is

flipped, F [n] = F [NF −1−n], where NF is the length of F . At Depth 2, the informa-

tion is generated using another PAM-DMT modulator with a smaller OFDM frame

length. The frame length at Depth d is given by: Nd = Nd−1− 2NCP− 2, ∀d ≥ 2,

where N1 = NFFT. The original subframe Adl is combined with the cyclic prefix

CPBdl
to form a modified subframe Ãdl . The modified subframe is flipped and re-

peated in Ãdl . Therefore, the two modified subframes at Depth 2, Ãdl and Ãdl , each

prefixed with a zero sample form a new frame that is similar in length to the previous

depth frames. Moreover, these two modified subframes have a Hermitian symmetry

that allows distortion-free inter-stream interference at lower depths. A cyclic prefix

CPBdl
that is identical to the last NCP samples of each frame is required. Therefore,

frames at Depth 2 need three cyclic prefixes. The first one is intended to guard the

modified frames from ISI at the demodulation process of the first stream. The other

two prefixes are intended to guard the original frames from ISI at the demodulation

process of the second stream. The subsequent frames in Depth 2 are generated in a

similar way to the first frame. The time-domain waveform for the first two frames

at Depth 2 are shown in Fig. 12.19 (b) and (c). Frames at Depth 2 are scaled by

1/
√
2 in order to preserve the overall signal energy at this depth. At Depth 3, frames

are generated in a similar way to Depth 2 frames. The frame length is smaller than

the previous stream frame length and the cyclic prefixes are designed to create three

layers of ISI protection for each of the demodulation processes at the receiver. The

information conveyed in the Depth 3 subframes is repeated four times in a way that

preserves the Hermitian symmetry for each demodulation process at higher depths.

Frames at Depth 2 are scaled by 1/2 in order to preserve the overall signal energy

at this depth. In addition, each of the streams is scaled by a parameter 1/γd to fa-

cilitate the optimization of the allocated power at that stream. The proposed design

requires a maximum of D = 3 depths to achieve the spectral efficiency of DCO-

OFDM, since an arbitrary modulation size M-PAM is employed at each individual

Depth d. At the receiver, the information carried at Depth 1 can be extracted using

a PAM-DMT demodulator, since all of the inter-stream interference caused by the

other streams affects the real component of the frequency subcarriers. Afterwards,

the recovered bits at Depth 1 are remodulated in order to reconstruct the stream-1

information signal, which is then subtracted from the overall received ePAM-DMT

signal. Subsequently, the second half of each frame is removed from the ePAM-

DMT waveform. The length of the removed subframes is N1/2. Therefore the re-

sulted waveform conveys the Depth 2 and Depth 3 information but with a hierarchy

that is similar to Depth 1 and Depth 2 as shown in Fig.12.19 (d). This allows the

demodulation process at higher depths to be performed in a similar way to Depth 1
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Fig. 12.20 The spectral efficiency of eACO-OFDM (ηeACO), ePAM-DMT (ηePAM), and

GREENER-OFDM (ηGO) compared to the spectral efficiency of DCO-OFDM (ηDCO), as a func-

tion of the frame length NFFT and cyclic prefix length NCP. NFFT = N1 for ePAM-DMT.

demodulation. The multiple cyclic prefixes are intended to protect the subframes at

each demodulation process and are arranged to preserve the Hermitian symmetry

required for this technique. The demodulation process continues in a similar way

for all subsequent streams until the information at all depths is recovered.

12.4.3.2 Spectral Efficiency

The spectral efficiency of PAM-DMT at the first depth is equivalent to the spectral

efficiency of DCO-OFDM for the same constellation size and the same frame length.

The spectral efficiency of PAM-DMT at Depth d can be given by:

ηPAM(d) =
log2(Md)(Nd −2)

2d(NFFT + NCP)
bits/s/Hz, (12.55)

where Md and Nd are the constellation size and the OFDM frame length at Depth d,

respectively, and N1 = NFFT. In order to improve the power efficiency, the ePAM-

DMT employsmultiple streams of PAM-DMTwith small constellation sizes. There-

fore, the combination of constellation sizes are required to follow the constraint:

log2(MDCO) = 2
D

∑
d=1

log2(Md)

2d
. (12.56)

The spectral efficiency of ePAM-DMT is given as the sum of the spectral efficiencies

of the individual PAM-DMT streams. It can be written as [24]:

ηePAM(D) =
D

∑
d=1

ηPAM(d)
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=
D

∑
d=1

log2(Md)(NFFT−2−2(NCP+1)(d−1))

2d(NFFT + NCP)
. (12.57)

Since multiple cyclic prefixes are required to compact the ISI effects, the spectral

efficiency of ePAM-DMT cannot match the spectral efficiency of DCO-OFDM ex-

actly. Among all of the possible sets of constellation sizes obtained in this paper, the

worst case scenario is presented in Fig. 12.20. The spectral efficiency ratio is shown

as a function of the OFDM frame and cyclic prefixes lengths. Fig. 12.20 shows that

ηePAM(D) is higher than 90% of ηDCO for all of the presented cyclic prefix lengths

when the frame length NFFT ≥ 512. The spectral efficiency ratio of the ePAM-DMT

to a PAM-DMT scheme with a similar constellation size can be expressed as:

αePAM
η (D,d) =

ηePAM(D)

ηPAM(d)

=
∑D

d́=1
log2(Md́

)(N
d́
−2)/2d́

log2(Md)(NFFT−2)/2
. (12.58)

12.4.3.3 Theoretical Bit-error-rate Analysis

The PAM-DMT waveform follows a truncated Gaussian distribution [8]. Therefore,

the average electrical and optical power of ePAM-DMT are similar to the average

electrical and optical power of GREENER-OFDM given in (12.48) and (12.49),

respectively. Therefore, the increase in the dissipated electrical energy per bit in

ePAM-DMT compared with the electrical energy dissipation per bit in PAM-DMT

stream at Depth d is given by the ratio of (12.52) and (12.58):

αePAM
elec (D,d,γ) =

αP
elec(D,γ)

αePAM
η (D,d)

. (12.59)

A theoretical bound on the BER performance of the ePAM-DMT streams is de-

rived using the same formula for the BER performance used for the previous tech-

niques [16]. The achieved electrical SNR at the receiver should be scaled by a factor

of 1/2 to account for the SNR loss in M-PAM, and by a factor of 1/αePAM
elec (D,d) to

account for the electrical SNR penalty in ePAM-DMT. An additional scaling factor

of 1/2d−1 is required, because half of the frames are removed in the demodulation

process at each depth. Although this could be avoided in AWGN channels, here it

has been considered to expand the versatility of the ePAM-DMT proposed system.

In addition, the corresponding constellation size should be squared since the perfor-

mance of
√

M-PAM is equivalent to the performance of M-QAM. The theoretical

bound on the BER performance of ePAM-DMT can be expressed as [23]:

BERePAM
(D,d,γ)

∼= 2

log2(Md)

(
1− 1

Md

)
×

R

∑
l=1

Q

(
(2l−1)

√
6Eb,elec/No log2(Md)

2dαePAM
elec (D,d)(M2

d −1)

)
,

(12.60)



12 OFDM-based Visible Light Communications 39

where Eb,elec/No is the electrical SNR of real bipolar OFDM, and R =min(2,
√

Md).
Similar to other superposition OFDM techniques, the BER of the higher order

depths is affected by the BER performance of the lower order depths. The average

BER for ePAM-DMT can be derived by considering the spectral efficiency contri-

bution of each depth. The average BER performance can then be expressed as:

BERePAM
∼=

D

∑
d=1




BERePAM
(D,d,γ)

αePAM
η (D,d)


 . (12.61)

The BER performance bound as a function of the optical SNR can be obtained by in-

serting the ratio of (12.49) and (12.48) into (12.60) and (12.61). The performance of

ePAM-DMT is compared to the other superposition OFDM modulation techniques

in Sect. 12.4.4.

12.4.4 Results and Discussion

The performance of the optimum configurations in all of the superposition modu-

lated schemes is compared in this section with the performance of a spectrally equiv-

alent DCO-OFDM in an AWGN channel. The optimal combinations of constellation

sizes and their corresponding scaling factors for GREENER-OFDM, eACO-OFDM,

and ePAM-DMT are obtained using both the theoretical model and Monte Carlo

simulations and presented in Table 12.2. The simulation model is identical to the

model adopted in Sect. 12.3.4. The BER performances of the superposition OFDM

schemes are presented in Fig. 12.21(a) for the electrical SNR and in Fig. 12.21(b)

for the optical SNR. The spectral efficiency for ePAM-DMT is higher than 97%

of the spectral efficiency of DCO-OFDM. The eACO-OFDM/GREENER-OFDM

performances are equivalent for all cases, since the optimal configurations used are

identical. The theoretical BER values are in close agreement with the Monte Carlo

results for all of the presented cases. Both GREENER-OFDM and eACO-OFDM

are more energy efficient than DCO-OFDM in terms of the electrical SNR for all

the presented spectral efficiencies, except at η = 1 bit/s/Hz where the BER per-

formance is approximately equivalent to the BER of DCO-OFDM. As shown in

Fig. 12.21(a), the electrical energy savings for both GREENER-OFDM and eACO-

OFDM starts with 2.83 dB at η = 2 bit/s/Hz to reach 4.35 dB at η = 5 bits/s/Hz.

As shown in Fig. 12.21(b), Both GREENER-OFDM and eACO-OFDM are less en-

ergy efficient than DCO-OFDM at η = 1 bit/s/Hz for the optical SNR. However, at

η = 2 bits/s/Hz, both GREENER-OFDM and eACO-OFDM are more energy effi-

cient than DCO-OFDM with 0.7 dB optical SNR savings. The BER performance of

GREENER-OFDM and eACO-OFDM, as a function of the optical SNR, is approx-

imately equivalent to the BER of DCO-OFDM for spectral efficiency values above

2 bits/s/Hz. The ePAM-DMT is less energy efficient than GREENER-OFDM and

eACO-OFDM at all the presented spectral efficiency values, for both electrical and
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Fig. 12.21 The BER performance of eACO-OFDM versus ePAM-DMT versus GREENER-

OFDM versus DCO-OFDM for different spectral efficiencies, in an AWGN channel as a function

of (a) the electrical SNR and (b) the optical SNR. The value of η is given in bits/s/Hz. The op-

timum DC bias levels for DCO-OFDM at η = {1,2,3,4,5} are estimated through Monte Carlo

simulations at respectively 6 dB, 7.5 dB, 9.5 dB, 11 dB and 13 dB.

optical SNR. This is because of the 3 dB loss at each demodulation process, and be-

cause the optimal configurations for ePAM-DMT are suboptimal as the non-squared

M-QAM BER performance can never be achieved using the
√

M-PAM modulation

scheme. The ePAM-DMT is more energy efficient than DCO-OFDM in terms of the

electrical SNR at spectral efficiency values above 1 bit/s/Hz. When compared with

DCO-OFDM, the electrical energy savings for ePAM-DMT starts with 0.85 dB at

η = 2 bits/s/Hz to reach 2.29 dB at η = 5 bits/s/Hz. In terms of the optical SNR, the

ePAM-DMT is less energy efficient than DCO-OFDM for all of the presented val-

ues. The optical energy loss of ePAM-DMT compared with DCO-OFDM is 3.25 dB

at η = 1; 1.6 dB at η = 2; 1.48 dB at η = 3; 2 dB at η = 3; and 2.29 dB at η = 5

where η is given in bits/s/Hz. Higher optical energy dissipation is a desirable prop-

erty for illumination based VLC applications. However, it is considered as a disad-

vantage for dimmable-based VLC applications.
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Table 12.2 The optimal combination of constellation sizes and scaling factors for enhanced ACO-

OFDM and GREENER-OFDM where Md and γd denote the constellation size and the scaling

factor for the modulation Depth d, respectively.

DCO-OFDM GREENER-OFDM/eACO-OFDM η
MDCO-QAM {M1,M2, ...,MD}-QAM γ [dB] [bit/s/Hz]

2-QAM {2,4}-QAM {2.2,-2.4} 0.5

4-QAM {8,2,4}-QAM {-2.3,5.9,1.4} 1

8-QAM {16,8,4}-QAM {-1.8,1.4,5} 1.5

16-QAM {32,16,16}-QAM {-1.4,1.7,2} 2

32-QAM {64,64,16}-QAM {-0.9,-0.7,5.3} 2.5

64-QAM {128,128,64}-QAM {0,-0.4,2.6} 3

128-QAM {256,256,256}-QAM {0,0,0} 3.5

256-QAM {512,1024,256}-QAM {0.5,-2.2,3.8} 4

512-QAM {2048,1024,256}-QAM {-1.9,1.1,6.8} 4.5

1024-QAM {4096,2048,1024}-QAM {-1.7,1.4,4.3} 5

Table 12.3 The optimal combination of constellation sizes and scaling factors for enhanced PAM-

DMT, where Md and γd denote the constellation size and the scaling factor for the modulation

Depth d, respectively.

DCO-OFDM ePAM-DMT η
MDCO-QAM {M1,M2, ...,MD}-PAM γ [dB] [bit/s/Hz]

2-QAM - - 0.5

4-QAM {2,4}-PAM {5.2,-4} 1

8-QAM {4,4}-PAM {1.1,-1.4} 1.5

16-QAM {8,4}-PAM {-1,2.2} 2

32-QAM {8,8,4}-PAM {0.7,-1.7,1.5} 2.5

64-QAM {16,8,4}-PAM {-1.7,1.3,4.5} 3

128-QAM {32,8,4}-PAM {-3,5.6,8.8} 3.5

256-QAM {32,16,16}-PAM {-0.8,2,-0.5} 4

512-QAM {64,16,16}-PAM {-2.6,5.9,3.2} 4.5

1024-QAM {64,64,16}-PAM {0.2,-2.4,6.3} 5

12.5 Conclusions and Future Directions

A novel modulation approach for the generation of energy efficient unipolar OFDM

signals, termed U-OFDM, has been introduced in this chapter. The scheme offers

significant energy savings in terms of electrical energy consumption and optical

power requirements when compared with the conventional DCO-OFDM. All bene-

fits, however, come at a 50% reduction in the scheme spectral efficiency.When equal

spectral efficiency is assumed, U-OFDM outperforms DCO-OFDM only for rela-

tively small M-QAM constellation sizes. A modified approach, termed eU-OFDM,

has been proposed as a solution to the spectral efficiency reduction problem in U-

OFDM. Using eU-OFDM, the spectral efficiency gap between U-OFDM and DCO-

OFDM is almost closed, and significant power savings are attained. The superpo-

sition concept of eU-OFDM is generalized in GREENER-OFDM, and extended to

other unipolar OFDM techniques in eACO-OFDM and ePAM-DMT.



42 Dobroslav Tsonev, Mohamed Sufyan Islim, and Harald Haas

The problem of spectral efficiency loss has been a long-standing issue in the

inherently unipolar state-of-the-art techniques including ACO-OFDM, PAM-DMT

and the novel U-OFDM. The solutions proposed in this chapter exploits the OFDM

frame structure in a novel way and allows multiple information streams to be trans-

mitted simultaneously. The novel concept effectively introduces a new degree of

freedom in the signal space of U-OFDM, ACO-OFDM and PAM-DMT. For the

first time, the spectral efficiency of DCO-OFDM has been matched by an inherently

unipolar OFDM-based modulation scheme which does not require an increase in the

M-QAM modulation order and still attains manageable implementation complexity

and also significant energy benefits. Future research on this topic should analyse the

front-end devices nonlinearity effects on the system performance.
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