266 research outputs found

    Gaussian Mixture Model-based Quantization of Line Spectral Frequencies for Adaptive Multirate Speech Codec

    Get PDF
    In this paper, we investigate the use of a Gaussian MixtureModel (GMM)-based quantizer for quantization of the Line Spectral Frequencies (LSFs) in the Adaptive Multi-Rate (AMR) speech codec. We estimate the parametric GMM model of the probability density function (pdf) for the prediction error (residual) of mean-removed LSF parameters that are used in the AMR codec for speech spectral envelope representation. The studied GMM-based quantizer is based on transform coding using Karhunen-Loeve transform (KLT) and transform domain scalar quantizers (SQ) individually designed for each Gaussian mixture. We have investigated the applicability of such a quantization scheme in the existing AMR codec by solely replacing the AMR LSF quantization algorithm segment. The main novelty in this paper lies in applying and adapting the entropy constrained (EC) coding for fixed-rate scalar quantization of transformed residuals thereby allowing for better adaptation to the local statistics of the source. We study and evaluate the compression efficiency, computational complexity and memory requirements of the proposed algorithm. Experimental results show that the GMM-based EC quantizer provides better rate/distortion performance than the quantization schemes used in the referent AMR codec by saving up to 7.32 bits/frame at much lower rate-independent computational complexity and memory requirements

    On the Comparisons of Decorrelation Approaches for Non-Gaussian Neutral Vector Variables

    Get PDF

    On the Comparisons of Decorrelation Approaches for Non-Gaussian Neutral Vector Variables

    Get PDF
    As a typical non-Gaussian vector variable, a neutral vector variable contains nonnegative elements only, and its l₁-norm equals one. In addition, its neutral properties make it significantly different from the commonly studied vector variables (e.g., the Gaussian vector variables). Due to the aforementioned properties, the conventionally applied linear transformation approaches [e.g., principal component analysis (PCA) and independent component analysis (ICA)] are not suitable for neutral vector variables, as PCA cannot transform a neutral vector variable, which is highly negatively correlated, into a set of mutually independent scalar variables and ICA cannot preserve the bounded property after transformation. In recent work, we proposed an efficient nonlinear transformation approach, i.e., the parallel nonlinear transformation (PNT), for decorrelating neutral vector variables. In this article, we extensively compare PNT with PCA and ICA through both theoretical analysis and experimental evaluations. The results of our investigations demonstrate the superiority of PNT for decorrelating the neutral vector variables

    Audio Processing and Loudness Estimation Algorithms with iOS Simulations

    Get PDF
    abstract: The processing power and storage capacity of portable devices have improved considerably over the past decade. This has motivated the implementation of sophisticated audio and other signal processing algorithms on such mobile devices. Of particular interest in this thesis is audio/speech processing based on perceptual criteria. Specifically, estimation of parameters from human auditory models, such as auditory patterns and loudness, involves computationally intensive operations which can strain device resources. Hence, strategies for implementing computationally efficient human auditory models for loudness estimation have been studied in this thesis. Existing algorithms for reducing computations in auditory pattern and loudness estimation have been examined and improved algorithms have been proposed to overcome limitations of these methods. In addition, real-time applications such as perceptual loudness estimation and loudness equalization using auditory models have also been implemented. A software implementation of loudness estimation on iOS devices is also reported in this thesis. In addition to the loudness estimation algorithms and software, in this thesis project we also created new illustrations of speech and audio processing concepts for research and education. As a result, a new suite of speech/audio DSP functions was developed and integrated as part of the award-winning educational iOS App 'iJDSP." These functions are described in detail in this thesis. Several enhancements in the architecture of the application have also been introduced for providing the supporting framework for speech/audio processing. Frame-by-frame processing and visualization functionalities have been developed to facilitate speech/audio processing. In addition, facilities for easy sound recording, processing and audio rendering have also been developed to provide students, practitioners and researchers with an enriched DSP simulation tool. Simulations and assessments have been also developed for use in classes and training of practitioners and students.Dissertation/ThesisM.S. Electrical Engineering 201

    Speech spectrum non-stationarity detection based on line spectrum frequencies and related applications

    Get PDF
    Ankara : Department of Electrical and Electronics Engineering and The Institute of Engineering and Sciences of Bilkent University, 1998.Thesis (Master's) -- Bilkent University, 1998.Includes bibliographical references leaves 124-132In this thesis, two new speech variation measures for speech spectrum nonstationarity detection are proposed. These measures are based on the Line Spectrum Frequencies (LSF) and the spectral values at the LSF locations. They are formulated to be subjectively meaningful, mathematically tractable, and also have low computational complexity property. In order to demonstrate the usefulness of the non-stationarity detector, two applications are presented: The first application is an implicit speech segmentation system which detects non-stationary regions in speech signal and obtains the boundaries of the speech segments. The other application is a Variable Bit-Rate Mixed Excitation Linear Predictive (VBR-MELP) vocoder utilizing a novel voice activity detector to detect silent regions in the speech. This voice activity detector is designed to be robust to non-stationary background noise and provides efficient coding of silent sections and unvoiced utterances to decrease the bit-rate. Simulation results are also presented.Ertan, Ali ErdemM.S

    Noise-Robust Voice Conversion

    Get PDF
    A persistent challenge in speech processing is the presence of noise that reduces the quality of speech signals. Whether natural speech is used as input or speech is the desirable output to be synthesized, noise degrades the performance of these systems and causes output speech to be unnatural. Speech enhancement deals with such a problem, typically seeking to improve the input speech or post-processes the (re)synthesized speech. An intriguing complement to post-processing speech signals is voice conversion, in which speech by one person (source speaker) is made to sound as if spoken by a different person (target speaker). Traditionally, the majority of speech enhancement and voice conversion methods rely on parametric modeling of speech. A promising complement to parametric models is an inventory-based approach, which is the focus of this work. In inventory-based speech systems, one records an inventory of clean speech signals as a reference. Noisy speech (in the case of enhancement) or target speech (in the case of conversion) can then be replaced by the best-matching clean speech in the inventory, which is found via a correlation search method. Such an approach has the potential to alleviate intelligibility and unnaturalness issues often encountered by parametric modeling speech processing systems. This work investigates and compares inventory-based speech enhancement methods with conventional ones. In addition, the inventory search method is applied to estimate source speaker characteristics for voice conversion in noisy environments. Two noisy-environment voice conversion systems were constructed for a comparative study: a direct voice conversion system and an inventory-based voice conversion system, both with limited noise filtering at the front end. Results from this work suggest that the inventory method offers encouraging improvements over the direct conversion method

    Linear predictive modelling of speech : constraints and line spectrum pair decomposition

    Get PDF
    In an exploration of the spectral modelling of speech, this thesis presents theory and applications of constrained linear predictive (LP) models. Spectral models are essential in many applications of speech technology, such as speech coding, synthesis and recognition. At present, the prevailing approach in speech spectral modelling is linear prediction. In speech coding, spectral models obtained by LP are typically quantised using a polynomial transform called the Line Spectrum Pair (LSP) decomposition. An inherent drawback of conventional LP is its inability to include speech specific a priori information in the modelling process. This thesis, in contrast, presents different constraints applied to LP models, which are then shown to have relevant properties with respect to root loci of the model in its all-pole form. Namely, we show that LSP polynomials correspond to time domain constraints that force the roots of the model to the unit circle. Furthermore, this result is used in the development of advanced spectral models of speech that are represented by stable all-pole filters. Moreover, the theoretical results also include a generic framework for constrained linear predictive models in matrix notation. For these models, we derive sufficient criteria for stability of their all-pole form. Such models can be used to include a priori information in the generation of any application specific, linear predictive model. As a side result, we present a matrix decomposition rule for Toeplitz and Hankel matrices.reviewe
    corecore