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SPEECH SPECTRUM NON-STATIONARITY DETECTION 
BASED ON LINE SPECTRUM FREQUENCIES AND 

RELATED APPLICATIONS

Ali Erdeni ERTAN
M.S. in Electrical and Electronics Engineering 

Supervisor: A. Enis Çetin, Ph. D 
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In this thesis, two new speech variation measures for speech spectrum non- 
stationarity detection are proposed. These measures are based on the Line 
Spectrum Frequencies (LSF) and the spectral values at the LSF locations. 
They are formulated to be subjectively meaningful, mathematically tractable, 
and also have low computational complexity property. In order to demonstrate 
the usefulness of the non-stationarity detector, two applications are presented: 
The first application is an implicit speech segmentation system which detects 
non-stationary regions in speech signal and obtains the boundaries of the speech 
segments. The other application is a Variable Bit-Rate Mixed Excitation Lin
ear Predictive (VBR-MELP) vocoder utilizing a novel voice activity detector 
to detect silent regions in the speech. This voice activity detector is designed 
to be robust to non-stationary background noise and provides efficient coding 
of silent sections and unvoiced utterances to decrease the bit-rate. Simulation 
results are also presented.

Keywords: Speech variation measure, spectrum non-stationarity detection, 
formant estimation. Line Spectrum Frequencies (LSF), speech segmentation, 
Mixed Excitation Linear Predictive coding (MELP), variable bit-rate vocoder, 
voice activity detector.
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ÖZET

ÇİZGİ İZGE SIKLIKLARININ TEMEL ALINMASI İLE 
KONUŞMA İZGESİNDEKİ DURAĞANSIZLIĞIN SEZİMİ VE

İLGİLİ UYGULAMALAR

Ali Erdem ERTAN
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Prof. Dr. A. Enis Çetin 
Ekim 1998

Bu tezde, konuşma izgesindeki durağansızlıklann sezimi için iki yeni konuşma 
değişgenlik ölçüsü önerilmiştir. Bu ölçüler yaratılırken Çizgi Izge Sıklıkları 
(ÇİS) ve ÇIS konumlarındaki izgesel değerler taban alınmıştır. Önerilen 
ölçüler öznel olarak anlamlı ve düşük hesaplama karmaşıklığı olacak ve matem
atiksel olarak izlenebilecek şekilde formüle edilmişlerdir. Durağansızlık sez- 
imleyicisinin yararlılığını göstermek için iki uygulama sunulmuştur: Birinci 
uygulama, konuşma sinyalindeki durağansız bölgeleri bulan ve bu bölgelerde 
bulunan konuşma parçalarının sınırlarını sezimleyen bir kesin konuşma 
bölütleyicisidir. Öteki uygulama ise konuşmadaki sessiz bölgeleri sezimleyen 
yeni bir konuşma faaliyet sezimcisini kullanan Değişken İkil Hızlı-Karışık 
Tahrikli Doğrusal Öngörülü (DIH-KTDÖ) kodlama ses kodlayıcısıdır. Bu 
ses faaliyet kestirimcisi, durağansız arka plan gürültüsüne dayanıklı olacak 
şekilde tasarlanmıştır ve ikil-hızın düşürülmesi için sessiz bölgelerin ve sessiz 
harflerin verimli kodlanmasına olanak sağlamaktadır. Test sonuçları da tezde 
sunulmuştur.

Anahtar Kelimeler: Konuşma değişgenlik ölçüsü, izgideki durağansızlıklann 
sezimi, formant kestirimi. Çizgi Izge Sıklıkları (ÇIS), konuşma bölütleme. 
Karışık Tahrikli Doğrusal Öngörülü (KTDÖ) kodlama, değişken ikil-hızh ses 
kodlayıcısı, ses faaliyet sezimi.
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Chapter 1

Introduction

Communication is defined as the imparting or interchange of thoughts, opin
ions, or information by speech, writing, or signs in Webster Dictionary. Every 
living organism which can move likes to communicate with its own race and 
its living environment. Even bacteria, a one celled organism, communicate 
with each other to exchange DNAs to gain more immunity for the changing 
environment conditions. As the most complex and developed organism on the 
earth, human race also enjoys to communicate each other to share information 
and tell their emotions.

For centuries, communication methods of humans are getting complicated 
starting from body language and simple sounds to highly structured spoken and 
written languages, consist of syntactic, semantic and linguistic rules. Among 
these methods, speech is the most used one in the daily life of a human. Hu
mans use their articulatory and auditory systems to generate and perceive 
speech. The rules for this communication method is described by language. 
Speaker produces different sounds and concatenates them to generate mean
ingful words. On the other side, the listener receives generated sound by her/his 
auditory system and this incoming signal is processed within brain to extract 
the meaning of this signal.



The advances in the digital signal processing area make speech also a seri
ous communication media between human and machine. As a result, speech 
becomes a central component in digital communication. For several decades, 
considerable research focused on several areas of speech processing. These areas 
can be summarized as compression, recognition, enhancement and synthesis [1].

Speech segmentation is an important first step in coding, recognition and 
synthesis. The primary purpose is to segment continuous speech signal into 
phonetic units [2]. The simplest way is to divide the speech for fixed, non
overlapping time intervals. This type of segmentation is mostly used in 
variable-rate speech compression algorithms [3]. In continuous speech recog
nition, end-points of the utterances within the continuous speech is extracted 
first [4]. After this step, various segmentation algorithms may be applied to 
the signal to obtain the boundaries of the segments prior to the recognition 
algorithms.

In this thesis we propose new speech spectrum variation measures, which 
are similar to speech distortion measures. They are used to detect the amount 
of change in the speech spectrum according to the variation of selected param
eter set. Since our purpose is to detect the speech spectrum variations among 
analyzed frames rather than quantization effects, we use 'speech variation mea
sure' instead of 'distortion measure'.

Segmentation algorithms can be classified into two major groups: Implicit 
segmentation, in which no prior information is used about signal [5-8], and 
explicit information, in which phonetic transcription is also available [9-13]. 
Success of the implicit segmentation algorithms depends primarily on the se
lection of the parameter set and the speech variation measure. In literature, 
following parameters are reported to be used:

• Modeling error of linear prediction filter [6],

• Linear Prediction Coefficients (LPC)-smoothed log amplitude spectra [2],

• parametric filtering [5],

• energies in subbands [8],

• auditory model [12], and



• Line Spectrum Frequencies (LSFs) [14].

These parameters are used in various speech variation measures, whose values 
are generally compared with a threshold to detect the non-stationcirity between 
consecutive frames or to obtain exact change point. In [15], it is stated that in 
order to be useful a distortion measure, following conditions must be satisfied:

1. It must be subjectively meaningful in the sense that small and large 
distortion corresponds to good and bad subjective quality, respectively.

2. It must be tractable in the sense that it is amenable to mathematical 
analysis and leads to practical design techniques.

•3. It must be computable in the sense that the actual distortions resulting 
in a real system can be efficiently computed.

The most commonly used distortion measure is the traditional mean squared 
error. However, in speech processing, this distortion measure does not provide 
any subjective meaning. Therefore, in speech processing algorithms, usually 
Itakura-Saito distortion measure (1.1), Itakura’s likelihood ratio (1.2) or L2 
distance of log spectrum are used (1.3). Excellent review of distortion measures 
for speech processing can be found in [15].

• Itakura-Saito distortion measure:

' .?i(to)
S'ziw)

/ 7T 

-7T
_  Incr _  1C i \ ^->2 (to)

dw ( 1.1)

where Si{w) and S2{w) are the estimated spectral density functions of 
the two speech frames.

• Itakura likelihood ratio:
Di = ajRi ai

ajRiU2
( 1.2)

where Oi, Ri and C2 are LPC coefficient vector of the reference frame, 
autocorrelation matrix of the reference frame and LPC coefficients vector 
of the comparison frame, respectively.



L2 distance of log spectrum or spectral distortion:

Dll = I  I log .S'i('w) -  log S2{w) \ ^
J — 7T

d'W (1.3)

where Si{w) and S-iiw) are the estimated spectral density functions of 
the two speech frames.

Besides these well-known measures, following measures are reported to work 
successfully in literature:

• Brantd’s generalized likelihood ratio test [6],

• divergence test [6],

• the pulse method: A modified divergence test with a priori unvoiced
voiced detection [6],

• the normalized correlation between selected parameters of two frames [2],

• time-correlation based speech variation measures [5], and

• weighted Euclidean distance measure [14].

In Erkeleris work [16], it is proved that spectral distortion can be approximated 
by weighted square distance of the coefficients of LPC filter and derived pa
rameters, if cubic and higher terms of Taylor series expansion is neglected. The 
weighting matrix is equal to the inverse of the theoretical covariance matrix 
of the coefficients. Furthermore, LSFs are found to be uncorrelated, and only 
main diagonal entries of the weighting matrix are non-zero. Therefore, with the 
usage of LSFs, this equation is also reduced to a weighted Euclidean distance 
measure. Due to this fact, it is possible to derive LSF based speech variation 
measures which not only provide a meaningful comparison of the spectrum of 
two speech frames in a low computational complexity way, but subjectively 
meaningful as well.

The main contribution of this thesis is the new speech variation measures 
based on the estimated peaks of the spectrum from LSF locations, angular dif
ference between consecutive LSFs, and usage of these measures in the detection



of spectrum non-stationarity between consecutive frames. Both of these mea
sures show high correlation between speech spectrum and LSF displacement. 
These measures are formulated to be subjectively meaningful, mathematically 
tractable and have low computational complexity. In order to demonstrate the 
usefulness of the non-stationarity detector, two applications using this detec
tor are presented: A speech segmentation system and a variable rate speech 
vocoder.

In Chapter 2, a novel spectrum non-stationarity detection algorithm based 
on the new speech variation measures is presented. In this algorithm, peaks of 
the spectrum are estimated from LSFs by a two-step algorithm, and these esti
mated peaks and the angular difference between consecutive LSFs are used to 
form new perceptually meaningful speech variation measures. Non-stationarity 
detection of speech spectrum is obtained by comparing the computed values of 
these measures with thresholds, which may be adjusted for different algorithms.

Chapter 3 and Chapter 4 presents applications using this non-stationarity 
detector: A frame based speech segmentation algorithm is presented in Chapter
3. This algorithm is of implicit type and only finds the non-stationary regions 
in the speech signal.

In Chapter 4, a Variable Bit-Rate Mixed Excitation Linear Predictive Cod
ing (VBR-MELP) system is described. This new coder is based on federal 
standard fixed-rate MELP coder [17]. In order to reduce bit-rate, unvoiced 
frames are encoded with fewer bits, sufficient to synthesize these sections and 
parameters for the frames including only silence or background noise are not 
transmitted. Silent parts and background noise sections are detected by a novel 
voice activity detector (VAD) which has non-stationary noise immunity.

Conclusions and discussions are given in Chapter 5.

In following sections, the theoretical background information including vo
cal tract modeling, linear prediction, modeling of human speech production 
system are presented. Also, detailed information about Line Spectrum Fre
quencies (LSFs) is given.



1.1 Linear M odeling of Vocal Tract

In this section, description of linear modeling of the vocal tract is presented and 
parameters, recjuired for this model, is defined. The model should be math
ematically tractable, while imitating the actual system as much as possible. 
This task can be achieved via following assumptions:

1. The effects of nasal tract can be ignored.

2. The vocal tract can be assumed to consist of N interconnected sections 
where each individual section is of uniform cross-sectional area.

3. The transverse dimension of each section is small enough compared with a 
wavelength, so that the sound propagation through an individual section 
can be treated as a plane wave.

4. The internal losses due to wall vibration, viscosity and heat conduction 
are negligible.

5. A linear, time varying acoustic tube model of the vocal tract, uncoupled 
from the glottis can be constructed.

A typical example for this modeling can be seen in Figure 1.1.

1 2 3 4 N-1 N

Glottis A,(t)
A4(t)

*-3 L, N̂■1

Figure 1.1: Simplified interconnected acoutic tube modeling.

In digital modeling of speech, length of every tube is assumed to be equal.
Also r  is defined as the required time for traveling of a wave from one junction to
another. If the system is excited with an impulse, it propagates down the tubes
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being partially reflected and partially propagated at the junctions. The soonest 
that the impulse can reach output is N t seconds. The successive impulses due 
to the reflections can reach to the output at multiples of 2r seconds later. As 
a result, impulse response of the system can be written as:

h{t) = aoS{t — N t ) + ^  cxk5{t — N t — 2A;t )
k=i

(1.4)

and the system function is:

H{.s) =
A;=0

(1-5)

The term e is pure time delay. Furthermore, the resonances of the system 
in Figure 1.2 is defined as follows:

— s‘2kr where h{t) =  h{t +  N t )
k=0

and
H{il) =

k=0

( 1 .6)

( 1 . 7 )

uJt) ujt)

Figure 1.2: Simplified system.

Note that H{Cl) is periodic with resembling the frequency response of a 
discrete time system like in Figure 1.3. If ua{t) is bandlimited with we can 
sample it with period 2r  and filter it with a digital filter whose impulse response 
is h{n) = an,n > 0 and obtain ui,{n), from which ui{t) can be reconstructed 
with an appropriate filter. Notice that, delay of N t seconds corresponds to a 
shift of Y samples.

ujn]

Figure 1.3: Discrete-time equivalent of the system.



The system function, corresponding to A(n), is

-k
·̂=o

This transfer function can also be written in this form:

Ui,{z)

( 1.8)

H(z)  =
U a(z)

(1.9)

In order to make derivations for the transfer function, first, consider a single 
stage as shown in Figure 1.4 to find chain parameter representation of a 2-port 
network:

U,fiz) O

u;(z) CH o  U, -̂(z)

Figure 1.4: Single stage of transfer system. 

i^ i .(^ )  = (i + r , ) z - ' i ^ u * ( z ) ^ n u ; ^ , ( z )

u ; ( z )  =

where

- T k Z  ^U^{z) + { \ - r k ) z
r l / 2  , . , ^ 1 / 2

1 +rfc  ̂ l + r k  ^
(1.10)

(1.11)

_  Ak-\.\ — Ak 
Ak-^i + Ak

(1.12)

and Ak is the cross-sectional area of the junction.

The parameter, rk·, used in modeling is called reflection coefficients and can 
be used as a representation of the vocal tract. Furthermore, they are more 
suitable for quantization purposes, since their values are bounded with —1 and 
1 for non-negative cross-sectional areas.
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The chain matrix, Qî  and (4 is defined as:

Qk =

1̂/2
1+r/c

—Lk̂ ' - 1/2

1+̂ 1;

1+̂A; 
.-1/2 
1+̂A: -J

(1.13)

Ok =
o i M

U k{^)

SO (1.10) and (1.11) can be expressed in matrix form:

Ü, = Qk ■ Ok^x

(1.14)

(1.1.5)

To eliminate these half sample delays, a small modification can be performed on 
Figure 1.4. With an additional half sample delay at end of each stage, the half 
sample delay in the lower branch can be moved to upper branch to eliminate 
the usage of half sample delays. Result of the modification is illustrated in 
Figure 1..5:

U,dz) O

U,-(z) CH

>0

O U,̂ ,-(z)

Figure 1.5: Modified single stage of transfer system.

Q'k =
_£ _l+rk 1+r;;;
-rh 1

(1.16)
L 1+rfc 1+rfc J

Note that, Q'ĵ  = z^l^Qk- Apart from the delay term, Q'k and Qk are equal, 
completing the discussion on the half-sample delays. Now, if N stages are 
considered like in Figure 1.6:

N

U\ = Qi ■ Q i - ■ ■ Qn  · = Y[^Qk' Un +i
k=l

(1.17)



Figure 1.6: Interconnected N stages.

The equations for the boundaries are as follows:

1 + 7’g i + ra
2 -2rc

Ug{z) .1 + 7-g 1 + ra- U,

and

f̂ 7V+l
U l { z )

0

If we write transfer function, we obtain final formulation as follows:

2 -2r,
Ul (z) l l + 7 ' G İ + r o .

1 ^ 1
I l Q i
k=l _ 0 _ H(z)

where

Qk — ^
1 -rk

1+rA; l+rk
-1 , - l

(1.18)

(1.19)

( 1.20)

( 1.21)

L l+Tk l+rk

The elements of Qk are either constants or z~^, implying that complete matrix 
product will reduce to a polynomial in z~^ of order N. So transfer function can 
be written as:

0 . 5 - ( l + r c ) - n i L i ( l + r i ) - z W 2H{z) =
D(z)

( 1.22)

where

D{z) =  [1 -  ra\
1 -7-1

—I'lZ  ̂ 2: ^

—I'N

-r^z  ̂ z ^

1

0

or
N

D{z) ^  I ~ Y ^ a k  · Z
kz=l

-k

(1.23)

(1.24)
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Neglecting the delay term, transfer function can be expressed as:

GH{z) = (1.25)

As a result, an all-pole model of vocal tract where the poles of H[z) are 
the resonance frequencies, so called formants, of the acoustic tube system is 
obtained.

1.2 Linear Prediction

The linear prediction estimate .s(n) of ¿(n) from previous samples of .s(n) is 
defined as:

s{n) = ^  ap{k)s{n -  k) (1.26)
A;=l

where oip{k) are the weights.

The error signal, e(n), between the original and the predicted signal is 
defined as: p

e(n) = .s(n) — .s(n) = ,s(n) — ^  ap{k)s{n — k) (1-27)
k=l

Now the problem is to select the coefficients, ap(k), so that an error criterion 
is minimized. Generally, this error criterion is chosen to be the total squared 
error:

£p =  ^  e^(n)
n = 0

oo

= I ]  (•5(’̂ ) -  -5(«))’ =  •s(n) -  ^  ap(k)s(n -  k)

(1.28)

(1.29)
n=0 k=l

To find ttp(A;)’s, which minimize £p, the derivative of €p with respect to cvp(j) 
must be equated to 0 and resulting equations must be solved:

'tt = X] - 2.s(n -  j)  1 .s(n) -  ^  ap{k)s{n -  A:)) =  0 for j = 1 to p
dapi j ) n = 0 k=l

( l . M )
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so:

J2s{n)s{n -  j)  = Y ^ 0Cp{k)^s{n -  k).s{n -  j )  for j = 1 to p (1.31)
n = 0  k = l n= 0

If we define u{k, j )  as;

=  Z ]  -  i )
n=bi

(132)

and set 6/ and to zero and infinity, respectively, the final equation reduces

= Z  for j = 1 to p (1-33)
A;=l

The steps up to this point is the same for all modeling methods. The 
assumptions on the boundaries for the summation term in (1.32) make the 
difference for the finite sample modeling methods.

1.2.1 Autocorrelation M ethod

In this method, the signal is first windowed (generally with a Hamming win
dow) and then it is used in the calculations above. Since boundaries, 6/ and 
6/i, are set to 0 and oo, respectively, uj{k,j) reduces to u>{\k — i|)· After this 
modification, (1.33) reduces to:

^U) = Z  0Cp{k)u{\k -  il) for j = 1 to p
k=l

(1.34)

Now, we have p equations and p unknowns, hence o;p(A;)’s can be found by 
solving Equations (1-34) which can also be written in matrix form:

o;(0) a;(l)

u;(l) iu(0)

u{p) u{p -  1)

u{p)  

u{p -  1)

u (0)

1 Sp

Q(p(l) 0

, «p(p) . 0

(1.35)
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or
Î2 · a = £p · Up (i. ;36)

where a = [1, o:p(l),. . . ,  ap(p)]^ and Up = [1, 0,. 

The a vector can be found easily by:

.,0] T

a = £p · Î2  ̂ · Up (1.37)

Inverse of fi can be obtained by Gaussian elimination method. Since Î7 is a 
Toeplitz matrix, a recursive formulation, called Levinson-Durbin recursion, can 
also be used to obtain a. The complexity of this algorithm is 0{n^), compared 
to 0{n^) of Gaussian elimination. The whole algorithm is reviewed in [18]. In 
addition to o;p(A;)’s, this recursion also produces reflection coefficients, r̂ ,., and 
modeling error, Sp, as side products. Note that the gain parameter in the all
pole formulation in 11.2.5) is equal to the square root of Sp. As a final remark, 
the filter produced by this method is always stable [18].

1.2.2 Covariance M ethod

In covariance method, there is no assumptions made on the sequence. Lower 
boundary, hi, and upper boundary, b ,̂ is set to p and the last element of the 
sequence, N, in (1.32), respectively. The matrix form of these equations is as 
follows:

w ( l , l )  ............. ^ ( p , i )

LÜ( l .p )  ............. w(p,p)

o;(0, 1)

_ Oik{p) _

(1.38)

The disadvantage of this method is that the positive definiteness of this 
matrix is not guaranteed, hence the filter, obtained by this method, may not 
be stable. Since matrix is not Toeplitz, these equations can not be solved by 
Levinson-Durbin equation. As there is no assumption on the input, the energy
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of the residual signal is smaller than the one extracted by autocorrelation 
method. Therefore, it provides better modeling of the input signal, especially 
for deterministic sequences.

1.3 M odeling of Human Speech Production  

System

As discussed in Section 1.1, the human vocal tract can be modeled by an all
pole filter. Furthermore, human speech production system uses two types of 
excitation to produce desired sounds:

1. Vocal folds make quasi-periodic movements to produce an air flow from 
lungs through glottis, which has an impulsive nature. This type of exci
tation can be modeled with impulse train whose periods are same as the 
period of this quasi-periodic movement.

2. Vocal folds are completely open to produce noise like sounds. This type 
of excitation can be modeled with uniform distributed white noise.

The block diagram of this basic model can be seen in Figure 1.7. In this 
model, the human vocal tract is modeled with an all-pole filter as discussed 
in Section 1.2. This filter is excited with either impulse train or white noise 
for voiced and unvoiced speech, respectively. Finally, a gain term is applied 
to the synthesized speech to amplify the signal to a desired level. Generally, 
it is assumed that statistical characteristics of speech signal do not vary for 
20-30 ms periods. Hence, frames, whose lengths are between 20 to 30 ms, can 
be used to obtain synthetic speech. Most of the speech processing algorithms, 
mostly speech coders, use these facts to obtain synthetic speech with acceptable 
quality: Encoder only extracts the state of the voiced/unvoiced switch, pitch 
period for voiced speech, coefficients of LPC parameters and gain of the input 
speech and transmits these parameters with efficient quantization methods. 
The decoder uses these parameters to synthesize the desired speech signal.
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Figure 1.7: LPC vocoder synthe.sizer.

The vocal tract filter coefficients are not generally directly quantized: Dy
namic range of these coefficients are high and quantization error may yield to 
an unstable filter. To solve these problems, new sets of parameters derived 
from LPC filter coefficients are used. These parameters can be summarized as 
follows:

1. Reflection coefficients,

2. log-area ratio parameters,

3. inverse sine transform of reflection coefficients, and

4. Line Spectrum Frequencies (LSF).

As stated before, reflection coefficients are the side products of the 
Levinson-Durbin recursion and they are used in the lattice form of the same 
all-pole filter. For the stable filters, these coefficients are bounded by 1 and —1, 
hence they are more suitable for quantization than LPC coefficients. Further
more, it is possible to obtain reflection coefficients directly with Schur recursion 
without computing direct form of the LPC filter. Llsage of this recursion en
ables the computation of these coefficients with fixed point arithmetic without 
considering loosing the stability of the filter.

Although the reflection coefficients are bounded by —1 and 1, the spectrum 
becomes very sensitive to quantization errors when the coefficients are close to 
the boundaries. To overcome this problem, two new sets of coefficients are in
troduced. Both of these transformations warp the scale of parameters and then
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uniform quantization of these parameters becomes non-uniform quantization 
for reflection coefficients.

Log-area ratio (LAR) is defined as,

LARi = log 1 + Ti
1 -  Ti

and the inverse sine transform is defined as follows:

Qi =  arcsin(ri)

(1.39)

(1.40)

where r; is the reflection coefficient.

Both of these coefficients has good performance in quantization and hence 
they are widely used in vocoders. And also note that second one is also bounded 
between — |  and j .

Besides these parameters, another type of parameters, called line spectrum 
frequencies, are used to quantize speech spectrum efficiently. These parame
ters have some unique features and have excellent performance in quantization 
purpose.

1.3.1 Line Spectrum  Frequencies (LSF)

The linear prediction filter coefficients can be represented by Line Spectrum 
Frequencies (LSFs). This parameter set is first introduced by Itakura [19]. 
For a minimum phase, order polynomial, Am(^) = 1 + aiz~^ fi- 022“  ̂ -|-
---- one can construct two (m -|-1)®‘ order LSF polynomials, Fm+i(z)
and Qm+i(^), by setting the (m -|- 1)·** reflection coefficient to 1 and —1 in 
Levinson-Durbin algorithm:

and

= A„ (z )  +

Q„+i(z) = A „ (z )  -  z-f ’" * ‘>A„(z-‘ )

(1.41)

(1.42)

This is equivalent to setting the vocal tract acoustic tube model completely 
closed or completely open at the (rn -|-1)®‘ stage. It is clear that and
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Qm+i{z) are symmetric and anti-symmetric polynomials, respectively. There 
are three important properties of these two polynomials:

1. All of the zeros of the LSF polynomials are on the unit circle and can be 
represented by only their angles,

2. the zeros of symmetric and anti-symmetric LSF polynomials are inter
laced, and

3. the reconstructed linear prediction all-pole filter maintains its minimum 
phase property, if the first two properties are preserved during quantiza
tion.

Since these parameters can be represented by only angles, they are called 
line spectrum frequencies. Therefore the LSFs are also bounded between 0 and 
27t, similar to reflection coefficients.

Besides these properties, in recent studies [16], it is found that LSFs are 
uncorrelated. This property of LSFs makes them a suitable parameter for 
quantization. It is also observed that LSFs are closely related to the speech 
formants as shown in Figure 1.8 and hence they provide a spectrally meaningful 
representation of the linear prediction filter [20]. Furthermore, it is observed 
that the spectral changes due to the perturbation of any LSF frequency is 
highly localized around the specific frequency [21].

Due to above reasons, the LSFs are widely used in speech coding [22] and 
speech recognition as speech feature parameters [23]. For example, it is possi
ble to quantize coefficients of LSFs for lO*̂*· order LPC filter by 21 bits for a 
speech frame of duration 20 ms without introducing any audible distortion [24]. 
Various quantization methods can be found in [25] for a review of scalar quan
tization methods, [26-30] for various vector quantizcition methods and [31-37] 
for diflferent interframe quantization methods.

Several methods for the computation of LSFs are reported: The simplest 
way to compute LSFs are obtaining the root locations of these two polynomials 
by complex arithmetic. However, this method is obviously very complex and 
due to the iterative nature of the complex root finding algorithms, the time
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Power Spectrum of a voiced phoneme

Figure 1.8: LP power spectrum and the associated LSFs for voiced and unvoiced 
speech.

required for the evaluation of this algorithm can not be estimated [38]. To 
overcome this problem, several methods are proposed: Soong and Juang have
adopted a discrete cosine transform to evaluate cosine functions on a fine grid

/

[39]. Furthermore, an all-pass ratio filter can also be used to extract locations of 
LSFs [38]. However, all of these methods require large number of computation 
of trigonometric functions. Therefore, Kabal and Ramachandran [40] presented 
a backward recursive formulation to determine the values of the cosine function 
on a fine grid by Chebyshev’s expansion and bisection method. Wu and Chen 
reported a similar method which uses a modified Newton-Raphson technique 
for faster convergence [41]. These latter two methods are widely used in real
time speech coding algorithms. Besides these methods. Goalie and Saoudi 
utilizes Split Levinson algorithm to compute LSFs independently [42]. Finally, 
an LMS based adaptive algorithm, applied in sample-by-sample basis, to find 
LSFs are reported by Cheetham [43].
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C hapter 2

Spectrum  N on-Stationarity  

D etection  A lgorithm  Based on  

Line Spectrum  Frequencies

One of the well-known properties of Line Spectrum Frequencies (LSFs) is that 
their locations are closely related with the peaks of the speech spectrum: Two 
or three consecutive LSFs are generally clustered to represent a peak, also 
called formant frequency, in the spectrum. As the formant frequencies change 
the LSF locations also change. By taking advantage of this fact, LSFs can be 
used to tract the changes in spectrum. We introduce two definitions which we 
use in the rest of this chapter:

1. The area between two consecutive LSFs is defined as an LSF region.

2. The difference between two consecutive LSFs is defined as the bandwidth 
of that LSF region.

The displacement of the LSFs usually gives a clue about the formation of the 
spectrum [25]: If the bandwidth of an LSF region is higher than its neighboring
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LSF regions, usually a valley is present in the spectrum at this LSF region. 
Similarly, if the bandwidth of an LSF region is smaller than that of previous 
neighboring region and higher than that of next neighboring region, the energy 
of the spectrum is said to be increasing by increasing frequency. Besides, if the 
bandwidths of two consecutive LSF regions are almost the same, usually three 
LSFs come together to form a peak between these three LSFs. Coetzee and 
Barnwell [44] used the above relations to make a speech quality measurement 
algorithm based on LSFs.

However, the generalization described above may not be true in all cases. 
Sometimes formants become much closer to each other, and two consecutive 
LSF regions may both contain peaks, or sometimes an LSF region whose band
width is smaller than its neighboring regions may not contain a peak due to 
its wide bandwidth.

In addition to the bandwidth of the LSF regions, the spectral values at 
the LSF locations, extracted by evaluating prediction filter on the unit circle 
at the LSF locations, can be used to characterize the spectrum formation: If 
the energy of an LSF is larger than its neighboring LSFs, a peak is said to 
be present in the neighborhood of that LSF. In other words, it is easier to 
characterize the region by using both the difference between LSF locations and 
corresponding spectrum values.

In this chapter, a new and simple spectrum non-stationarity detector based 
on LSF related speech variation measures is introduced. In Section 2.1, an 
algorithm which estimates peaks of the spectrum, or the so-called formant fre
quencies for voiced speech, is presented. This section is divided into two parts: 
The first part describes the algorithm which makes the decision whether an LSF 
region contains a peak or not, and the second part describes the algorithm used 
to estimate the location of the peaks precisely. The non-stationarity detection 
algorithm, using speech variation measures based on the bandwidths of the LSF 
regions and peak locations are presented in Section 2.2. Simulation studies are 
given in Section 2.3.
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2.1 Peak Estim ation

In this section, a two-step peak estimation algorithm is presented. In the first 
step, the LSF regions which contain the peaks are detected and in the second 
step, the location of the peaks are calculated. Details of the first step and 
second step is presented in Section 2.1.2 and Section 2.1.3, respectively. In 
Section 2.1.1, the speech database used in this thesis is described.

2.1.1 Experim ental D ata

In this work, all required statistical data are obtained from two databases, 
owned by TUBITAK-BILTEN, which contain 50 male and 50 female people 
in each database. The first database contains telephone speech with various 
hand-sets, while other one is formed by digitizing speech from close microphone 
talk. The databases include 12 words from each speaker - the numbers from 
zero to nine and ’yes’ and ’no’ in Turkish. Total number of frames for the 
voiced and the entire speech is approximately 40000 and 100000, respectively. 
Sampling rate is 8000 sample/sec and number of bits per sample is 16.

LSFs used in this work is extracted from the coefficients of 10‘̂ ‘ order vocal 
tract filter, calculated by the autocorrelation method followed by Levinson- 
Durbin recursion [18]. This recursion uses Hamming windowed 200 samples, 
previously filtered with order type Il-Chebyshev’s high-pass filter with cut
off frequency at 60 Hz. Although it is known that covariance method gives 
better results, it is not used because of its computational complexity. The 
method used in extraction of LSFs is defined in [41], which uses a modified 
version of Newton-Rapson method for faster convergence in root finding algo
rithm. Before computation of LSFs, a bandwidth expansion of 15 Hz is applied 
to the poles of all-pole filter to increase bandwidth of the peaks.
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2.1.2 D etection  of a Peak in a LSF Region

Initially, two separate algorithms, running parallel, based on the bandwidths of 
the LSF regions and energies of LSFs are used to make initial peak estimation 
assignments to LSF regions.

In the bandwidth based method, the bandwidths are calculated and the LSF 
regions whose bandwidths are smaller than the bandwidths of their neighboring 
LSF regions are assigned to contain peaks in them. The bandwidth for the 
LSF region, is defined as j) — /¿_i, where fi is the LSF.

In the energy based method, first, logarithmic energies of line spectrum 
frequencies, are calculated as follows:

РГ =
1 2r

( 2 . 1 )
1 + E l i i

In (2.1), r  is selected to be 0.15 as approximates the logarithm of the
spectrum as shown in Figure 2.1. Also it can be observed that more emphasis 
is given to low frequency regions.

Equation (2.1) is also used in peak location estimation algorithm described 
in Section 2.1.3, where value of r  is varied for different LSF regions.

To find a region containing a peak, an energy-bandwidth based measure, 
Eli is defined for the LSF region before the LSF:

p 0 .1 5  ^i-lEli =
fi -  U-i

( 2 .2)

where fi represents the LSF.

To detect the LSF region containing peak, (2.2) is applied to the previous 
and next LSF regions of the LSF, whose spectral value is larger than its neigh
boring LSFs. It is experimentally observed that the region, which gives the 
highest score, contains the peak in it.

After finding the peak locations with both algorithms, a merging strategy 
which reduces misclassification of the state of regions is applied to obtain final 
states of the regions.
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Logarithm of power spectrum

Figure
plotted

(b)

2.1: Logarithm and 0.15*̂ “ power of power spectrum of utterance /a /  is 
in (a) and (b), respectively

Success rate of both algorithms is obtained from the data set described in 
Section 2.1.1. Since formants are tried to be estimated, part of the database, 
which contains only voiced speech, is used. For the voiced/unvoiced estimator, 
the one, based on normalized autocorrelation of the input sequence, described 
in detail in [17] is used with an exception that only the frames whose first 
bandpass voicing strength is larger than 0.8 is considered to be voiced speech. 
In other words, only strong voiced frames are considered in calculations. After 
deciding voiced speech, power spectrum is calculated with 1 Hz step size and 
a peak picking algorithm is applied to find peaks and also the LSF regions 
which contains these peaks are located. Statistics for correct classification 
and misclassification rates are calculated for bandwidth based method and 
energy based method separately and are tabulated in Table 2.1 and Table 2.2, 
respectively.
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Table 2.1: Statistics about classification of LSF regions in bandwidth based method 
for voiced speech. Pc stands for the percentage of the correct classified LSF regions 
which contains a peak in it. stands for the percentage of the mi.sclas.sified LSF 
regions which contains a peak in it. Ppp stands for the percentage of the false peak 
assigned LSF regions with respect to total peak assigned LSF regions. Pfnp  stands 
for the percentage of false peak assigned LSF regions with respect to the LSF regions 
which does not contain a peak._______________________________________

Regions
1 2 3 7 8

97.79 95.38 93.90 96.08 97.54 94.24 95.50 90.69 99.60
M 2 . 2 1 4.62 6.10 3.91 2.46 5.76 4.50 9.31 0.40

F P 4.33 23.98 63.41 33.37 24.33 21.32 26.10 28.70 35.42
Pfnp 22.13 2.79 18.54 10.63 18.90 5.97 22.77 6.60 45.75

Table 2.2: Statistics about classification of LSF regions in energy based method for 
voiced speech.

Regions
1 2 3 4 5 6 7 8 9

Pc 98.77 91.56 67.98 93.45 93.99 97.85 90.76 98.28 93.00
Pm 1.33 8.44 32.02 6.55 6.01 2.15 9.24 1.72 7.00
Pfp 2.86 13.25 25.18 19.31 9.95 19.16 11.94 24.35 13.65

Pfnp 14.53 1.29 2.61 4.94 6.26 5.42 8.30 5.72 11.86

In these experiments, bandwidth based method is observed to detect ap
proximately 96% of the regions containing peak, while in the energy based 
method, this number reduces to 94%. However, the critical problem in both 
of these methods are the large number of false peak assigned regions: In the 
third row of both tables, where percentage of false peak assigned regions with 
respect to total peak assigned regions are shown, nearly 25% and 12% of the 
peak assigned regions are false alarms for bandwidth based method and energy 
based method, respectively. Although some of these false alarms occur due to 
the selection of neighboring LSF regions of the LSF regions containing peak, 
remaining large number of false peak assignments other than this problem must 
be eliminated. The best solution for the elimination of these regions are found 
to be the selection of the only LSF regions detected by both methods.

Furthermore, sometimes three LSFs are clustered together to form a peak. 
In this case, bandwidths of the two LSF regions formed by these three LSFs
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are almost equal to each other, and usually peak location is around the middle 
LSF. If this formation is occurred, the proposed methods detect only one of 
these LSF regions and sometimes, they detect different LSF regions from these 
two LSF regions. Because of our merging criteria, such peaks are missed. In 
order to get rid of this problem, if detection of one LSF region by one method 
and its neighboring LSF region by other method is encountered, a small test is 
applied to both LSF regions to select the correct one: If the absolute difference 
between the bandwidths of these two LSF regions are smaller than 8 percent 
of the bandwidth of the detected LSF region by bandwidth ba.sed method, 
the LSF region detected by energy based method is considered to be true. 
Otherwise decision of the bandwidth based method is accepted.

Unfortunately, still large number of false estimations occur in some regions 
and also some peaks, estimated by one method but missed by other one, are 
remaining. To eliminate these false peaks, a bandwidth threshold, Tt, is as
signed to LSF region. If bandwidth of the LSF region is larger than 
Ti, this detected peak is assumed to be a false peak. Also to include missing 
peaks, detected by only one method, following two tests are applied to those 
regions:

1. If bandwidth of the region is smaller than a threshold then a peak is 
assigned to the LSF region. This lower bandwidth threshold for the 

LSF region is for bandwidth based method and ai for energy based' th

method.

Let us define the energy-bandwidth based meeisure, Cj·, as follows:

(pO.15 + pO.15)
Ci =

(/i -  /i- l)
(2.3)

for the LSF region. If ti is larger than a threshold then a peak is 
assigned to the region. This higher energy-bandwidth based measure 
threshold for the LSF region is (ii for bandwidth based method, and 
Ci for energy based method.
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The thresholds used in this algorithm are also estimated from the same 
database. In order to obtain the thresholds for false peak assignment elimi
nation, the distribution of the percentage of correct estimation and false esti
mation versus the threshold, T;, is calculated and the point, which introduce 
minimum loss of correct detected LSF regions and provide maximum false peak 
assignment elimination is selected. Similar calculations are performed for the 
thresholds that are used to catch the misclassified LSF regions which actually 
contains peaks. These thresholds are selected so that maximum number of 
misclassified LSF regions are corrected, while minimum number of false peak 
assignment is introduced. The flowdiagram of the algorithm is given in Figure 
2.2, and final thresholds are tabulated in Table 2.3. The distribution of the 
percentage of correct estimation and false estimation versus thresholds for the 
LSF regions is described in Appendix A in detail.

able 2.3: Thresholds for elimination and detection of misclassified regions.
Regions

1 2 3 4 5 6 7 8 9
0.251 0.2.36 0.251 0.259 0.251 0.267 0.255 0.267 0.314

li 0.102 0.083 0.129 0.102 0.126 0.110 0.149 0.116 0.130
OCi 0.129 0.102 0.168 0.196 0.196 0.134 0.196 0.094 0.196
A N/A N/A 99949 N/A 101858 40744 31831 95493 40744
c· 127324 127324 79578 26738 22282 50930 22282 95493 40744

Final statistics about proposed classification method is given in Table 2.4, 
Table 2.5 and Table 2.6. In these tables, it can be seen that number of false peak 
assigned regions reduces dramatically. Furthermore, the highest percentage of 
false alarm, which occurs in the 3'"'̂  region, only contains 3.5% of whole peaks. 
If all regions are considered together, false alarm rates goes down to 5% and 
10% for voiced speech and entire speech, respectively. It must be noted that 
since bandwidths are wide in unvoiced speech, increase in the false alarm rate is 
expected. Also, total percentage of misclassilied regions, which contain peaks, 
remains at 7%. Overall results can be seen in Table 2.6: Approximately 95% of 
regions are classified correctly by proposed method for both voiced and whole 
speech.
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Figure 2.2: Algorithm for classification of the LSF regions.
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Table 2.4: Statistics about classification of LSF regions in both methods for voiced 
speech.

Regions
1 2 3 4 5 6 7 8 9

Pc 98.39 81.23 70.11 86.84 93.22 92.64 90.54 85.85 92.67
Pm 1.61 18.77 29.89 13.16 6.78 7.36 9.46 14.15 7.33
Pfp 1.78 4.80 11.20 7.13 3.78 6.85 5.92 10.53 9.80

Pfnp 10.22 0.56 0.96 1.63 2.38 1.79 4.30 2.12 8.29

Table 2.5: Statistics about classification of LSF regions in both methods for entire 
speech.

Regions
1 3 4 8 9

95.38 80.93 74.45 90.95 91.10 92.30 90.56 86.07 94.69
Л/ 4.62 19.01 25.55 9.05 8.90 7.70 9.44 13.93 5.31

P,FP 3.06 7.00 14.03 12.72 10.03 15.39 12.56 14.69 16.34
Pfnp 8.64 0.30 2.20 2.98 5.09 3.11 7.54 2.20 15.99

Table 2.6: Overall performance of the system for the proposed method. Percentage

Regions
1 2 3 4 5 6 7 8 9

Entire speech 94.34 98.82 94.22 95.90 93.64 96.16 91.76 96.28 88.97
Voiced speech 97.11 97.25 96.22 96.10 95.89 97.06 93.47 95.79 92.14

2.1.3 A ccurate Estim ation of Peak Location

After finding the regions which contains the peaks, another algorithm is applied 
to find the exact location of the peak. In Coetzee and Barnwell’s work [44], 
peak location is estimated by the mean of the two LSFs which form the region. 
This estimate gives acceptable peak locations only if the bandwidth of that 
region is sufficiently small - smaller than 150 Hz. Since bandwidth of the LSF 
regions may become as large as 300 Hz, this estimate will not give satisfactory 
results and the difference between actual peak and estimated peak may be as 
large as 150 Hz. As an alternative, weighted means, whose weights are the
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same as the one used in quantization of LSFs in [30], may be used to estimate 
peak locations as follows:

pr
P i  =  f i - i  +  i f i -  f i - i )  ‘ ---- h P i (2.4)

where pi represents the location of the peak in the region and and pi is 
the correction term for the peak in the î ''· LSF region. For this alternative 
procedure, r  is chosen as 0.15 and pi is set to zero for all LSF regions.

Unfortunately, this energy weighted mean only makes a small improvement 
in the peak location estimation. In order to get better results, different values 
of r  may be considered. For this purpose, mean, standard deviation, percentage 
of peak estimation error smaller than 25 Hz and percentage of peak estimation 
error smaller than 50 Hz are calculated for different values of r, ranging from
0.15 to 1.75, for both voiced and entire speech data for all LSF regions. Based 
on this experiment, different r  values are selected for different LSF regions 
such that the standard deviation would be minimum or closer to minimum 
and percentage of peak estimation error smaller than 25 Hz is maximum. This 
criterion is selected, because if we try to maximize the percentage of peak 
estimation error smaller than an error range lower than 25 Hz, the percentage 
of peak estimation error larger than 50 Hz is also increased, which exceeds the 
acceptable range. Furthermore, Schafer et al. reported that 25 Hz error is 
negligible for formant estimation [45]. Besides, the correction term in (2.4), pi, 
is selected as the mean of the error between actual and estimated peak location 
for the selected r  value for the LSF region.

After selecting optimum exponents for all LSF regions, (2.4) is used to 
estimate peak locations with different r  for different LSF regions. Selected 
r ’s and p^s are tabulated in Table 2.7. Number of occurrence versus error 
in estimation of peak location for voiced speech and whole speech is given in 
Figure2.3a and Figure2.3b, respectively. Nearly 97% and 95% of the peaks 
are estimated within 25 Hz error range for the voiced and the entire speech, 
respectively. These values increases to 99.5% and 99%, if 50 Hz is also accepted 
as a tolerable error range.

The figures for standard deviation, percentage of peak estimation error 
smaller than 25 Hz and percentage of peak estimation error smaller than 50
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Table 2.7: Selected Ti and corresponding mean of the error in peak estimation, /x;, 
in radian.

Regions
1 2 3 4 5 6 7 8 9

Tz 1.25 1.3 1.125 1.3 1.175 1.5 1.175 1.45 1.15
l̂ i 0.0057 0.0058 0.0019 -0.0009 0.0009 - 0.0001 0.0018 0.0011 0.0040

Peak estimadon error for voiced speech lor all regions Peak esdmadon error for whole speech for all regions

Figure 2.3: Number of occurance versus difference between original and estimated 
peaks. The solid, dashed and dashed dotted lines corresponds to simple mean, energy 
weighted mean with r  = 0.15 and energy weighted mean with r  = Ti, respectively.

Hz versus different r  values and tabulated form of statistics for simple mean 
estimation method, energy weighting method for r  = 0.15 and energy weight
ing method for r  = Ti are given in Appendix B. Proposed method decreases 
standard deviation four times compared to simple mean method and increase 
accuracy of the estimation dramatically.

Without considering the non-stationary region detector, the output of 
this algorithm may be used as a formant tracker in conjunction with an 
voiced/unvoiced estimator. An example for this formant estimator is illus
trated in Figure 2.4 for the Turkish sentence ’’Şanslı adam kaybettiği mücheveri 
buldu.” .
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Figure 2.4: Time sequence and spectrogram of Turkish word ’’Şanslı adam kaybettiği 

mücheveri buldu” . Formant frequencies are plotted with on the spectrogram.

2.2 Non-stationarity D etection

The non-stationarity of the speech spectrum can be detected using the LSF 
based peak estimation method described in Section 2.1. The simplest way is 
to examine the L2 norm of the difference between the peak locations. Unfortu
nately, since the peak estimation algorithm may miss some peak locations or the 
number of peaks may change especially in transient regions, direct application 
of L2 norm to estimated peak location will not give good results. Furthermore, 
¿2 norm lacks of incorporating perceptual information to the speech variation 
measure, which is essential in speech. A weighted Euclidean distance measure 
whose weights are selected according to the nature of peaks is more suitable. 
Furthermore, instead of using only the estimated peaks, all data related with 
the LSF regions are used in the calculation of speech variation measure for 
better results. In this section, two speech variation measures, one based on the

31



bandwidth of the LSF regions and one based on the peak locations in the LSF 
regions, are used in detection of spectrum non-stationarity.

In the beginning of the algorithm, the LSF regions containing peaks are 
detected and peak locations are found accurately with the methods described 
in Section 2.1. Since the new speech variation measure based on peak locations 
requires a peak location for all regions, virtual peak locations are computed even 
for the regions which contain no peak as if they have a peak using the same 
method. For an order LPC model, m — 1 peak locations are calculated. In 
order to use in speech variation measure, a vector for the frame, p '̂, whose 
entries are the weighted difference between the peak locations of the and 
(k — frames, is defined as follows:

7 7 1 - 1 (2.5)

where p’· =  The weights, Wi, are obtained experimentally and set
according to the state of the regions for the consecutive frames to emphasize 
the change in state of the LSF region as follows:

1. If the
0.1.

2. If the

3. If the
be 1.0.

2. If the region in both frames contain peak, tn, is selected to be 0.8.

The speech variation measure based on peak locations, Ak, for the k '̂’’ frame 
is defined as follows:

At = Kt + AE-‘ (2.6)

where = p*'‘Wp^p*^ and = p*^Wp '̂“^p* and Wp is the weighting
matrix whose entries are determined according to the perceptual sensitivity of 
the peak locations estimated for the frame. By this method, change in the 
different part of the spectrum is emphasized in a perceptual manner.

Entries of Wp are determined according to the relationship between the 
peak locations in the spectrum. We define the weights as the correlation be
tween the peak locations. As discussed in Chapter 1, LSFs are reported to be
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uncorrelated [16]. If LSFs are used in our system directly, calculation of the 
main diagonal entries of the weighting matrix would be sufficient and rest of 
the entries will be set to zero. As peaks are derived from two consecutive LSFs, 
consecutive peaks are also correlated. Therefore, the diagonal entries next to 
the main diagonal of the weighting matrix must also be calculated. Although 
usage of peaks instead of LSFs may seem redundant, it must be noted that the 
LSF regions which contain a formant can be emphasized easily by this method 
while forming the vector

Entries of Wp are computed according to (2.10). Note that the entries other 
than main diagonal entries and diagonal entries next to the main diagonal are 
set to zero, as there is no correlation between those peak locations.

Let us rewrite (2.4):

PT
pi -  fi-\  + {fi -

■' i "T M-1
= ^ilfi  + + Pi

+ pi

where P7
<̂il — TT" n r

and
—  1 —

Pf  + Pf-1 

P7

(2.7)

(2 .8)

(2.9)
Pi +  Pi-i

Entries of the weighting matrix are defined as follows:

^ P i j  ~  ^{piPj}
= £{i<^iifi + ^¿2/i-i + +  Pj )}  (2-10)

The main diagonal entries are given as follows:

P{PiPi} ~  ^{(^^ilfi T 1)(^¿1/i P ^i'2f i—l')}

— ' ^ i i ^ i f i }  +  2w tiu;,2£’{ / t / i - i }  +  ‘̂ i 2 ^ { f i - i }

and the diagonal entries next to the main diagonal are given by:

^ { p i P i + l }  =  £ { { ‘̂ i l f i  ^ i 2 f i - l ) i ^ { i + l ) l j i + l  P ‘̂ ( i + l ) 2 f i ) }  

= i^ilOJ(i+l)2£{ff}

(2.11)

(2. 12)
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and

= (2.13)

The other entries turn out to be zero as shown below:

^{piPi+k} = + <̂i2fi-l){<^{i+k)lfi+k + ^{i+k)2fi+k-l)j
= 0 k > 2  or k <  - 2

(2.14)

because £{ f i f j }  — 0 for i ^  j  and ;U,’s are neglected in calculations because 
these values are negligibly small compared to the other parameters in (2.10).

The only missing part in this formulation is the variance of the LSFs. For 
the variances, is used similar to [30,46].

Speech variation measure, F, based on the bandwidths of the LSF regions 
is also similarly determined. First of all, the area between 0*̂ '' and F* LSFs 
and the area between last LSF and tt are also considered as LSF regions for 
this speech variation measure. Therefore, m + 1 parameters are extracted for 
the order LPC filter. A vector for the k '̂’’ frame, b^, whose entries are the 
weighted difference between the bandwidths of the LSF regions in the k '̂’’ and 
{k — ly^  frame is defined as:

= hk Uk . . .  L,t'o > ^1) ) ·̂ (2.15)

where for i = 1 to m-1. Note that ipo and V’m is equal to
fo and (tt — fm-i), respectively. The weights, W{, are assigned according to the 
following criteria and are determined experimentally:

1. If the region in both frames do not contain peak, W{ is selected to be
0.25.

2. If the region in both frames contain peak, гvi is selected to be 0.9.

3. If the region in only one of the frames contains peak, Wi is selected to 
be 1.0.
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Since the first and the last regions can never contain a peak, their weights are 
automatically set to 0.25.

The speech variation measure,, F/;, for the frame is defined as follows:

U  = r i  + rE -‘ (2.16)

where and = b*Wb^~*b*  ̂ and Wb̂  is the weighting
matrix whose entries are determined according to the perceptual sensitivity of 
the bandwidth of the peaks for the l*̂'· frame.

The entries of the weighting matrix for bandwidths are defined as follows:

Wbi, =
(•2.17)

The main diagonal entries are given as follows:

=  S{{fi  -  -  f i - i ) }

= £ { f n  + £ { f L }

The diagonal entries next to the main diagonal are given by:

£{tpi-tpi+i} = £{{ fi  -  -  f i) }

-  - 1 - W n

(2.18)

(2.19)

and

£{lpi1pi-l} = £{{fi -  /¿_i)(/i_i -  /¿_2)}

=

The other entries turn out to be zero as shown below:

£{tpi-(pi+k} = S{(fi  -  fi-i){fi+k -  fi+k-i)} 
= 0 k > 2  0 T k < - 2

(2.20)

(2 .2 1 )

Finally, the only remaining task is to compare the calculated speech veiria- 
tion measures with the experimentally determined thresholds, A and r/, for /V
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and r , respectively. However, to eliminate small fluctuations, one frame delay 
is introduced to compare the calculated measures with the ones calculated in 
previous and next frames: If the variation calculated for any of the previous 
or next frame is larger than the current one, the calculated variation measure 
is not compared with the thresholds and frame is assumed to be stationary. 
Otherwise, variation values are compared with thresholds and if one of the 
speech variation measures exceed these thresholds, frame is flagged to be non- 
stationary. This method extracts the frames which has the maximum variation 
with respect to its neighboring frames.

Values of A and 77 can be adjusted for different purposes: It may be lowered 
to catch small changes, or it may be set to high values to catch only abrupt 
changes.

2.3 Sim ulation Studies

In this section, two simulations are performed to test the performance of pro
posed algorithms. We make the first simulation to test the performance of 
peak estimation algorithm whose results are given in Section 2.3.1. The other 
simulation is carried out to see the performance of non-stationarity detector. 
The results for this test are presented in Section 2.3.2.

2.3.1 Perform ance Test for Peak Estim ation Algorithm

For this simulation, a database, owned by TUBITAK-BILTEN, containing 
voice of 104 people including child voice is used. This database is formed 
by digitizing speech from close microphone talk. The database includes 10 
words from each speaker - the numbers from zero to nine in Turkish. Total 
number of frames for the voiced and the entire speech is approximately 27000 
and 40000, respectively. Sampling rate is 8000 sample/sec and number of bits 
per sample is 16.
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Performance Test for Peak D etection Algorithm

Performance of peak detection algorithm for the voiced and the entire speech is 
given in Table 2.8 and Table 2.9, respectively. Overall results are also illustrated 
in Table 2.10. In this test set, it is observed that the performance of the 
algorithm is similar compared to the one obtained in training set, even better 
results for some LSF regions.

Table 2.8: Statistics about classification of LSF regions for proposed algorithm for 
the voiced speech for the test set.

Regions
1 2 3 4 5 6 7 8 9

Pc 90.79 95.89 85.05 89.35 89.77 96.85 91.05 94.62 96.19
Pm 9.21 4.11 14.95 10.65 10.23 3.15 8.95 5.38 3.81
Ppp 4.15 4.19 15.67 16.08 8.78 13,04 8.42 14.40 16.96

Pfnp 2.49 1.17 0.96 1.17 3.08 3.93 3.24 4.08 12.26

Table 2.9: Statistics about classification of LSF regions for proposed algorithm for 
the entire speech for the test set.

Regions
1 2 3 4 5 6 7 8 9

Pc 90.01 93.73 75.93 90.26 89.20 96.04 90.01 94.18 96.34
Pm 9.99 6.27 24.07 9.74 10.80 3.96 9.99 5.82 3.66
Ppp 7.10 6.59 15.27 18.40 10.51 15.53 12.91 18.19 22.20

PpNP 3.14 0.94 1.59 2.54 3.75 4.78 4.20 5.17 13.68

Table 2.10: Overall performance of the proposed method for the test set. Percentage

Regions
1 2 3 4 5 6 7 8 9

Entire speech 94.71 98.40 96.07 96.66 94.40 95.40 94.42 94.70 89.65
Voiced speech 94.90 98.19 97.58 97.49 95.03 96.24 95.17 95.66 90.99

Performance Test for Accurate Peak Location Estimation Algorithm

In this test, percentage of peak estimation error smaller than 25 Hz and 50
Hz are extracted from the same database for selected t i and ¡j.i values and the
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results are tabulated in Table 2.11 and Table 2.12, for the voiced and the entire 
speech, respectively.

Table 2.11; Percentage of the error smaller than 2-5 Hz and 50 Hz between actual 
peak location and estimated peak location for test set for the voiced speech.

< 25 Hz
< 50 Hz

< 25 Hz
< 50 Hz

LSF Regions
1

97.79
100.00

6
91.31
98.79

2
95.85
99.80

92.55
98.73

3
93.40
99.53

87.17
97.62

4
94.51
99.42

88.09
98.66

5
96.60
99.58

All Regions
92.90
99.11

Table 2.12: Percentage of the error smaller than 25 Hz and 50 Hz between actual

LSF Regions
1 2 3 4 5

< 25 Hz 94.75 92.65 91.88 90.42 94.60
< 50 Hz 99.42 99.73 99.33 97.96 99.24

6 7 8 9 All Regions
< 25 Hz 88.21 91.11 85.45 84.97 90.19
< 50 Hz 98.29 98.49 96.85 97.08 98.46

From these results, it is observed that nearly 93% and 90% of the peaks are 
estimated within 25 Hz error range for voiced and the entire speech, respec
tively. This states a small performance degradation over the training set. As 
percentage for the error smaller than 50 Hz are approximately 99% for both 
voiced and entire speech, it can be said that this estimation algorithm can still 
obtain location of the peaks in an acceptable range.

2.3.2 Perform ance Test for N on-Stationarity D etector

Simulations for this section is performed on three artificially created speech 
signals. All sequences are created by the MELP synthesizer [17] and they 
contain two synthesized speech phonemes with a transitional region between 
them. Parameters used in the synthesizer are extracted from a real speech 
signal. Proposed algorithm uses a frame length of 22.5 ms and a step size
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of 11.25 ms. LSFs are extracted with the same method described in Section
2.1.1 and A and t] are set to 0.1 and 0.2, respectively. These thresholds are 
determined experimentally from part of the same database described in Section
2.1 and found sufficient to detect small changes.

Three signals are used in this experiment;

1. The first signal contains two noise excited parts: First half contains utter
ance /sh/ ,  where as the second half contains utterance /s / .  This signal 
is used to test performance of non-stationarity detector for stochastic 
signals.

2. The second signal contains two periodic impulse excited parts; First half 
contains utterance /a / ,  where as the second half contains utterance / 0/ . 
This signal is used to test performance of non-stationarity detector for 
deterministic signals.

3. The third signal contains both periodic impulse and noise excited parts: 
First half contains utterance /sh/,  where as the second half contains 
utterance / 0/ . This signal is used to test performance of non-stationarity 
detector in regions where both excitation and spectral shape change.

The result of the application of the algorithm on these signals can be seen in 
Figure 2.5.

Although these three experiments do not give much information about the 
real performance of the algorithm, the simulation section of the next chap
ter, which describes an implicit speech segmentation algorithm, gives detailed 
success rates of this algorithm for different parameter settings.
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Figure 2.5: The top, middle and bottom figures belong to the signals which contain 

two noise excited regions, two pulse excited regions and both excitation and spectral 

change regions, respectively. The region between the dashed lines are the ones which 

are flagged as non-stationary regions by the proposed algorithm.
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2.4 Summary

In this chapter, a new spectral peak location estimation and spectrum non- 
stationarity detection algorithm based on LSFs are presented. Proposed algo
rithm consists of three parts:

1. Detection of the peak presence in the current LSF region.

2. Accurate estimation of the location of the peaks.

3. Detection of the spectrum non-stationarity based on two speech variation 
measures using the peak presence in LSF regions, and the location of the 
peaks and bandwidth of these regions.

First part combines two different methods to detect the presence of a peak in 
the LSF region by comparing these values with experimentally found thresh
olds. By using this algorithm, correct state of an LSF region can be found 
with 95% accuracy. Second part of the system obtains location of peaks with 
weighted mean of LSFs. The weights are calculated by applying exponent val
ues, which are different for each LSF region, to the power spectrum values 
evaluated at location of LSFs. If 25 Hz error is considered to be an acceptable 
error, success rate of this algorithm is around 95% for voiced speech. These 
two parts also prove the strong correlation between displacement of LSFs and 
speech spectrum. Final part of the system uses the parameters extracted in 
previous parts to detect spectrum non-stationarity. It is experimentally ob
served that the system can be tuned by adjusting thresholds for the different 
requirements of the applications. The thresholds can be set lower values to 
detect smaller changes to be used in speech segmentation systems, while they 
can be set higher to detect only abrupt changes.

Finally, it must be stated that the computational complexity of the pro
posed algorithm is low: LSFs can be extracted in an efficient way described 
in [41] and the computation of the rest of the parameters can be done without 
making high complexity arithmetic operations.

In the next two chapters, two applications, using this non-stationarity de
tection algorithm, is presented. In Chapter 3, an implicit speech segmentation
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algorithm is discussed. The novel non-stationarity detector is used to find the 
transient regions of the speech signal in this segmentation system. As the sec
ond application, a variable bit-rate speech coder based on mixed excitcitiou 
linear prediction model is described. This vocoder utilizes a voice activity de
tector to detect the silence parts of the conversation. The new non-statiouarity 
detector is used in the voice activity detector to provide non-stationary noise 
immunity to the vocoder.
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Chapter 3

Speech Segm entation

Speech segmentation algorithms are necessary for several speech processing 
applications to overcome various problems like increasing computational com
plexity according to the nature of the algorithm. They can solve these problems 
by providing stationary regions in the speech signal.

In a speech recognition system, especially designed for continuous speech 
recognition, memory and computational complexity of the algorithms increase 
dramatically with the increasing number of vocabulary size. In order to solve 
this problem, recognition of sub-word units, like diphone or triphones, followed 
by a segmentation system may be used. In these systems, segmentation al
gorithms are used to segment speech signal into desired sub-word units and 
recognition algorithms are applied to these segmented parts to extract content 
of the speech signal.

Similarly, speech segmentation can be used in very low bit-rate speech cod
ing systems. In these systems, speech is segmented into stationary regions and 
these regions are coded separately, sometimes with different algorithms accord
ing to the type of the phonological units [47]. Very low bit rates, as low as 150 
b/s, can be achieved with segmentation based vocoders [48].
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Segmentation methods can be roughly classified into two groups: Implicit 
segmentation methods and explicit segmentation methods. Implicit segmenta
tion methods split up the utterance into segments without the use of phonetic 
transcription. These systems define segments as spectrally stable part of the 
signal. References [5-8] are typical examples for this kind of segmentation al
gorithms. Explicit segmentation methods split up the incoming utterance into 
segments that are explicitly defined by phonetic transcription. In general, ex
plicit segmentation methods have the disadvantage that the reference patterns 
have to be generated before the method can be used. Since implicit methods 
do not use any reference patterns, explicit methods are expected to perform 
better. However, such patterns may not fit well to the utterance and may not 
account all variability occurring in the natural speech. References [9-13] are 
good examples for the explicit segmentation methods. Furthermore, in [2] both 
implicit and explicit methods ai'e used to obtain better results. Disadvantage 
and advantage of implicit and explicit methods are tabulated in Table 3.1.

Table 3.1: Some characteristics of the explicit and implicit segmentation methods. 
Implicit Segmentation Explicit Segmentation
The method does not always give 
correct number of segments.

The segments are unlabelled.

The segment boundaries are de
termined accurately enough for di
phone segmentation.

The method produces the number 
of segments given by the phonetic 
transcription.
The segments are labeled in 
accordance with the phonetic 
transcription.
The segment boundaries may be 
inaccurate due to a possible poor 
resemblance between reference and 
test spectrum.

In this chapter, a speech segmentation system based on the proposed spec
trum non-stationarity detection algorithm in Chapter 2 is presented. Outline 
of this chapter is as follows: In Section 3.1, brief description of phonological 
units is given. In the following section. Section 3.2, the new speech segmenta
tion algorithm is described. Section 3.3 presents experimental results of this 
algorithm. Conclusion remarks for this chapter are given in Section 3.4.
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3.1 Phonological U nits

When humans communicate with each other, they use meaningful words which 
are constructed with concatenation of some basic sound units. These basic 
sound units are called phonemes. However, speech production system of hu
mans does not work only to produce these sounds and hence spoken words 
are not generally composed of these ideal sounds. Therefore, segments of pro
nounced words are not usually interchangeable. As an example, if the ’b’ used 
in ’be.f is concatenated to ’o/’ to produce 'boP, it sounds disjointed or weird. 
This phenomenon can be explained as follows: If a phoneme is spoken in iso
lation, acoustic waveform of that phoneme can be distinguished without any 
difficulty. However, if they are used in context, boundaries between phonemes 
are hardly be detected according to the speech articulators. Since vocal tract 
articulators are formed by human tissue, transition from one phoneme to other 
one is controlled by muscle movements. Hence, movement of tissues generally 
slightly modify the production of phonemes. Therefore, associated with each 
phoneme, there is a collection of allophones (variation of phones) that repre
sents acoustic variations on the basic unit. Allophones contain the degree of 
freedom in production of phonemes, which is not only related with the struc
ture of the unit, but also the position of the unit within the word. As a result, 
despite the phonemes are defined to be the basic units in speech production, 
speaker has some degree of freedom in producing of these sounds.

3.1.1 Phonem ic and Phonetic Classification

Phonemes can be classified according to the following criteria:

1. Time waveform.

2. Spectral characteristics.

3. Manner of articulation.

4. Type of excitation.

5. The stationarity of phoneme:
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• Continuant·. Vocal tract configuration is fixed during production of 
phoneme. Examples for this type of phonemes are vowels, fricatives 
and nasals.

• Noncontinuant : Change in vocal tract configuration is occurred 
during production of phoneme. Examples for this type of phonemes 
are diphthongs, liquids, glides and stops.

Furthermore, phonemes are generally classified according to the articulatory 
movement and their acoustical features:

Vowels and Vowel Like Phonemes

1. Vowels:

• Vowels have highest energy among all other phonemes.

• Duration of vowels can vary form 40 to 400 ms.

• The variations in cross-sectional areas in the vocal tract determines 
spectral shape of vowel.

• Vowel formant characteristics have great variation across different 
speakers.

• The length of vocal tract affects location of formants in spectrum.

• The bandwidths of formants can also characterize vowels.

2. Diphthongs: They contain two target vowel formation. Hence, it can also 
be defined as transition between two vowels, especially transition of their 
formant structures.

3. Glides: They contain transient part of one vowel and their duration are 
short.

4. Liquids: They have similar spectral characteristics with vowels but since 
vocal tract is more constricted, they are weaker than vowels.
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Consonants

1. Fricatives: They are produced by excitation of vocal tract with a steady 
air stream. Turbulence may occur at some points of constructions.

2. Nasals: They are produced by glottal waveform exciting an open luisal 
cavity and closed oral cavity. Due to the nature of excitation source, they 
resemble vowel, but their energies are weaker due to the limited ability 
of nasal cavity to radiate sound.

3. Stops: They are transient sounds that are produced by building up a 
pressure behind a total closure somewhere along vocal tract, and suddenly 
releasing this pressure. After the air pressure is released, there is a brief 
period of noise like frication occurred due to the sudden turbulence from 
escaping air. TTivoiced plosives usually possess longer periods of frication 
than voiced stops. The frication and aspiration is called stop-release. The 
interval of time leading up to the release during which pressure is built 
up is called stop-gap.

3.1.2 Characterization of Segments and Boundaries

Characterization of Boundaries

Boundaries are formed due to the change in articulatory movement or spec
tral formation. These changes may be occurred in different forms:

1. An abrupt change such as termination of or start of voice.

2. Some degree of spectral changes:

• A variation of energy inside a frequency band.

• A fluctuating variation of formant locations.

• A loss of formant structure.
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Segment Categories

1. Stationary segments.

2. Short segments.

3. Transient segments:

• Between two voiced phonemes: Monotonous changes occur cimong 
formants.

• Between a voiced phoneme and unvoiced phoneme : The formant 
structure and noise are superposed.

• Between a phoneme and silence : These regions occur at the end of 
word or before a plosive.

3.2 Speech Segm entation System

In this section, a speech segmentation system based on the spectrum non- 
stationarity detector proposed in Chapter 2 is described. The proposed seg
mentation system is of implicit type, i.e. it does not require any phonetical 
transcription, and success of the algorithm directly depends on the pronuncia
tion of the words which are tried to be segmented. System does not incorporate 
an end-point detector, but the non-stationarity detector in conjunction with a 
silence detector may also be used to make accurate detection of the end-points 
of the utterances. In our system, the non-stationarity detector is used to detect 
end-points as well.

The system consists of two main parts. The first part is used to detect 
transient regions by the same method described in Chapter 2. In the second 
part, a modified version of the same algorithm is applied sample-by-sample to 
find the exact location of boundaries.
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3.2.1 Pre-Processing System

In pre-processing system, speech signal is processed frame-by-frame and the 
non-stationarity detector is applied to each frame to detect any change in 
spectrum with one frame delay. To detect minor changes, the thresholds, A and 
77, are set to 0.1 and 0.2, respectively. As discussed in Chapter 2, these values 
are determined experimentally from a speech signals consisting phonetically 
balanced words. Output of this block provides the transient regions explained 
in Section 3.1.

An example to the output of this block is given in Figure 3.1. In this 
experiment, the window length, the frame length and the overlapping time 
amount is set to 25 ms, 22.5 ms and 11.25 ms, respectively.

Proposed algorithm almost detect all of the non-stationary regions, includ
ing voiced-voiced transitions, voiced-unvoiced transitions and silence-voiced 
transitions. Further test results on the performance of the algorithm is given 
in Section 3.3.

3.2.2 Boundary Location Estim ation

After stationary parts are detected, another measure which is based on the 
speech variation measures described in Section 2.2 is used to find the location 
of boundaries. This algorithm is applied to transient regions of the signal in a 
sample-by-sample basis. For each sample, (2.6) and (2.16) are used to calculate 
A and r  by taking the center of the frame as the current sample, the I*''’ sample. 
Furthermore, next A and F values are also calculated by taking their center as 
(/ -b Ly^ sample where L is the frame length. A new measure, ii(, is defined 
for the sample is defined as follows:

=  A i  A/+L -b F/ -f- T i+ L  (■^•1)

The sample, /*, which maximize 0/ is selected as the boundary location:

r  = argmax {fl;} (3.2)
(k■ L -{L -0 )< l< {k + l)■ L )
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where 0  represents the overlapping time amount and k is processed frame 
number in which transient behaviour exists.

An example of this algorithm applied to the transient regions extracted by 
the pre-processing system is shown in Figure 3.2.

This algorithm can also be analyzed intuitively: For each sample, a frame, 
whose center is the current sample, is constructed and the vocal tract filter, 
corresponding LSFs and required parameters are extracted. This process is also 
repeated for the samples which are one frame length apart from the current 
sample in both directions in the time domain. After calculation of the required 
parameters, A and F are calculated for both directions. Since value of these 
parameters reflects amount of change in spectrum, the sample which makes 
maximum change with respect to both previous and next frames is accepted 
as the boundary point. As length of transient regions may vary from 8.75 ms 
to 40 ms, success of the algorithm depends on the selected frame length. If 
the selected frame length is close to the length of the transient regions, exact 
point of the boundary location is obtained. Otherwise, large deviations from 
the exact boundary location may be encountered.

3.3 Simulation Studies

Simulation studies are performed on two signals consisting 50 words which 
contain balanced phonological units, one for male and one for female speech. 
In all simulations, the window length and the frame update duration is set to 
25 ms and 11.25 ms, respectively. The duration between analyzed frame and 
comparison frame is varied to test the performance of the system for different 
tests. Success rates are extracted from the transient regions extracted by the 
pre-processor system described in Section 3.2, since transient region estima
tion is more important in segmentation systems. Moreover, finding accurate 
locations of boundaries are sometimes impossible even by hand.
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Figure 3.1: Pre-processing system applied to 1.05 second male speech containing 

words ” Firma tamtnmnda”. The regions between two dashed lines are transient 

regions detected by proposed algorithm.
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Figure 3.2; Boundary location estimator applied to 1.05 second male speech con

taining words ” Firma tamtimirida” after detection of non-stationary regions. The 

dashed lines show detected boundaries.
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Experiments are performed for three different cases:

1. The duration between analyzed frames is set to 22.5 ms.

2. The duration between analyzed frames is set to 11.25 ms.

3. The duration between analyzed frames is set to 16.875 ms.

Results for these three configurations for male and female speech is pre
sented in Table 3.2:

Table 3.2: Success rate about the estimation of the transient regions in the con
tinuous speech signal. Both end-point detection and segmentation within word is 
performed by pre-proce.ssing .system of the new algorithm. Pe stands for the per
centage of the correct estimated end-points. Pb stands for the percentage of the 
correct estimated segment boundaries. P[ stands for the percentage of insertions 
with respect to the whole non-stationary detected regions.

Pe Pb Pi
case for male speech 95.00 94.44 24.23

case for female speech 90.00 93.51 18.72
2”“̂ case for male speech 76.00 62.03 8.33

2'̂  ̂ case for female speech 59.00 64.81 9.79
3’"'̂  case for male speech 85.00 85.18 14.61

3'"'̂  case for female speech 80.00 85.18 15.68

The proposed algorithm obtains highest scores when duration between an
alyzed frames is set to 22.5 ms. This is logical, since any increase in the 
difference between analyzed frames enables algorithm to catch more transient 
regions whose transient duration is lower than the difference between analyzed 
frames. Unfortunately, since thresholds A and 77 is selected so that the algo
rithm detects even small spectrum changes, number of accidentally detected 
regions are also increased. It can be observed that in the 2"'̂  case, number of 
insertions are decreased dramatically, since difference between analyzed frames 
is decreased, but this also yields to large number of misses.

The best solution for this problem is to set the duration between the ana
lyzed frames larger than the largest possible length for a transient region and 
use another approach like Bradt’s Generalized Likelihood Ratio (GLR) to elim
inate the insertions and to find accurate locations of segment boundaries [6].
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3.4 Summary

In this chapter, a simple speech segmentation algorithm is proposed. The 
algorithm consists of two main blocks:

1. Pre-processing system operating on the speech signal in a frame-by-frame 
basis and extracts transient regions.

2. Boundary location estimator operating on the detected transient regions 
to extract exact boundaries of the phonemes by sample-by-sample pro
cessing.

In simulation studies, it is observed that an increase in the duration between 
analyzed frames provides the proposed algorithm the capability of catching 
more transient regions. Unfortunately, since the thresholds for speech varia
tion measures are set to small values to catch even minor spectral changes, the 
algorithm also classifies non-transient regions as transient regions. In order to 
overcome this problem, more sophisticated algorithms can be used to eliminate 
these wrong classified regions. Since most of these sophisticated algorithms re
quires high computational complexity [5,6], these algorithms may be used only 
in the regions which is flagged as transient with the pre-processing part of our 
algorithm, whose computational complexity is proved to be low. Furthermore, 
more parameters like energy of signal and pitch contour can be used to improve 
the performance of this system with additional computational cost.
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Chapter 4

Variable B it-R ate M ixed  

Excitation Linear Prediction

Vocoder

Compression of telephone-bandwidth speech has been an ongoing area of re
search for several decades [49,50]. Especially, in the last several years, with 
the improving speed and decreasing price of DSP microprocessors, many of 
the algorithms and coding methods formerly impossible to implement can be 
realized in real-time. Most of these efforts are focused on the usual telephone- 
bandwidth which is between 200 Hz and 3.4 kHz.

Speech coding algorithms are classified according to their bit-rates:

• Large bit-rate : Bit-rates larger than 16 kb/s.

• Medium bit-rate : Bit-rates between 8 kb/s and 16 kb/s.

• Low bit-rate : Bit-rates between 8 kb/s and 2.4 kb/s.

• Very low bit-rate : Bit-rates below 2400 b/s.
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Analysis-by-synthesis models can work well down to 4.8 kb/s but the qual
ity deteriorates rapidly below this rate. Therefore, usually low bit-rates can be 
achieved only by parametric representation of speech. The most well-known 
and studied speech coding algorithm is the LPC-10 vocoder based on the hu
man speech production system, described in Chapter 1.

Although LPC-10 algorithm can encode speech intelligibly at 2.4 kb/s, its 
quality is usually unacceptable for many applications. After 1993, a competi
tion for a new 2400 b/s vocoder standard to replace old LPCIO-E vocoder was 
started in the USA by U.S. Department of Defense, Digital Voice Processing 
Consortium (DoD-DDVPC). After long time of testing stages and refinement of 
the candidate algorithms. Mixed Excitation Linear Predictive coding (MELP) 
is selected as the new 2400 b/s federal standard in 1997. MELP algorithm is 
originally developed by Alan McCree and T.P. Barnwell at Georgia Institute 
of Technology [51].

Variable Bit-Rate (VBR) coding is a special type of multi-mode coding 
scheme, where each acoustic phonetic class is encoded by different coding al
gorithm and represented by different amount of bits. VBR coders are partic
ularly useful for voice storage, code-division multiple access (CDMA) wireless 
networks, and packetized communication systems.

One of the most important part of VBR coders is the voice activity detector 
(VAD), which is used to detect the presence of speech signal in the channel. 
In a typical two-way telephone conversation, the voicing activity is generally 
around 40 percent. Therefore, the average coding rate can be reduced with 
efficient coding of these silent regions.

In the past decades, several researchers presented different variable rate cod
ing techniques. Although various speech representation techniques are used, 
most of them are based on CELP coders [52]: The first VR-CELP coder is 
proposed by Vaseghi [53]. In his work, several versions of different bit-rate 
CELP coders, allocating different numbers of bits to quantized LPC parame
ters and excitation signal, are used to code different speech types. Besides this 
coder, several VR-CELP algorithms are reported in literature which addresses 
different problems: In Cellario et al. work [54], a VR-CELP coder for CDMA 
application is demonstrated. Gomez et al. presents real-time implementation
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of Federal Standard FS1016 CELP coder which can also switch to higher and 
lower bitrates according to the distortion in the synthesized speech [55]. In 
lacovo and Serena work [56], an embedded variable rate CELP coding tech
nique is presented. In their algorithm, embedded bit-stream is used to provide 
robustness to packet loss in packetized transmission systems. Lupini et al. pro
posed a VR-CELP coder which selects its coding mode due to the conditions of 
both input signal and network conditions [57]. In recent studies, McClellan and 
Gibson presents a VR-CELP algorithm based on subband measures of spectral 
flatness using entropy functional [58] and Kroon and Recchione implements a 
low-complexity toll-quality VR-CELP coder for CDM.A. cellular systems [59]. 
Majority of these coders use bit-rates varying from 16 kb/s down to 0.8 kb/s.

In addition to VR-CELP coders, several other variable rate coding algo
rithms. based on other speech coding methods are reported; Peng and Cuper- 
man presents a variable rate coder based on lattice low-delay vector excitation 
coding technique [60]. It is reported that it is possible to obtain good quality 
speech between 8 and 16 kb/s with this method. Francesco et al. presents an 
algorithm which makes speech segmentation and coding at the same time with 
reasonable complexity with fast algebraic codes [61]. Their algorithm is re
ported to achieve an average bit-rate between 5 and 6 kb/s. Wang and Gersho 
propose a phonetically segmented vector excitation based vocoder which works 
at .3.0 kb/s average bit-rate whose subjective performance closely matches 4.8 
kb/s DoD GELP coder [62]. Another variable-rate subband coder is presented 
by Shen et al. [63]. At 12 kb/s average bit-rate, this coder is reported to pro
duce better quality speech than QCELP coder and better quality music than 
both QCELP and full-rate GSM coder. In Paksoy et al. work [64], a variable 
rate multimodal speech coder which is based on analysis-by-synthesis method 
is presented. This coder is reported to achieve 3 kb/s average bit-rate with a 
quality comparable to full-rate GSM coder. In Yu and Chan work [65], a vari
able rate coder based on multiband excitation coding algorithm is presented. 
This coder utilizes different bit allocation for spectral quantization for differ
ent frame types. This coder is capable of transmission of good quality speech 
at average bit-rate of 1.24 kb/s. In addition to these coders, Villette et al. 
presents a high quality split-band LPC vocoder in both fixed rate and variable 
rate versions [66]. Variable rate coder is reported to achieve an average bit-rate 
of 1.4 kb/s.
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In this chapter, a variable bit-rate MELP vocoder, based on federal stan
dard, is presented. Parameter extraction scheme is the same as the original 
MELP vocoder, and after detecting the frame type of the speech signal, differ
ent number of bits is assigned to different frame types. This encoding scheme 
reduces bit-rate to approximately 1000 b/s from 2400 b/s without consider
able loss of quality. Silence and background noise sections are detected by a 
novel voice activity detector, in which the non-stationarity detector, proposed 
in Chapter 2, is used to extract the stationary segments in the signal. Our 
non-stationarity detector provides non-stationary background noise immunity 
to the voice activity detector in this vocoder.

Outline of this chapter is as follows: A brief description of MELP vocoder 
and voice activity detectors are given in Section 4.1 and Section 4.2, respec
tively. Design of VBR-MELP vocoder and the novel VAD is presented in 
Section 4.3. Section 4.4 presents performance of the new VBR vocoder.

4.1 M ixed Excitation Linear Prediction Vocoder

Although it is possible to obtain synthetic speech at 2400 b/s with traditional 
LPC vocoder, its performance is unacceptable for many applications due to 
low quality. The problems for the traditional LPC vocoder can be summarized 
as follows:

• Lack of naturalness,

• tonal noise especially for female speakers,

• buzziness especially for male speakers,

• mechanical and tense sound,

• thumps,

• lack of transition control within frames, and

• noise robustness.
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The first problems are according to the spectral envelope mismatching. 
Since the LPC vocoder is based on an oversimplified model of the human voice 
generation system, this system can not produce more complex sounds, humans 
generate.

Another problem in the LPC vocoder is the wrong decisions by the 
voiced/unvoiced detectors. Since neither of the voiced/unvoiced decision al
gorithms can always find the true state of this switch, wrong decisions leads to 
deterioration of the quality of the synthesized speech. Unvoiced classification 
for the uncertain situations increases thumps, where voiced classification of 
these parts makes synthesized speech sound buzzy.

In order to correct the above problems, more complex models must be used 
to simulate other properties of human voice generation system. Some of these 
problems can be eliminated as follows:

• Some phonemes have both voiced and unvoiced regions in the spectrum 
such as voiced fricatives (e.g. / z/ and /u/). Therefore, mixture of voiced 
and unvoiced excitation can produce them more naturally [67]. Fourier 
transform of a mixed excited utterance can be seen in Figure 4.1. In 
this figure, spectrum contains both harmonic structures and noise in 
distinct bands. In addition to this property, mixed excitation removes the 
voiced/unvoiced switch which decreases the buzziness and thumps in the 
synthesized speech. Furthermore, mixed excitation improves background 
noise immunity of the system [68].

• Since tonal noise occurs according to the strong periodicity of the impulse 
train, this problem can be eliminated by destroying the periodicity of the 
impulse train [69].

• Pulse shape of the periodic excitation waveform may be changed to glottal 
excitation shape by spreading the energy of the excitation signal between 
consecutive pitch periods [68].

• Noise due to the mismatch of the LPC filter spectrum may be compen
sated by reducing the noise in the valleys of LPC spectrum by a time 
varying filter [70].
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• Vocoders may also try to match the waveform of original sequence in 
transitional areas by other kind of methods similar to [71].

MELP vocoder implements all of these new features except the hist one. 
.Although MELP vocoder has no special solution for transitional regions of 
speech, it can still produce good quality speech at those regions by using its 
new features.

Frequency plot of a mixed excited utterance

Figure 4.1; Fourier transform of mixed excited phoneme.

4.1.1 Basic Synthesizer

The basic synthesizer of MELP vocoder is shown in Figure 4.2. Both voiced 
and unvoiced excitation is created separately. The only difference in the gen
eration of the voiced excitation is that periodicity is destroyed if the position 
jitter is activated and pulse shape changes from frame to frame due to the 
different Fourier magnitudes. These two excitations are fed into spectral shap
ing band-pass filters. The band-pass filters are linear phase FIR filters and 
are complement of each other. Therefore, addition of these two band-pass fil
ters gives unity magnitude in all bands. After this step, two excitations are
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summed together to form the mixed excitation. It is still possible to simulate 
voiced/unvoiced switch in the LPC-10 encoder with this excitation generation 
method.

After this step, the excitation is filtered with the adaptive spectrum en
hancement filter. The filtered excitation signal is spectrally shaped by the 
vocal tract filter and then the resulting signal is filtered with the pulse disper
sion filter after energies of the original and synthesized signal are matched. All 
of these new blocks are described in detail in following subsections.

This system is an enhanced version of the traditional LPC vocoder described 
in Chapter 1. To increase the performance of this old vocoder, these new blocks 
are added and the voiced/unvoiced switch is replaced with the mixed excitation 
model. Note that mixed excitation model is successfully used in multiband 
excitation coding in frequency domain as well [72].

Figure 4.2: Synthesizer of MELP Vocoder.

The new properties of MELP vocoder can be summarized as follows:

• Mixed Excitation : Reduces buzz, more accurate in spectrum matching 
and more robust when operating in noisy environments.

• Aperiodic Pulses : Reduces tonal noise.
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• Adaptive Spectral Enhancement Filter : Emphasize formants and decrease 
the noise in valleys of the LPC spectrum.

• Pulse Dispersion Filter : Modifies pulse shape and spread the energy of 
excitation signal between consecutive pitch periods. Since it is spectrally 
flat, it has no influence on unvoiced excitation signal.

• Fourier Magnitudes : Reduces mismatch between excitation of original 
and synthesized speech.

4.1.2 M ixed Excitation

Mixed excitation model is mainly used for synthesizing natural sounding speech 
which can be possible with more accurate matching of the original speech 
signal’s spectrum with that of the synthesized speech signal’s spectrum. In 
addition to this property, this type of excitation system eliminates the need 
for an voiced/unvoiced switch and reduces the thumps and buzziness in the 
synthesized speech due to the wrong voicing decision. Because of the nature 
of the excitation generation, the new vocoder’s performance is also superior to 
the traditional vocoder in noisy environments.

There are several versions of the mixed excitation generation in literatui'e: 
In Makhoul et al. work [73], periodic impulse train is low-pass filtered and 
the white noise sequence is filtered with a high-pass filter where the cut-off 
frequency of these filters are equal. The encoder tries to find the cut-off fre
quency for these filters to match the original speech with the synthesized one. 
Since the cut-off frequency is varied in the multiples of 500 Hz, the vocoder 
does not work well. It is not robust to background noise, as vocoder has only 
two bands. In Kwon and Goldberg work [67], some degree of voiced and un
voiced excitation signal is mixed for all bands. This approach tries to match 
the residual signal with the excitation signal of the synthesizer. The problem 
of this approach is that because the entire spectrum has the same degree of 
voicing, there is no band specific mixing. First version of the MELP vocoder- 
uses two filters like in [73]. However in this implementation, the zeros of these 
filter can be varied so that the cut-off frequency is Vciried continuously and the
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degree of mixing for the frequency bands can be adjusted. But still this system 
is not robust to background noise

4.1.3 Aperiodic Pulses

There is short, isolated tones in the synthesized speech especially for female 
speakers in LPCIO vocoder. This can be removed by adding noise to low fre
quency region, but the artificial noise results in harsh speech. Another solution 
is to desti'oy the periodicity of the impulse train. When the periodicity is de
stroyed for all voiced frames, strong voiced frames sounds distorted. Therefore, 
an additional voicing state is added to the MELP vocoder [69]. With this jittery 
voiced flag, speech may be modeled with aperiodic pulses for voiced excitation 
at the expense of 1 bit/frame. Aperiodic pulses are generated by varying each 
pitch period length by a pulse position jitter which is uniformly distributed by 
±25% of its original pitch period value. .Jittery voicing corresponds to erratic 
glottal pulses, so it can be detected from either marginal correlation or peak- 
iness in the input speech. Peakiness is defined to be the ratio of RMS power 
to the average value of the full-wave rectified LPC residual signal. If the value 
of peakiness is lower than a predetermined value, the sequence is assigned to 
be aperiodic. This carefully controlled use of aperiodic pulses effectively re
moves the occasional tones from the synthetic speech without introducing any 
distortion.

4.1.4 Adaptive Spectral Enhancement

There are various reasons for the usage of adaptive spectral enhancement filter:

1. This block compensates the quantization error of the LPC coefficients. 
This adaptive filter widens the bandwidth and reduces the peakiness of 
the formant frequencies in the LPC spectrum. This would increase speech 
quality because the mismatch in the spectrum is decreased.
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2. The noise injected into the system is more audible in the frequency bands 
which corresponds to the valleys in the spectrum of LPC filter due to the 
masking property of the human auditory system [74]. Since this spectral 
enhancement filter de-emphasize those regions, the noise is less audible 
and this increase the subjective quality of the synthesized speech.

3. This filter helps the band-pass filtered speech to match the natural speech 
waveform in formant regions. Typical formant resonances do not usually 
completely decay in the time between pitch pulses in either natural or 
synthesized speech, but synthetic speech waveform reach a lower valley 
between peaks than natural waveform do [75]. Adaptive spectral en
hancement filter corrects this undesired behavior.

These problems can be eliminated by varying the synthesis pole bandwidth 
within each pitch period. This can be done by replacing term of LPC filter 
by where a is smaller than 1. This operation moves the poles of the LPC
filter away from the unit circle and weakens the pole resonances. Unfortunately, 
this filter usually has a low-pass characteristic and therefore makes the speech 
sound hoarse. Therefore, an all-zero filter which has the same phase angles 
with the all-pole section but farther away from the unit circle than poles are 
also added. This would remove the low-pass characteristic of the filter while 
preserving the emphasis on formant frequencies. The resulting filter becomes:

(4.1)

Generally a is selected to be 0.8 and /? is selected to be 0.5. To reduce the 
low-pass effect further, a first order FIR filter is added in cascade to the system:

Htiit — 1 fJ, ■ z -i (4.2)

where /j. is generally selected to be 0.5 · ki where ki is the first reflection co
efficient. Since this filter produces slightly high-pass spectral tilt, it helps to 
reduce the low-pass effect.

Excellent review of spectral enhancement filters can be found in [70] and 
also a frequency domain version of this filter is presented in [76].
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4.1.5 Pulse D ispersion Filter

One of the main reasons for the buzziness of the LPC vocoder is the pure 
impulsive excitation of voiced frames. With this type of excitation, the syn
thesized speech has higher peaks for the first few samples and it decreases so 
rapidly that it can not match the original speech especially for the frequency 
bands which does not have formant resonances [68]. This phenomena can also 
be explained by the duration of the opening and closure of the vocal cords 
which can not be in pure impulsive form. In order to eliminate this problem, 
the shape of the impulsive excitation must be changed. Various researchers 
tried to find the best pulse shape which gives the highest quality in the syn
thesized speech [77-79]. The best pulse shape is found to be the one which has 
no discontinuity and varies approximately 50% of the pitch period [79].

In MELP, this spreading of the pulse through samples are performed by a 
FIR filter [68], continuously applied to the synthesized speech. Coefficients of 
this filter is synthesized as follows:

First the DFT of a triangular pulse is computed and the magnitude of the 
DFT is set to unity. Then, its inverse DFT is evaluated by preserving phase. 
This filter produces less peaked synthesized speech. Since the synthesized pulse 
does not decay rapidly, it matches the original speech in a higher degree.

4.1.6 Fourier Series M agnitudes

This extension is first used to enhance the quality of the vocoder in higher bit- 
rate version (4800 b/s). First original speech is filtered with the inverse linear 
prediction filter. Then, DFT of the resultant residual signal is computed. 
Although DFT of this signal is expected to be spectrally flat, this is not true 
in most of the cases. As a remark, if the sequence is considered to be periodic 
with the period of the size of DFT, the DFT coefficients are exactly the same 
as the Fourier series expansion coefficients. To increase the quality of speech, 
magnitudes of the peaks of the harmonics are also transmitted to the decoder. 
In decoder, these quantized magnitude values are decoded and the impulse 
train is synthesized by computing the inverse DFT of these coefficients. The
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magnitudes of harmonics which are not transmitted are assumed to be unity 
in the decoder.

In MELP vocoder, magnitudes of the only first 10 harmonics are quantized 
with vector quantization and transmitted to the decoder [80].

4.1.7 Flowchart o f the MELP Decoder

Output Speech

Figure 4.3; Flowchart of the MELP decoder.

66



4.1.8 Flowchart of the MELP Encoder
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4.1.9 Performance Evaluation

Detailed performance analysis for the MELP vocoder was carried out in [81]. In 
most of these tests, MELP outperforms LPCIO and CSVD and nearly has the 
same performance with the higher bitrate, 4.8 kb/s, FS1016 CELP standard. 
Besides in noisy environments, MELP also outperforms federal standard CELP 
algorithm. More subjective test results are given in Section 4..3 from the results 
of the subjective tests conducted by TUBiTAK-BILTEN / Speech Processing 
Group.

4.2 Voice A ctivity Detectors

The Voice Activity Detector (VAD) is the most important part of VBR coders 
and DTX transmission systems. Basic assumptions behind the design of VAD 
algorithms can be summarized as follows;

• Speech is a non-stationary signal which changes in 20-30 ms periods.

• Background noise is stationary during much longer periods, i.e. silences 
and pauses between '’’talk-spurts '̂' in two-way conversations.

• Energy of the speech signal is usually higher than that of background 
noise.

Based on the assumptions, it is possible to design VAD algorithms to detect si
lence gaps as well as background noise without speech. If energy of background 
noise in the environment is very low, a simple algorithm based on signal en
ergy level can be used to distinguish between silence and active speech periods. 
However, for high energy non-stationary background noise, which is usually 
encountered in mobile communication systems, more sophisticated algorithms 
must be developed.

Another problem for a VAD algorithm is the discrimination of low-energy 
unvoiced sounds like fricatives in high background noise energy level. Since it
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is hard to detect these parts, a ’’hang-over time” is used during which VAD 
algorithm delays its decision to declare silence and continues to observe the 
signal until it decides that a transition has occurred from active speech to 
silence. This approach extremely reduces misclassiflcation of weak fricatives.

The accuracy and robustness of VAD determines the quality and capacity 
of the vocoders. Reliable silence detection is essential. If silence is detected 
as speech, the capacity is reduced; On the other hand, if speech is detected 
as silence, ’’clipping” and other degradations in the synthesized speech are 
introduced.

Another important consideration for the VBR systems is the synthesis of 
non-speech segments. In order to preserve naturalness, background noise must 
be reproduced in some fashion. For stationary noise, it is sufficient to trans
mit noise characteristic once in the beginning and decoder can produce ’’com
fort noise” during non-speech intervals based on this information. For non- 
stationary background noise, spectral parameters and gain of the noise must 
also be transmitted continuously at a very low bit rate.

The following parameters were used to detect the speech activity and silence 
discrimination in the literature:

• Energy of the first derivative of the signal [82],

• ratio between energies of consecutive frames [82],

• modeling error of the LPC filter [83],

• periodicity and the pitch period [83],

• optimum modeling order of the LPC filter [83],

• LPC cepstrum distance between analyzed frames

• energy and log-energy of the signal [4,84],

• zero-crossing rate [84],

• Teager’s energy measure [85], and

• a distance measure based on wavelet analysis [86].
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It is experimentally observed that the distance measure given in the last 
entry works best in low SNR signals [86].

The first systems based on VAD, known as time assignment speech interpo
lation (TASI), was introduced to increase the capacity of submarine telephone 
system used in analog telephony [87]. TASI was subsequently replaced with a 
similar digital system, known as digital speech interpolation (DSI) system.

Several VAD algorithms were presented in the literature: The early works 
are mostly concentrated on the on-off pattern extraction of speech. These al
gorithms do not provide any noise robustness. In Brady’s work [88], statistical 
distribution of spurts and gaps were obtained experimentally and a VAD algo
rithm was designed based on these statistical data. In Yatsuzuka work [87], a 
speech and voice-band data discriminator for DSI-ADPCM systems was pre
sented. This algorithm provides highly sensitive speech detector with a decision 
system consisting of a finite state machine, but the system does not have any 
noise immunity. Another well-known VAD algorithm is used in Pan-European 
Digital Cellular Mobile Telephone Service [89]. This algorithm is selected by 
CEPT-GSM to be used in the DTX systems. This VAD is explained in detail 
in Section 4.3.1. In literature, large number of variations of this algorithm is 
presented. Most of these variations are reported to increase noise immunity of 
the system. In Paksoy et al. work [90], energy levels in four distinct subbands 
are compared with corresponding thresholds and if thresholds of any of these 
subbands are exceeded, frame is declared as speech. Furthermore, spectral 
flatness at the output of the noise suppression filter is also measured to detect 
speech activity. Finally, a variable hang-over time is utilized for different noise 
levels to improve the eflSciency of the VAD. In Cellario et al. work [54], shorter 
frames are reported to have better performance in noise. In recent studies, 
more complicated algorithms are proposed: In Sohn and Sung work, a VAD 
algorithm, employing a soft decision based noise spectrum adaptation, is pre
sented [91]. This algorithm is reported to have a good noise spectrum tracking 
property. In Cavallaro et al. work [92], a fuzzy logic based VAD algorithm is 
presented. This algorithm is reported to have better efficiency than the one 
presented in [89].
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4.3 Variable B it-rate MELP Vocoder

Design of a variable bit-rate vocoder mainly concerns the selection of encoding 
modes for the optimization of the system in both computational complexity and 
bit-rate reduction. Besides, the sequence of the mode selection and processing 
of the encoding algorithms must be decided.

Since our aim is to develop a variable bit-rate vocoder based on MELP 
without changing the overall system, a simple bit-rate reduction scheme is 
developed. MELP vocoder separates bit-stream format into two sections as 
shown in Table 4.1:

Table 4.1: Bit allocation table for fixed bit-rate MELP vocoder
P aram ete rs Voiced Unvoiced

LSFs 25 25
Fourier Magnitudes 8 —

Gain (2 per frame) 8 8
Pitch, Overall Voicing 7 7

Bandpass Voicing 4 —

Aperiodic Flag 1 —

Error Protection — 13
Sync Bit 1 1

Total Bits /  22.5 ms frames 54 54

Synthesis of unvoiced sections do not require Fourier magnitudes, pitch 
period, bandpass voicing decisions and aperiodic flag. Hence, these bits are 
used for error protection (13 bits/frame) and transmission of sequence type (7 
bits/frame in the place of pitch period). Since a header is always transmitted 
in a variable bit-rate vocoder, the requirement for transmission of pitch period 
information is eliminated for unvoiced frames. Furthermore, error protection is 
also removed in our vocoder. In addition, gain is generally stable in unvoiced 
sections, therefore transmission of the first gain parameter is also redundant. 
As a result, elimination of transmission of these parameters decreases the re
quired bits from 54 bits/frame to 30 bits/frame for unvoiced frames.

In addition to the bit-rate reduction in unvoiced sections, further bit-rate 
reduction can be achieved by efficient coding of silence and background noise 
sections of the input sequence, which covers nearly 40 percent of a typical
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conversation. For this purpose, the new VBR-MELP coder utilizes a voice 
activity detector to detect silent regions and makes efficient coding to reduce 
the average bit-rate.

In following subsections, a novel VAD algorithm for MELP vocoder and 
final bit allocation table for variable MELP vocoder is presented.

4.3.1 VAD for V BR -M ELP Vocoder

The design of proposed voice activity detector is based on the design of two 
voice activity detectors: First one is designed for DSTADPCM systems [87], 
and utilizes a finite state machine for the detection of silence parts. This de
tector uses energy of the frame, ratio of energies in consecutive frames and 
zero-crossing number as the parameter set. Due to the selection of the param
eter set, this detector does not have any noise robustness.

The second VAD, on which our algorithm is based, is the VAD used in 
second phase of GSM 6.10 standard [89]. This detector, utilizes two separate 
detectors, one for giving voice activity decision by comparing some parameters 
with predetermined thresholds and one for adapting inverse prediction filter 
of background noise. In the first detector, the incoming signal is filtered with 
the inverse prediction filter of the background noise and energy of the resulting 
signal is computed. Frame is assumed to contain speech signal, when value of 
this energy is larger than a threshold. Otherwise, that frame is classified to be 
noise. Furthermore, an 60-100 ms hang-over time is also introduced to avoid 
clipping of the final parts of the utterances in the speech signal. In the second 
detector, the distance between the LPC filter computed from averaged autocor
relation values of noise sequence and the LPC filter computed for the current 
frame is calculated by Itakura likelihood ratio. Frame is assumed to be station
ary, while this result is smaller than a pre-determined threshold. Furthermore, 
periodicity of the signal is also controlled. If input frame is classified as non- 
stationary and does not contain any periodic structure, frame is assumed to 
be initial point of noise sequence. Besides, before updating the coefficients of 
the prediction filter of the noise, this system waits for 8 frames, to ensure the 
continuity of the noise sequence. If all these conditions are met, coefficients of
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the prediction filter of the noise used in the first detector is updated. The illus
tration of this VAD can be seen in Figure 4.5. The computational complexity 
of this VAD is low. The parameters required for the algorithm is already ex
tracted within RPE-LTP vocoder and the only computation performed within 
this system is the computations for the decision system.

Figure 4.5: The voice activity detector for the pan-european digital cellular mobile 
telephone service.

MELP algorithm extracts following parameters within the encoder:

• Pitch period,

• bandpass voicing strengths,

• LSFs, and

• two gain calculation for the first and the second half of the frame.

In order to decrease computational complexity, these parameters are used di
rectly within our VAD.

The new proposed VAD uses the distance measure, Dk·, defined as follows:

E f (4.3)Dfc = 10 · log __
^ /=1 J

This measure is based on the logarithm of the ratio of the signal energies in 
subbands to the variance of noise in the corresponding bands, which is the
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modified version of the one used in [86]. cr; is the estimated variance of the 
background noise in the subband, and is the energy parameter of the 

frame for the I*''’ subband over a time window and computed as follows:

1 N,

n=l
/= 1,2,---,L (4.4)

where Ni is the number of samples in the subband. In our system, there is no 
decimation in subband decomposition. Ni is equal to 90 samples corresponding 
to half of ciii 22.5 ms MELP frame. As signal is decomposed into 5 subbands, 
L is selected to be 5.

The original method is reported to be successful in end-point detection in 
noisy environments. However, end-point detection system described in [86] 
assumes that the initial few frames are always noise and the noise variances 
in the subbands are extracted from these frames. Unfortunately, in a typical 
telephone conversation, the first few frames may contain speech information. 
Therefore, it is impossible to make this kind of assumption in our system. To 
overcome this problem, the required variances of the noise in the subbands are 
extracted by a similar method described in GSM-VAD.

The diagram of the new VAD is shown in Figure 4.6. The system has two 
main parts labeled as VADİ and VAD2:

VADİ is used to detect the presence of the speech signal. First, energy in 
5 subbands are extracted for the first and the second half of the frame and Dk 
is computed twice for the two sub-frames to obtain Dk̂  and Dk^· Besides, an 
initial silence detector is used to detect inaudible signal by comparing the gain 
values with an experimentally derived threshold. Furthermore, this detector 
also provides echo-suppression in some degree when no background noise is 
present: Voiced sections and information tones always have high energies. If a 
strong periodic structure is detected with a gain smedler than a second thresh
old, that frame is assumed to belong to a part of an echo signal. The output 
of this initial silence detector and Dk values are used by the decision system to 
make final decision about the voicing state. The decision box contains a finite 
state machine, which consists of four different states about silence detection 
including ’hang-over’ state. States are updated twice in a 22.5 ms frame, one 
for the value of Dk·̂  and one for the value of Dk^·
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Figure 4.6: Voice activity detector for VBR-MELP Vocoder.

VAD2 is used in parallel with VADİ to update the variances of noise in 5 
subbands. The adaptation is performed by Noise Variance Adaptation block, 
which takes the required parameters from Stationarity Check block, Periodicity 
Check block and the decision of VADİ for the previous frame. Since proposed 
non-stationarity detector has one frame delay, VAD2 also has one frame delay. 
The frame length of this block is 180 sample similar to the MELP vocoder.

Details of the sub-blocks are described in following subsections:

Initial Silence D etector

This block is used to detect inaudible frames prior to the application of the 
rest of the voice activity detector to the current frame. Furthermore, it uses a 
simple echo suppression logic in the detection of the frames containing quasi- 
periodic signal with very low energy level, never encountered in voiced speech.
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This block requires the gain values and the final estimated pitch period cal
culated in the MELP encoder. The gain values are compared with two gain 
thresholds, Tgl .̂nd Тан- If both gain values are lower than Tgl, the analyzed 
frame is declared as silence. If any of them exceeds Tghi classification of the 
state of the frame is left to Speech/Silence Decision Block. If neither conditions 
are met, voicing strength measure of extracted pitch period is controlled [17]. 
If periodicity is detected, frame is classified as echo of the other channel. Oth
erwise, classification of the state of the frame is left to Speech/Silence Decision 
Block. Flowchart of the algorithm is plotted in Figure 4.7.

Figure 4.7: Flowchart of initial silence detector.
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The thresholds, Tql and Tqh, are found experimentally from a 2 minute 
conversation^, including echoes from other channel. Gn and Gt2 are set to 38.0 
clB and 48.0 clB, respectively.

Bandpass Energy Computation

This block computes the energies of bandpass signals, E[, for the frame 
which are filtered in encoder with sixth order Butterworth filters, whose pass- 
band regions are between following regions: [0 - 500 Hz], [500 - 1000 Hz], [1000 
- 2000 Hz], [2000 - 3000 Hz] and [3000 - 4000 Hz].

Energies are computed twice per trame, one for the first half of frame, E l ,̂ 
and one for the second half, These values are used in distance measure
calculation, D*,., and Noise Variance Adaptation block.

Distance Measure Calculation

In this block, Dk defined in (4.3) is computed twice for both of the first and 
the second half of the frame. The variances, cr;, are set to 1.0 for all bands 
prior to first update in order to classify all frames as speech detected frames. 
Computed values, Dk  ̂ and Dk̂ ·, are used in the decision block.

Speech/Silence Decision Block

In this block, Dkn and the decision of the initial silence detector is used to 
discriminate silence frames in the conversation. For this purpose, a four states 
finite state machine is developed:

^This conversation is taken from ’Switchboard Corpus - Recorded Telephone 
Conversations’ database collected by Texas Instruments
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1. Silence (SI): These regions contain only background noise.

2. Primary Detection of Signal (PD): These regions are primary detection 
for signal which may contain information. If system stays in this stage for 
longer than a pre-determined duration, 'Speech Enable’ state is activated.

3. Speech Enable (SE): These regions contain speech signal.

4. Hang-over Period (HO): Silence is detected in these regions, however, to 
eliminate misclassification of the weak fricatives and the final nasals at 
the end of the speech, a hang-over period is inserted in the system.

State transitions are performed due to the values of two coefficients:

•  PDFk : Primary detection of speech for the frame. Its value is set 
to 0, if silence is declared in initial silence detector or Dk  ̂ is below Dti- 
Otherwise, it is set to 1.

•  SDFk : Definite presence of speech for the frame. Its value is set to 
1, if Dkn exceeds Dt2- Otherwise, it is set to 0.

Setting of these coefficients can also be summarized as follows: 

Table 4.2: Setting of the coefficients.
PDFk = 0 Silence is declared in the initial silence detector or 

Dk„ <  Dti
PDFk = 1 Dti < Dkn < Dt2
PDFk = 1, SDFk = 1 Dt2 < Dkr,

Values of Dt\ and Dt2 are obtained experimentally. These values are se
lected such that clipping of speech and misclassification of silence frames are 
minimized. The system is found to be optimum, when Dn and Dt2 are set to 
5.0 and 10.0, respectively.

The state transition diagram is given in Figure 4.8. Transitions from PD 
to SE  and HO to SI requires some past information, i.e. memory. To go from 
PD to SE, PDF  must be set to 1 for 20 half-frames, that corresponds to a
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wait state of 225 ms. Transfer from HO to SI in general requires 45 ms in 
this system. This relatively short hang-over period is due to the robustness of 
the system to the background noise. Furthermore, if the talk-spurt duration is 
shorter than 56.25 ms, this period is also reduced to 22.5 ms. In simuhition 
studies, it is observed that only stop-gaps are missed with this approcich.

SDF, = 1

PDF (1|1...1) for 20 frames

PDF, = 1

PDF, = 1
PDF =0

PDF, = 1

PDF^ (0|000) if talk spurt > 56.25 msec 
PDF^ (0|0) if talk spurt < 56.25 msec

P D F ,= 0

PDF,

Figure 4.8: State transition diagram of the decision box. SI stands for silence state. 
PD stands for primary detection state. SE stands for speech detected frames. HO 
stands for hangover state.

Periodicity Control

This block obtains state of periodicity by analyzing the bandpass voicing 
strength of bands and voicing strength measure of the estimated pitch pe
riod in the encoder [17]. The flowchart of the algorithm is shown in Figure 
4.9.

The flags vbpl, vbp2, vbpS and vbp.{ are bandpass voicing strengths for the 
first 4 bands. Only the first bandpass voicing strength has a fractional value.
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Yes- Periodicity
Detected

Figure 4.9: Flowchart of periodicity detector.

between 0 and 1. Other ones are set to either 0 or 1. The coefhcient, rP3, 
stands for voicing strength measure of final estimated pitch. For strong voiced 
frames, the value of this parameter exceeds 0.65.

Stationarity Control

This block uses the non-stationarity detector algorithm described in Chapter 
2. Thresholds, A and 77, are both set to 1.0, in order to detect only abrupt 
changes. Output of this block has one frame delay.
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Noise Variance Adaptation

This block makes adaptation for the variances of noise in sub bands, when the 
statistics of the background noise is changed. Before adaptation takes place, 
following conditions must be met:

1. Signal must be stationary for a period of time longer than Sx ■ 22.5 ms. 
Sx is the number of frames for the system to wait before adaptation takes 
place in which signal is stationary.

2. Signal must not be periodic. Since information tones has long duration, 
they may be classified as long stationary regions. These regions must not 
be included in noise adaptation.

3. Decision state of final decision box in VADİ must be same for previous 
two frames.

If these conditions are met, variances of noise in five subbands are calculated 
and then continuously averaged in every frame as follows:

· Ng +  Et 
+ 1

(J i = (4,5)

where are the number of stationary frames after the first frame of adaptation 
and erf is the variance of noise in the previous frame. This averaging is repeated 
until at least one of the three conditions written above is violated.

Value of Sx changes from 6 to 20. It is observed that 8 is a reasonable value, 
because practically none of the unvoiced phonemes last longer than 180 ms.

Flowchart of this block is illustrated in Figure 4.10

4.3.2 Bit A llocation for VBR-M ELP Vocoder

In this novel variable rate MELP coder, a two-bit header is used to classify 
frame type: Voiced, unvoiced and silence/noise. For the silence/noise frames.
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Figure 4.10: Flowchart of noise variance adaptation block. PFS and CFS stand for 
the state of the previous frame and current frame, respectively.

the parameters of the first frame of the silence regions are transmitted as if it 
is an unvoiced frame and these parameters are repeatedly used until a header 
showing different frame type other than silence/noise is encountered. Table 4.3 
shows final bit allocation.

Table 4.3: Bit allocation table for variable bit-rate VIELP vocoder.
P a ram ete rs Voiced Unvoiced S ilence/N oise

Header 2 2 2
LSFs 25 25 —

Fourier Magnitudes 8 — —
Gain (2 per frame) 8 5 —

Pitch, Overall Voicing 7 — —

Bandpass Voicing 4 — —

Aperiodic Flag 1 — —

Total Bits /  22.5 ms frames 55 32 2

4.4 Sim ulation Studies

As a part of a sponsored project, a MELP vocoder, slightly modified version of 
the federal standard, is implemented in both floating point and fixed point with
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C programming language in TUBITAK-BILTEN /  Speech Processing Lcibora- 
tory by my colleagues and me. Furthermore, fixed point C source codes are 
ported to TMS320C54x DSP architecture and in order to obtain highest effi
ciency, the entire code is hand optimized in assembler language. Both of the 
encoder and decoder of the MELP vocoder is bitstream compatible with the 
federal standard.

At the end of the project, subjective listening tests are conducted to make 
comparison between ACELP, a CELP based vocoder whose quality is better 
than FS1016 federal standard CELP coder, LPC-10 and MELP algorithms. 
Tests are evaluated using the speech signals taken from two native Turkish 
speaker, one for male speech and one for female speech. Two types of tests are 
conducted:

1. Diagnostic Rhyme Test (DRT)

2. Mean Opinion Score (MOS)

The goal of these tests are to evaluate the intelligibility and quality of the 
output of the synthesizer. Final data are obtained by evaluation of the test 
results from 20 subjects.

Noise robustness tests are performed as follows; A Volvo340 car noise^, 
driven on a rainy asphalt road is mixed with the clean speech. SNR value of 
the resultant signal is approximately 10 dB. The resultant signals are used as 
the noisy test data in the following tests.

4.4.1 D iagnostic Rhym e Test

This test was carried out with 50 rhyming word pairs. Subjects are asked to 
find out which word of the pair is spoken. The classification of the word pairs 
are as follows:

^Institute for Perception, TNO, The Netherlands

S3



1. Voiced/Unvoiced Difference·. These sounds have only three letters. Word 
pairs have different utterances only in the beginning of the word. In these 
tests, subjects are asked to discriminate the letter pairs, b-p, g-k, v-f, j-§ 
and d-t.

2. Nasality Difference: These sounds have again only three letters. Word 
pairs have different utterances only in the beginning of the word. In these 
tests, subjects are asked to discriminate the letter pairs, m-b and n-d.

3. Sustained/Interrupted Difference: In these tests, words which have simi
lar sounds, but different meanings are used. In this case, one word of the 
pair lasts longer to read.

4. Sibilated/Unsibilated Difference: In these tests, subjects are asked to 
discriminate the letter pairs, z-t, p-k and j-g.

In this test, following results are obtained:

Table 4.4: DRT scores of MELP and ACELP vocoders. WD stands for wrong 
decision.

Male Speech ACELP MELP
50 word pairs in clean speech 2 WD 3 WD
50 word pairs in noisy speech 29 WD 9 WD

Female Speech ACELP MELP
50 word pairs in clean speech 7 WD 8 WD
50 word pairs in noisy speech 57 WD 33 WD

From these results, ACELP vocoder is only 0.2% more intelligible then 
MELP vocoder in clean speech. However, in noisy speech, MELP vocoder 
clearly outperforms ACELP: MELP vocoder is 4% and 4.8% more intelligible 
for male speech and female speech, respectively.

4.4.2 M ean Opinion Score

This test was carried out with ten short phonetically balanced sentences. In test, 
subjects are asked to grade the quality of the synthesized speech by giving
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marks between 1 and 5. 5 indicates excellent and 1 indicates unacceptable. 
Subjects gave grades for the output all three vocoders for male and female 
speech.

Results of these tests are as follows:

Table 4.5: MOS scores of MELP, ACELP and LPC-10 vocoders
Male Speech
Clean speech
Noisy speech

Female Speech
Clean speech
Noisy speech

ACELP
4.14
1.72

ACELP
3.76
1.90

MELP
4.18
4.33

MELP
3.64
3.67

LPC-10
2..36
2.99

LPC-10
2.68
2.98

From these tables, it is observed that MELP vocoder has a similar quality 
with ACELP vocoder for clean speech. However, for noisy speech MELP out
performs ACELP vocoder. It is observed that output of the MELP vocoder 
is usually preferred over both ACELP and LPC-10 vocoder in noisy environ
ments.

4.4.3 Perform ance o f V BR -M ELP Vocoder

Making subjective tests for vocoders requires considerable amount of work 
and since these tests are already conducted for fixed-rate version, tests are 
conducted only to obtain the performance of the voice activity detector for 
various SNR levels. In these tests, SNR values are calculated only from the 
portions including speech signal. Percentage of clipped regions and misclassi- 
fied noise regions are tabulated in Table 4.6. Test sequence is obtained from 
a 50 second telephone conversation^. 57 percent of the conversation consists 
of only background noise. The source of noise is same as the one used in the 
evaluation of subjective tests of fixed-rate fixed point MELP vocoder.

^This conversation is taken from ’Switchboard Corpus - Recorded Telephone 
Conversations.’ database collected by Texas Instruments
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Table 4.6: Performance of proposed VAD in various .SNR levels for male speech. 
Pci stands for the percentage of clipped regions with respect to the overall speech 
sections. P„is stands for the percentage of the missed regions with respect to back
ground noise sections.________

SNR level(dB)
oo
30
20
15
10
5

Pc,
3.84
2.29
2.35
2.41
1.83
9.92

3.76
3.03
13.23
20.36
10.81
19.09

Avg. bit-rate
977.83 bps
940.05 bps
1076.00 bps
1088.50 bps
1012.00 bps
998.00 bps

From these experiments, it is observed that our VAD works without any 
problem when the SNR of the .sequence is higher than 10 clB. The clipped 
regions in these levels are occurred according to a long laugh, in which the 
detector assumes these regions as noise and equate noise variances to the en
ergy of the speech in that region. Therefore, some utterances are missed due 
to this wrong adaptation. With the beginning of background noise, system 
adapts thresholds again and recovers itself. The misclassified silence regions 
are mostly according to the hang-over period and little energy variations in the 
background noise. Finally, it is observed that nearly in all cases, average bit- 
rate is around 1000 b/s which makes further 1 : 2.4 compression over fixed-rate 
MELP vocoder without a considerable loss of quality.

4.5 Summary

In this chapter, a new variable bit-rate MELP vocoder based on the fixed 
bit-rate version is presented. In order to decrease the bit-rate, the unvoiced 
frames and background noise are encoded with fewer bits by eliminating the 
parameters which are not required in the synthesizing of these frames.
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In order to discriminate speech signal from background noise, a novel voice 
activity detector which is robust to both stationary and non-stationaiy back
ground noise is introduced. Since the VAD uses the parameters already ex
tracted in MELP encoder, its computational complexity is low. In the sim
ulations, it is observed that the performance of the VAD is high even if the 
SNR decreases down to 10 dB. Finally, with this new VBR-MELP vocoder, the 
average bit-rate is decreased from 2400 b/s to 1000 b/s in a typical telephone 
conversation.

As a final remark, since only three frame types are present in this system, 
a fourth one can also be defined to encode different type of speech signal, like 
onsets in the beginning of the utterances to increase the naturalness of the 
synthesized speech.
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Chapter 5

Conclusion

In this thesis, a new frame-based speech spectrum non-stationarity detection 
algorithm based on line spectrum frequencies is developed. The proposed algo
rithm is used successfully in a speech segmentation system and a voice activity 
detector, specifically designed to work in a MELP vocoder.

The proposed algorithm works in three steps: In the first step, the system 
decides whether a formant is present or not between two consecutive LSFs by 
analyzing the angular difference between these LSFs and using the logarithmic 
energies of the spectrum at LSF locations. By applying the decision system 
described in Section 2.1, the regions which contains formants are detected. The 
state of the regions are calculated with 95% accuracy. In the second step, exact 
locations of the peaks are calculated with energy weighted mean of the LSFs, 
forming that region. To obtain desired accuracy, spectral values at location 
of the LSFs are calculated by evaluating prediction filter on the unit circle 
at LSF locations. Then, an exponent value, which is different for each LSF 
pair and obtained experimentally, is applied to these values. By this method, 
approximately 95% of the location of the formants are estimated within 25 
Hz error range. In the third step, two speech variation measures based on 
the estimated peak locations and the difference between consecutive LSFs are 
used to detect speech spectrum non-stationarity. It is observed that the success 
rate of the algorithm depends on the time difference between consecutive frames
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and the thresholds, compared with the computed values of the proposed speech 
variation measures for analyzed frames. These thresholds can be adjusted to 
change the sensitivity of the algorithm to the spectrum changes.

The proposed algorithm is first used in an implicit-type speech segmentation 
system. The system does not have any prior information about the input 
speech signal, hence does not make any assumptions on the input signal. The 
algorithm tries to locate the boundaries of the phonemes in two steps. In the 
first step, the non-stationary regions are extracted in a frame-by-frame basis, 
and in the second step, a modified version of the same measures proposed in 
Chapter 2 is used to detect exact boundaries of the phonemes. Success rate 
of this algorithm directly depends on the time difference between consecutive 
frames, because transient regions in the speech signal may vary form 8.75 ms to 
40 ms. Unfortunately, an increase in the time difference between consecutive 
frames yields to large number of insertions, which must be eliminated by a 
more complex method. The main advantage of this system, especially of the 
first step, is its low computational complexity, which makes it possible to use 
it in the front end of a speech recognition system.

In addition to the speech segmentation system, the proposed non- 
stationarity detection algorithm is used in a Voice Activity Detector (VAD) 
of a variable bit-rate MELP vocoder. This new V.A.D consists of two parts: 
The first part extracts the energies of the signal in five bands and compute 
distance measure based on the variance of the noise in the subbands and the 
energy of the signal in analyzed frame. These values are compared with exper
imentally derived thresholds to find state of the frame. The decision system is 
based on a finite state machine, which also includes hang-over period. Prior to 
the calculations in this first part, a simple silence detector is utilized to detect 
the inaudible frames and echo signals in some degree. The second part of the 
system updates the variances of the noise in subbands by using the proposed 
non-stationarity detector. Long sequences of background noise are searched 
in the conversation and the variances of noise in subbands are updated from 
these portions. Nearly all of the parameters used in this VAD is computed 
in the MELP encoder. Hence, computational complexity of the detector is
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low. In simulation studies, it is found that proposed VAD has excellent per
formance until the input signal SNR decreases below 10 dB level. Below this 
level, clipping becomes a severe problem.

The selection of the thresholds for the proposed speech variation measures 
and length of the duration between analyzed frames used in the speech segmen
tation algorithm can be made adaptive to obtain better results as a future work. 
This will increase computational complexity of the current method however we 
believe that number of insertions and missed boundaries will be decreased.
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A P P E N D IX  A

Threshold Extraction for 

Elim ination of M isclassified LSF 

R egions

As discussed in Chapter 2, elimination of misclassiiied regions are performed 
by comparing bandwidth and Ci defined by (2.3) with some fixed thresholds. 
If these thresholds are exceeded, state of the regions are changed. Five types 
of thresholds are extracted from the speech database;

1. Ti : Threshold for the bandwidth for the LSF region. If bandwidth 
of LSF regions which are assigned to contain peaks with both methods 
exceeds this threshold, the state of these LSF regions are changed.

2. 7i : Lower threshold for the bandwidth for bandwidth based method for 
the LSF region. If a LSF region is assigned to have peak with only 
bandwidth based method and if bandwidth of this LSF region is smaller 
than this threshold, this region is assigned to contain peak in it.

3. ai : Lower threshold for the bandwidth for energy based method for the 
2̂ '̂· LSF region. If a LSF region is assigned to have peak with only energy
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based method and if bandwidth of this LSF region is smaller than this 
threshold, this LSF region is assigned to contain peak in it.

4. ¡3i : Higher threshold for ti for bandwidth based method for the i}’'· LSF 
region. If a LSF region is assigned to have peak with only bandwidth 
based method and if e,’ of this LSF region is larger than this threshold, 
this LSF region is assigned to contain peak in it.

5. Ci · Higher threshold for e,· for energy based method for the LSF 
region. If a LSF region is assigned to have peed< with only energy based 
method and if ti of this LSF region is larger than this threshold, this LSF 
region is assigned to contain peak in it.

To extract these thresholds, the percentage of correct and false detected 
regions which are assigned peak in it versus these thresholds are calculated 
and plotted on the figures. The thresholds which correct maximum number of 
misclassified regions and introduce minimum number of misclassified regions 
are selected. These figures are given in the following pages.

Figures in the first column and the second column show percentage of cor
rect classification and wrong classification versus threshold, respectively. Three 
pages are clustered to give the figures for one type of thresholds. LSF regions 
are presented sequentially in those pages. Selected thresholds are also given in 
the captions.
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Pcrocnlago ol coned ostimalod peaks in region 1

Ротшпіадо ol corred edimaled peaks in region 2 Peraedage d  iaise csbmaled peaks in region 2

Peiccr^age Ы correct estimated peaks n  region 3 Penxntage ol labe estimated peaks in region 3

Figure A.l: Percentage versus Ti for the LSF regions 1, 2 and 3. First column shows 
the percentage of correct estimated of regions which contains peak in it. Second 
column shows the misclassified regions which has no peak in it. Ti = 320, T-2 = 300, 
Гз = 320.
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Poiconlago o( correct eslitnaled peaks r  rogm 4

PeiceKage o( correct estimated peaks n region 5 Peroiniage ol false estimated peaks in region b
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Figure A.2: Percentage versus T,· for the LSF regions 4, 5 and 6. T4 = 330, T5 = 320, 
Te = 340.
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PeiccrUage o( oorrcci cstimalod peaks n region /

Ollerence between Line Speclium Pairs (hz)

Pcicerlago oi oorreci cstimaled peaks n region 8 Peruentage ol latse esbmaled peaks in region 8

Peicerbage o( oorrecl estimated peaks n  region 9 Percentage ol labe esbmaled peaks in region 9

Figure A.3: Percentage versus T{ for the LSF regions 7, 8 and 9. T7 = 325, Tg = 340, 
Tq = 400.
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Pcroentago ol corred eslimoled peaks in roqnn 1 Pcrcertago o( false estimaled peaks :n region 1

Pcireilage o( oorreci estimaled peaks in region 2 Pementage ol false eslimaled peaks in region 2

Peicerlage of oorieci estimaled peaks n region 3 Pementage ol lalso eslimaled peaks in region 3

Figure A.4: Percentage versus 7 ,· for the LSF regions 1 , 2  and 3. 7 1  = 130, 7 2  = 106,
7 3  = 164.
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Pefoenlage oi coned estimated peaks in rogmn 4 Peroedage ol false esHmated peaks in rcgbn 4

Pfifcenlage ol coned estimated peaks in region 5 Peroenage d  false esbmaled peaks in region 5

Percentage ol coned esiimaled peaks in region 6 Peroerlage ol false esiimaled peaks in region 6

Figure A.5: Percentage versus j i  for the LSF regions 4, 5 and 6 . 7 4  = 130, 7 5  = 160,
7 6  - 140.
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Percentage of correct estimated peaks in reg»n 7

Percentage c l correct estimated peaks in regun 8
Percerlago o( false estimated peaks in region 8

Percentage of correct estimated peaks in region 9 Peroerlage o( false estimaled peaks in regon 9

Figure A.6 : Percentage versus 7 j· for the LSF regions 7, 8  and 9. 7 7  = 190, 7 « = 148,
7 9  = 165.
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Perocniago ol coned odinalcd peaks in tcgK>n 1
Peroerlage d  false esbmaled peaks in region 1
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Figure A.7: Percentage versus «i for the LSF regions 1, 2 and 3. «i = 164, «2 = 130, 
«3 = ‘215.
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Perocniago of coned cslimalod peaks in region 4

Pcrccniago of ;̂ oned oslimalod peaks in region 5 Percentage of falsa eslimafed peaks in regon 5

Percentage of corred eslimafed peaks in region 6 Peroenlage o( laise estimated peaks in region 6

Figure A.8: Percentage versus tVj for the LSF regions 4, 5 and 6. 0:4 = 250, a$ — 250, 
ae = 170.
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Percentage ol corred estimated peaks in region 7
Percerlago o i false estimated peaks in region /

Percentage ot correct estimated peaks in regmn 8 Percentage ot (atse estimated peaks in regbn 8

Percentage ol correct estimated peaks in regbn 9 Percentage ol false estimated peaks in region 9

Figure A.9: Percentage versus cvj for the LSF regions 7, 8 and 9. ar = 250, «s = 120, 
«9 = 250.
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Figure A.10: Percentage versus f i i for the LSF regions 1 , 2  and 3. /?i = N / A ,

/?2 = N / A ,  0 3  =  78.5.
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Percentage o( corred estimated peaks in refpon 4

Pdccetageot corred estimated peaks in regbn 5 Percentage ot (else estimated peaks in region 5

Percentage ol corred estimated peaks in region 6 Peroertage ol lalse estimated peaks in region 6

Figure A. 11: Percentage versus f i i  for the LSF regions 4, 5 and 6 . /?4 = N / A ,

/?5 = 80, /?6 = 32.
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Poicerlage o( oonect edimalcd peaks n  region /

Pcfoenlage of coned esiimaled peaks in regnn 8
Penxntage of fatso eslimaled peaks in region 8

Percertage of ooneci esfimatod peaks n region 9 Penxntage of fatso oslimalod peaks in region 9

Figure A. 12: Percentage versus ¡3i for the LSF regions 7, 8 and 9. /?7 = 25, /is = 75,
/ig = 25.
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Pcrocniago ol coned estimalod peaks in rognn 1

Perccniage ol coned cstimaled peaks in rorpon 2 Peroenlage o( false esiimated peaks in region 2

Perocniage of coned eslimaled peaks in region 3
Peroonlage ol false cslimaled peaks in regbn 3

Figure A. 13: Percentage versus Ci for the LSF regions 1 , 2 and 3. = lOOi C2 = 1 0 0 ,
C3 = 62.5.
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Pcroonlage ol correct estimated peaks in region 4 Peroenlago ot false estimated peaks in region 4
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Figure A.14; Percentage versus Ci for the LSF regions 4, 5 and 6. C4 = 21, Cs = 17-5, 
Ce = 40.
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Pcrocnlage ol coned edimaled peaks in rognn 7

Peicertago d  oorrecl eslimaled peaks n  region 8 Peroertage ol false esliinaled peaks in regon 8
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Figure A. 15: Percentage versus Ci for the LSF regions 7, 8 and 9. Ct = If .5, Cs = 75, 
C9 = 25.
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A P P E N D IX  B

Selection  o f param eters for 

m inim izing peak location  

estim ation  error

In Chapter 2, a novel method to make precise estimation of the peak location is 
proposed. In this chapter, statistical data used to obtain and ¡j,i for i = 1 · · · 9 
are presented.

For each LSF region, the number of occurrence of the error between esti
mated peak and actual peak is calculated for different values of r, ranging from 
0.15 to 1.75 for both voiced and entire speech by (2.4) from database. Value 
of Ti which minimize or almost minimize standard deviation and maximize 
percentage of error smaller than 25 Hz is selected.

In the following tables, mean, standard deviation, percentage of error 
smaller than 25 Hz and percentage of error smaller than 50 hz are tabulated 
for simple averaging method, energy weighted mean method for r  =  0.15 and 
energy weighted mean method for t = ti. Selected r,· values are tabulated in
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Chapter 2. Also these tabulated datas versus r,· is plotted and the figures are 
given in following pages.

Figures are divided into two sets: In the first set, standard deviation, per
centage of error smaller than 25 Hz and percentage of error smaller than 50 Hz 
are plotted. As page setup, all figures in the first and second column belongs 
to voiced and entire speech, respectively. First row shows standard deviation 
versus Ti and second and third row show percentage of error in peak location 
of estimation of smaller than 25 Hz and 50 Hz versus Ti, respectively. LSF 
regions are sequentially presented in those pages. In the second set, number of 
occurrence versus error in peak location estimation is given. Column fornicition 
is same as the first set. LSF regions are presented sequentially.

Table B.l: Mean of the error between actual peak location and estimated peak 
location for simple mean technique, r  = 0.15 and r  =  r,· for voiced speech.

LSF Regions
1 2 3 4 5

Simple mean -13.44 -25.04 14.05 18.55 -7.681
r  = 0.15 -9.322 -17.03 13.18 14.27 -5.467

r  =  Ti 5.656 7.956 4.643 -0.33 1.704
6 7 8 9

Simple mean 3.326 -0.9552 -6.884 14.08
r  =  0.15 2.655 0.2175 -4.508 12.91

T  =  Ti -0.569 3.094 3.654 4.535

Table B.2: Mean of the error between actual peak location and estimated peak 
location for simple mean technique, r  = 0.15 and r  = r,· for entire speech.

LSF Regions
1 2 3 4 5

Simple mean -34.017 -23.4 17.8 8.194 -7.959
r  =  0.15 -25.67 -16.06 15.34 6.003 -6.062

T  =  Ti 7.266 7.497 2.394 -1.096 1.179
6 7 8 9

Simple mean 4.951 -0.535 -1.565 14.21
r  =  0.15 4.086 0.266 -0.703 13.03

T =^T i -0.177 2.395 1.339 5.132
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Table B.3: Standard deviation of the error between actual peak location and es
timated peak location for simple mean technique, r  = 0.15 and r  = ri for voiced 
speech.

LSF Regions
1 2 3 4 5

Simple mean 37.16 38.42 55.46 62.95 52.22
T = 0.15 28.9 31.03 44.84 51.52 40.84

T =  Ti 8.191 9.2.35 13.92 18.05 12.98
6 7 8 9

Simple mean 64.57 55.41 67.91 55.43
r  =  0.15 53.46 44.16 56.62 44.84

r  = Ti 16.85 13.44 17.14 13.93

liable B.4: Staadard deviation of the error between actual peak location and es
timated peak location for simple mean technique, r  = 0.15 and r  = for entire 
speech.

LSF Regions
1 2 3 4 5

Simple mean 43,74 43.1 58.4 71.45 56.33
r  =  0.15 34.73 35.4 48.49 61.01 45.96

T =  Ti 9.047 10.35 13.43 21.39 13.64
6 7 8 9

Simple mean 69.4 56.71 71.09 54.44
T  = 0.15 59.38 46.58 61.09 44.93

r  =  Ti 19.31 13.73 19.87 13.33

Table B.5: Percentage of the error smaller than 25 Hz between actual peak location 
and estimated peak location for simple mean technique, r  = 0.15 and r  = Ti for 
voiced speech.

LSF Regions
1 2 3 4 5

Simple mean 58.23 56.69 30.29 29.43 39.16
r  — 0.15 67.45 67.04 38.57 38.29 49.17

T =  Ti 99.6 98.23 95.28 91.69 97.56
6 7 8 9 All Regions

Simple mean 25.88 35.41 22.19 38.65 41.07
r  = 0.15 31.62 44.32 27.92 47.77 50.15

T -  Ti 92.6 97.32 91.52 98.12 97.07
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Table B.6: Percentage of the error smaller than 25 Hz between actual peak location 
and estimated peak location for simple mean technique, r  = 0.15 and r  = r,· for

LSF Regions
1 2 3 4 5

Simple mean 43.74 50.71 30.68 24.08 34.98
r  =  0.15 57.29 61.62 37.33 29.99 43.29

r  -  Ti 99.06 97.44 95.45 86.43 96.2
6 7 8 9 All Regions

Simple mean 23.74 33.89 20.96 38.48 36.16
r  = 0.15 28.68 41.84 25.5 46.73 45.25

T  -  Ti 88.83 96.15 86.68 97.71 95.72

Table B.7: Percentage of the error smaller than 50 Hz between actual peak location 
and estimated peak location for simple mean technique, r  = 0.15 and r  = r; for 
voiced speech.

LSF Regions
1 2 3 4 5

Simple mean 81.46 83.36 58.16 55.43 65.23
r  =  0.15 90.23 88.33 70.76 68.21 78.03
r  = Ti 99.99 99.81 99.36 97.83 99.69

6 7 8 9 All Regions
Simple mean 49.12 61.9 45.63 66.03 66.46

r  = 0.15 61.74 73.45 56.16 75.43 77.14
r  =  Ti 98.55 99.76 98.72 99.78 99.55

Table B.8; Percentage of the error smaller than 50 Hz between actual peak location 
and estimated peak location for simple mean technique, r  = 0.15 and r  = r; for 
entire speech.

LSF Regions
1 2 3 4 5

Simple mean 74.58 79.02 56.66 47.18 60.77
r  =  0.15 84.82 84.51 67.24 57.05 72.05

T -  Ti 99.97 99.70 99.58 95.82 99.44
6 7 8 9 All Regions

Simple mean 45.74 60.75 43.36 66.82 63.42
r  = 0.15 56 71.36 52.48 75.79 73.46

T  =  Ti 97.27 99.54 97.09 99.71 99.17
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standard deviation ol peak oslimalDn error lor votced speech in region 1 Standard deviaton ct peak estimation error lor whole speech in rerpon 1

Exponents used h  evaluation ot irwerse prediction litter power spectrum 

Percanlage ol the |waks. estimated within 25 hz error, lor voiced speech in region t

Exponents used in evatuation ol inverse predclion litter power spectrum 

Percantage d  the peaks, estimated within 50 hz error, lor voiced speech in region 1

Pcrcantage ol the peaks, estimated within 25 hz error, lor whole speech in region t

Exponerls useJ n evaluation d  irwerse prediction litter power spectrum 

Percailage d  the piaks, estimated within 50 hz error, lor whde speech i i  region t

Exponents used in evaluation ol inverse predebon filter power spednim

Figure B.l: Statistics of error in peak location estimation error for LSF region 
1. First and second column presents statistical data about voiced frames and all 
frames, respectively. First index in all figures corresponds to the data extracted 
by simple averaging. First row shows standard deviation of error versus varying r 
values. Second and third row shows percentage of error in peak location estimation 
smaller than 25 Hz and 50 Hz versus varying r  values, respectively. ri is selected as
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standard deviation ol peak eslimalon error lor vocod speech in region 2 Standard deval on o< peak estimation error lor whole speech in region 2

0iponenls used n evaluation ot inverse prediclion lilter power spectrum 

Percanlage ol the |N'̂ ks, estimated wilhin 25 tu error, lor weed speech in region 2

Exponents used in evahralion ol inverse preciction lilter power spectrum 

Percanlage ol the peaks, estimated within 50 tu error, lor voiced speech in region 2

Exponents used n evaluation ol inverse prediction tiller power spectrum 

Percanlage d  the peaks, estimated wilhin 25 hz error, lor vrhoie speech i i  region 2

Exponents usrxJ in evatualion ol inverse precklion lilter power spectrum 

Percarlage ol the piraks, estimated wilhin 50 hz error, tor whole speech n region 2

Exponents usrxt in evaluation ol inverse preciction litter power spectrum

Figure B.2: Statistics of error in peak location estimation error for LSF region 2 .
T2 is selected as 2 .6 .
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Percanlage ol the peaks, estimated within SO hz error, (or voced speech in region 3

Exponents used n evaluation d  inverse prediction tilter power spectrum

Exponerls u sa j n  evaluation ol irweise prediction Tiller power spectmm 

Percarlage ol the ptaks, estimated within 50 hz eiror, lor whole speech in region 3

Exponents us4xj in evakialkm ol irwerse predclion (liter power spectrum

Figure B.3: Statistics of error in peak location estimation error for LSF region 3.
T3 is selected as 2.25.
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Statxbrd dovialion ol peak eslimalbn error lor voicod speech in region A Standard devei on ol peak estimation error lor whole speech in regnn 4

Expoircnis used n evaluation oi irweise prediction litter power spectrum 

Percar4age ol the peaks, estimated within 25 tu error, lor voiced speech n region 4

Pcrcanlage ol the peaks, estimated within 50 hz error, lor voiced speech in region 4

Exponents used in evalualion ol inverse preciction filler power spectrum

Exponents u sal n evalualion ol inverse prediction tiller power spectrum 

Percanlage ol the peaks, estimated within 25 hz enor, tor whole speech in region 4

Exponerts u se j in evalualion ol inverse prediction tiller power spectrum 

Percanlage ol the peaks, estimated wilhin 50 hz error, lor whole speech in region 4

Figure B.4: Statistics of error in peak location estimation error for LSF region 4.
T4 is selected as 2 .6 .
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[¿xponenis used h evaluation ol irweise prediction tiller power spectrum 

Percanlage ol Ihe peaks, estimated within SO hz error, lor voiced speech in region S

Exponents used in evalralion ol itwerse predction tiller power spectrum

Exponents used n evaluation ol inverse prediction liller power spectrum 

Percanlage ol Ihe peaks, estimated wilhin 25 hz error, lor whole speech in regKxi 5

Exponer^s used n evaluation ol inveise prediction liller power speciruni 

Percailage d  ihe piiaks, esiimaled wiiNn 50 hz error, lor whole speech n  region 5

Exponents used in evakialion ol inverse predk:lion liller power spedrum

Figure B.5: Statistics of error in peak location estimation error for LSF region 5.
Ts is selected as 2.35.
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standard dovialion ol peak eslimalon error lor voKOd speech in region 6 Standard devial on o( peak estimation error lor whole speech in regnn 6

Pcrcar̂ ago ol the peaks, estimated within 25 tu error, lor voiced speech r  region b

Exponents used r  evaluation ol inverse prediction filler power spectrum 

Percar̂ age of the peaks, estimated within 50 hz error, lor voiced speech n  region 6

Exponents used n  evaluation ol inverse prediction litter power spectrum

Exponents used n evaluation ol irwerse prediction lilter power spectrum 

Percantage ol the peaks, estimated within 25 hz error, lor whole speech in region 6

Pcrcanlage ol the peaks, estimated within 50 hz error, lor whole speech in r e ^  6

Exponerls used h evaluation ol inverse prediction lilter power spectrum

Figure B.6 ; Statistics of error in peak location estimation error for LSF region 6 .
tq is selected as 3.0.
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standard deviation ol peak estimatbn error lor voicod «poech in region J Standard deval on d  peak estimation error lor whole speech in region 7

Exponents used n evaluation d  irwerse prediction tiller power spedruni 

Porcadago d  llio  |)oaks. estimated within 25 fu  eiror. lor voiced speech n regon /

Exponents used n  evaluation d  irweise predidion lilter power spectrum 

Percantage d  the peaks, estimated within SO hz error, lor voiced speech in region 7

Exponents used n evaluation d  iiwerse prediction lillc r power spedrum 

Pcrcanlage ol the peaks, estimated within 25 hz error, lor whole speech in regron 7

Percantage d  the praks, estimated wilhn 50 hz error, lor whole speech in region 7

Exponents used in evalualion ol inverse preciction lilter power spedrum

Figure B.7: Statistics of error in peak location estimation error for LSF region 7.
T r is selected as 2.35.
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standard deviation ol peak eslimalDn error lor voiced speech in region 8 Standard devaton ol peak estimation error lor whole speech in regnn 8

Exponents used n evaluation ot irwerse prediction lilter power spectrum 

Percartage ot the peaks, estimated within 25 hz error, lor wioed speech n regon 8

Exponerls used in evaluation of irwerse prediction Tilter power spectrum 

Percarlage of the peaks, estimated within 50 lu  error, lor iroioed speedi n regbn 8

Exponents used n evaluation of irwerse prediction liller power spectrum 

Percantage ol the peaks, estimated within 25 hz error, lor whole speech in region 8

Exponerts useiJ in evaluation ot inverse prediction filler power spectrum 

Percantage ol the peaks, estimated within 50 hz error, lor whole speech in regxm 8

Figure B.8 : Statistics of error in peak location estimation error for LSF region 8 .
T s is selected as 2.9.
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standard deviation ol peak estimaton error Iw voiced speech in region 9 Standard deveton o l peak estimation error (or whole speech in region 9

Exponents used n evaluation ol im eise prediction lilter power spectrum 

Pcrcanlage ol Iho |)oaks. estimated within 25 hz error, (or voiced speech n  region 9

Exponents used in cvalualionot irwerse prediction Tiller power speclmm 

Percanlago ot the peaks, oslimaled wilhin 50 hz error, lor voiced speech in regmn 9

Exponents used n evaluation ol inverse prediction lilter power spectrum 

Pcrcantage ol the peaks, estimated withm 25 hz error, lor whole speech in regKxr 9

Percarlage ot the peaks, eslimaled wilhin 50 hz error, lor whole speech n regKxr 9

Exponents used in evalualion ol inverse prediction lilter pewer spectrum

Figure B.9: Statistics of error in peak location estimation error for LSF region 9.
rg is .selected as 2.3.
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Peek cslimalbn слог (or voiced speech in region 1 Peek eshmalon error (or whole speech n region 1

Peak eslm alion error lor voiced speech in rogon 2 Peak eslm alion error (or whole speech in region 2

Peak eslm alion error lor voiced speech in regbn 3 Peak eslm alion error (w  whole speed) in region 3

Figure B.IO: Number of occurrence versus difference between original and estimated 
peaks for the LSF regions 1, 2 and 3. First and second column presents statistical 
data about voiced frames and all frames, respectively. The solid, dashed and dashed- 
dotted lines corresponds to simple mean, weighted mean with r  = 0.15 and weighted 
mean with r  = ri, respectively, ti = 2.5, T2 = 2.6 and T3 = 2.25.
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Peak cslimalion error lor voiced speech in regon 4 Peak eslmalkm error for whole speech in region 4

Peak esiinalion error lor voiced speech in regon 5 Peak estmalion error lor whole speech in region 5

Peak eslioalion error lor voiced speech in regbn 6 Peak esiimalion error lor whole speech in region 6

Figure B .ll: Number of occurrence versus difference between original and estimated 
peaks for the LSF regions 4, 5 and 6. The solid, dashed and dashed-dotted lines 
corresponds to simple mean, weighted mean with r  = 0.15 and weighted mean with 
r  = Tj, respectively. T4 = 2.6, rs = 2.35 and re = 3.0.
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Figure B.12: Number of occurrence versus difference between original and estimated 
peaks for the LSF regions 7, 8 and 9. The solid, dashed and dashed-dotted lines 
corresponds to simple mean, weighted mean with r  = 0.15 and weighted mean with 
r  = Ti, respectively. Tr = 2.35, rg = 2.9 and tq = 2.3.
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