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ABSTRACT  

   

The processing power and storage capacity of portable devices have improved 

considerably over the past decade. This has motivated the implementation of 

sophisticated audio and other signal processing algorithms on such mobile devices. Of 

particular interest in this thesis is audio/speech processing based on perceptual criteria. 

Specifically, estimation of parameters from human auditory models, such as auditory 

patterns and loudness, involves computationally intensive operations which can strain 

device resources. Hence, strategies for implementing computationally efficient human 

auditory models for loudness estimation have been studied in this thesis. Existing 

algorithms for reducing computations in auditory pattern and loudness estimation have 

been examined and improved algorithms have been proposed to overcome limitations of 

these methods. In addition, real-time applications such as perceptual loudness estimation 

and loudness equalization using auditory models have also been implemented. A software 

implementation of loudness estimation on iOS devices is also reported in this thesis. 

In addition to the loudness estimation algorithms and software, in this thesis 

project we also created new illustrations of speech and audio processing concepts for 

research and education. As a result, a new suite of speech/audio DSP functions was 

developed and integrated as part of the award-winning educational iOS App 'iJDSP.”  

These functions are described in detail in this thesis. Several enhancements in the 

architecture of the application have also been introduced for providing the supporting 

framework for speech/audio processing. Frame-by-frame processing and visualization 

functionalities have been developed to facilitate speech/audio processing. In addition, 

facilities for easy sound recording, processing and audio rendering have also been 
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developed to provide students, practitioners and researchers with an enriched DSP 

simulation tool. Simulations and assessments have been also developed for use in classes 

and training of practitioners and students. 
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Chapter 1  
 

INTRODUCTION 

Algorithms of particular interest in the audio engineering community involve the 

understanding of properties of the human auditory system and exploiting phenomena 

pertaining to human hearing in designing audio processing solutions. For instance, the 

notion of loudness, which is a highly non-linear and subjective phenomenon, is very 

much dependent on the manner in which the human ear processes sounds [1]. Hence, 

processing signals based on a reliable measure of loudness requires the incorporation of 

mathematical models that characterize the notion of loudness as perceived by humans, 

which in its core, involves modeling the human ear. Such systems can be developed for 

instance, to automatically control the volume in televisions or computers or mobile 

phones and tablets in real-time with minimal user involvement. As is described later in 

this chapter, the involvement of auditory models leads to rising computational 

complexity. In such scenarios, it is wise to improve the computationally efficiencies of 

the algorithms while ensuring that the end goal of achieving the desired performance is 

not compromised with. The work presented in this thesis explores avenues for improving 

the estimation of loudness using human auditory models. 

With the rapid proliferation of portable devices with ever increasing processing 

power and memory capacity, the need to develop applications exploiting these platforms 

is rising in parallel, motivated by increasing benchmarks for as well as expectations of 

user experience. The design of efficient low-complexity algorithms for audio and speech 

processing applications is of particular importance in this context. For instance, modern 

mobile phones and tablets have speech recognizing capabilities based on existing state of 
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the art speech recognition algorithms. This technology is used for giving voice 

commands to the device and performing functions such as internet search by converting 

speech to text using standard algorithms. A number of mobile applications have emerged, 

which make use of signal processing algorithms for novel audio processing techniques. 

For instance, “SoundHound” is an app that performs content-based music recognition by 

accepting a sample music input from the microphone [2]. The app has the capability to 

identify a song even if the user simply hums or sings the tune of the song. Similarly, 

audio processing techniques combined with sophisticated user interfaces have resulted in 

a number of apps on mobile devices for music composition, recording and mixing such as 

GarageBand [3] and Music Studio [4]. 

The ability to perform advanced DSP techniques with intensive computation can 

be challenging on a mobile platform. The requirement to deliver better services in mobile 

devices is an important motivation for developing efficient algorithms to reduce the 

number of computations so that the algorithms run fast and consume less power in the 

processor, hence reducing load on the battery life, which is crucial. In other scenarios, 

algorithms exist which are computationally demanding to the extent that it is impossible 

to implement them in real-time in most modern computers and portable devices. It would 

doubtlessly be beneficial to reduce the complexity of such algorithms and render them 

implementable in real-time on both desktop computers and mobile devices. 

The ability to implement sophisticated DSP algorithms on mobile devices can 

also be exploited in education. Digital signal processing (DSP) techniques are strongly 

motivated by many popular speech and audio processing applications in which they are 

used. Hence, illustration of these DSP techniques shown along with their underlying 
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motivation would strongly benefit students specializing in this field. Advanced signal 

processing concepts such as time-frequency representation of signals, concepts related to 

speech coding such as linear predictive coding and line spectral pairs, etc. are widely 

used in existing DSP systems. Effective illustration of these concepts generally requires 

the use of examples and visualizations in order to help students better understand them. 

In addition, the presence of interactivity in such educational applications would provide 

students with an enriching learning experience. 

This thesis is comprised of two parts. In the first part, efficient algorithms are 

reported which reduce the computational complexity of human auditory models-based 

loudness estimation. The second part of this thesis discusses the incorporation of audio 

DSP algorithms into iJDSP [5], an interactive educational mobile application for DSP 

education on the iOS platform. The use of interactive user interfaces in iOS devices, 

exploiting features such as touch-screen technology in visually illustrating rich graphical 

examples of fundamental speech/audio processing concepts would aid in better student 

understanding of these concepts. Elaborated in the section below are the motivations 

behind developing efficient algorithms and focusing on their educational value on mobile 

platforms. 

1.1 Human Auditory Models Based Processing and Loudness Estimation 

Perceptual models characterize and quantify the relation between auditory stimuli 

and associated hearing sensations. Specific phenomena can be observed experimentally 

through the presentation of auditory stimuli to human subjects, and subsequently modeled 

as functions of a set of parameters characterizing the stimuli. Since psychoacoustic 

phenomena are cognitive inferences produced in the brain upon reception of electrical 
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signals generated by the human auditory system as responses to auditory inputs (Figure 

1.1) [6], it is not possible to directly measure the physiological activity in the brain 

representing these phenomena. Hence, in experiments designed to study such 

phenomena, listeners record their responses to subjective questions after hearing test 

stimuli. Such experiments are referred to as psychoacoustic experiments. Based on the 

results of psychoacoustic experiments, perceptual models are developed. 

Several perceptual models have been developed for the purpose of characterizing 

specific sensations [1,7,8,9,10,11,12]. For instance, models predicting the phenomenon of 

auditory masking in signals have been extensively used in speech and audio coding 

applications [13]. Algorithms used in such audio coders encode the signal with as less 

bits as possible while ensuring transparent signal quality, i.e., ensuring that the decoded 

audio is perceptually indistinguishable from the original audio. This is achieved by 

ensuring that the power of the quantization noise introduced during the encoding process 

is maintained below certain threshold levels so that they cannot be perceived by the ear. 

These threshold levels, referred to as “masking thresholds”, are computed by underlying 

perceptual models they are employed by the algorithms. These masking thresholds 

represent the important property of the ear to mask certain components of the sound. 

 
Figure 1.1: Overview of auditory processing. Sound is converted by the human auditory 

system to neural impulses, which are transmitted to the auditory cortex in the brain for 

higher level inferences. 
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Other applications of auditory models include speech enhancement and speech quality 

assessment metrics [13]. 

An important application involving extensive use of human auditory models, 

which is dealt with in this thesis, is the estimation of loudness. Loudness is the measure 

of perceived intensity of sound. It is a psychological phenomenon. Different methods and 

units have been proposed to quantify loudness [14]. The Equal Loudness Contours (ELC) 

reported by Fletcher in [1] was among the earliest attempts to characterize the non-

uniform sensitivity of the human auditory system to frequencies in the spectrum. From 

these contours, the A, B and C Weighting Curves were derived to weight the spectra of 

signals according to the human auditory system’s sensitivity to them and obtain a 

measure of loudness from them (see ANSI S 1.4-1983 [15]). 

More sophisticated models model the human ear as a bank of a large number of 

highly selective bandpass filters [16,17,18,19]. Some of the popular models for these 

auditory filters are the Gammatone filters [20], the Gammachirp filters [21], the dual 

resonance nonlinear filter (DRNL) [22], and the rounded exponential filters [23]. The 

energy of the signal within each filter band gives knowledge of the spectrum of the signal 

in the auditory system, which is used to compute the perceived loudness per filter band 

(called the auditory pattern), and the total loudness. The Moore and Glasberg Model has 

shown to perform well with a variety of auditory inputs, giving accurate measures of 

loudness [19]. But a major drawback of these models, including the Moore and Glasberg 

Model, is the computational load in calculating the loudness. The filtering of signals 

through the bank of filters modeling the ear is computationally expensive and uninformed 

reduction of computational complexity can lead to erroneous estimates of loudness. 
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Hence, the estimation procedure is to be analyzed further to explore the possibility of 

deriving computationally efficient approximations of the algorithm by exploiting 

redundancies. 

Low complexity loudness estimation procedures exploiting the properties of the 

auditory filters have been proposed in [24,25]. This method reduces complexity by 

choosing a subset (also referred to as ‘pruning’) of the bandpass filters modeling the ear 

and estimating the output of the rest. The choice of the subset of filters depends on the 

signal’s spectral content. In this thesis, methods to better choose the subset of filters for 

improved error performance are explored. 

1.2. Computation Pruning for Efficient Loudness Estimation 

In [25], a computation pruning mechanism was proposed for fast auditory pattern 

estimation by pruning the set of filters in the auditory filter bank. The algorithm achieves 

huge computational savings and results in reasonable accuracy of loudness estimates for a 

variety of sounds. But the accuracy drops with tonal sounds such as music from 

instruments like the flute, and synthetic sounds with sharp spectral peaks. The 

 

Figure 1.2: The top plot showing the drastic change in intensity level at the onset of a 

commercial break. The bottom plot shows the signal corrected for uniformity in the 

intensity. 
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performance of the pruning scheme can be significantly improved with minimal addition 

to the computational complexity. In this thesis, an enhanced pruning scheme is proposed 

which is aimed at reducing limitations of the above mentioned pruning scheme. 

1.3. Automatic Control of Perceptual Loudness 

Automatic loudness control is an immediate application of a loudness estimation 

algorithm. Human auditory models can be used to control the perceived loudness of a 

stream of audio such that the perceived tonal balance of the signal is preserved but the 

loudness is maintained at a constant level. Such algorithms can be of particular use in 

television, where sudden increases of decreases in the loudness during transitions of 

programs and at the onset or end of commercial advertisements (Figure 1.2). Other 

applications would be in media players where consecutive tracks in a playlist are 

mastered at different volume levels. This can cause one song to be much louder than the 

other and otherwise require manual volume adjustment. Another application of volume 

control can be in telephony during sudden increase in the noise or the loudness of the 

speaker. A demonstrative real-time loudness control system using the Moore and 

Glasberg model is presented in this thesis. This system is implemented in Simulink. 

1.4. Interactivity in Speech/Audio DSP Education 

Digital signal processing techniques are strongly motivated by many popular 

speech and audio processing applications in which they are used. Hence, the illustration 

of these DSP techniques shown along with their underlying motivation would strongly 

benefit students specializing in this field. Advanced signal processing concepts such as 

time-frequency representation of signals, concepts related to speech coding such as linear 

predictive coding and line spectral pairs, etc. are widely used in existing DSP systems. 
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Effective illustration of these concepts generally requires the use of examples and 

visualizations in order to help students better understand them.  

Interactive speech and audio processing visualizations for education were 

developed as part of J-DSP, an interactive web-based Java applet for performing DSP 

laboratories online on desktop PCs [26,27,28]. J-DSP offers a block diagram based 

approach to the creation of DSP simulation setups. Users can easily set up simulations by 

defining signal processing operations as a network of DSP functional blocks with editable 

parameters. Through specific blocks, the application provides interactive visualizations of 

various properties of the designed system and its outputs in the form of plots. 

In recent years, mobile devices have been identified as powerful platforms for 

educating students and distance learners. For instance, in a recent study on using the iPad 

in primary school classrooms, it was found that iPads are effective due to their mobility 

and that they enhance student engagement [29]. Studies indicate that mobile tools have 

several advantages in teaching a broad range of subjects, from the arts, to language and 

literature, to the sciences [30,31,32]. With greater technology outreach, it has become 

possible for students to get easy access to educational software on mobile platforms. This 

enables them to reinforce the lessons learnt in a classroom, and even perform homework 

assignments. 

MOGCLASS, a mobile app for music education through networked mobile 

devices was used successfully in collaborative classroom learning for children [33]. Other 

examples of existing educational tools on mobile platforms include StarWalk from Vito 

Technology Inc. for astronomy [34], the HP 12C Financial Calculator for business [35], 

and Spectrogram for music [36]. 
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Mobile education paradigms are also being extended to higher education [37]. 

Touch Surgery is an educational app designed for iPhones/iPads, which simulates 

surgical operations on the screen of the mobile device, with students using finger gestures 

on the touch screen to interactively perform the surgery in the simulator [38]. Mobile 

apps are also available for Digital Signal Processing education on mobile devices. For 

instance, MATLAB Mobile, which is the mobile version of MATLAB, can be used for 

DSP simulations, which performs simulations through a conventional command line 

interface [39]. However, it does not provide a sophisticated GUI and relies heavily on a 

stable internet connection, as it performs all intensive computations remotely on the 

MathWorks Cloud or a remote computer [40]. 

Conventionally, students are taught Digital Signal Processing (DSP) with the 

description of systems as block diagrams. A system can be represented as a black box 

taking a set of inputs, processing those inputs, and producing a set of outputs. This simple 

representation of a system enables construction of systems from blocks of simpler 

systems by connecting them suitably. Software such as Simulink and LabVIEW use such 

a graphical approach for system design, in contrast to software such as MATLAB, 

Mathematica and GNU Octave, which contain a rich set of functions for simulating DSP 

systems, but provide a command line interface and run scripts to simulate systems 

[41,42,43,44,45]. 

An important consideration in educational software for mobile platforms is the 

effective utilization of the touch-screen features of devices to provide a hands-on and 

immersive learning experience. In particular, touch-screen capabilities can be of immense 

advantage for graphical programming, as users can simply place functional blocks on the 
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screen with their fingers and make connections between them. This paradigm of learning 

DSP is more intuitive than typing scripts to build a system. Graphical display also 

presents the system in a pictorial manner, enabling easy comprehension of the system. 

iJDSP is an educational mobile application tool developed for iOS devices, 

providing graphical, interactive, informative and visually appealing illustrations of 

concepts of digital signal processing (DSP) to undergraduate and graduate students 

(Figure 1.3). iJDSP provides an engaging GUI and supports a block diagram based 

approach to DSP system design to create DSP simulations in a highly interactive user 

interface, exploiting the touch-screen features of mobile devices such as the iPad or the 

 

Figure 1.3: The iJDSP interface, as seen on an iPhone. 
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iPhone. It is computationally light and does not require an internet connection to perform 

simulations. The application’s interface is native to Apple mobile devices. Hence, users 

of these devices can familiarize themselves and navigate through the application with 

ease. 

A rich suite of functions is available in iJDSP to build and simulate DSP systems, 

including the Fast Fourier Transform (FFT), filter design, pole-zero placement, frequency 

response, and speech acquisition/processing functions. Furthermore, a graphical interface 

that allows users to import and process data acquired by wireless sensors has been 

developed in iJDSP. The user interface and the color scheme of the software have been 

designed with end-user engagement as the goal. 

The second component reported in this thesis is a set of functions in iJDSP which 

illustrate basic techniques to represent, analyze and process speech and audio signals, 

 

Figure 1.4: Sample screenshots showcasing the suite of speech and audio processing 

functions created as part of iJDSP. 
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such as linear predictive coding and line spectral pair representations which are popularly 

used for speech coding in telephony, the spectrogram, which is a widely used time-

frequency representation for the analysis of time-varying spectra of speech and audio 

signals, and phenomena of psychoacoustics such as masking and perception of loudness 

(see Figure 1.4). These functions would then be suitably used by graduate students 

specializing in DSP for understanding concepts behind processing speech and audio. To 

that end, exercises have been formulated, appropriately using these blocks to create 

simulation setups that require the students to accomplish specific tasks in iJDSP, which 

are meant to reinforce concepts taught earlier in a lecture session. 

1.5. Contributions 

The contributions in thesis can be grouped into two parts. The first part explores 

the use of the Moore and Glasberg Model in estimating perceptual loudness and its 

application in real-time loudness control. The following are the key contributions in the 

first part of the thesis: 

• Proposed a pruning mechanism for the Moore and Glasberg model-based 

loudness estimation algorithm. 

• Performed algorithm complexity analyses to highlight advantages of the 

proposed pruning schemes. 

• Implemented real-time automatic loudness control using the Moore and 

Glasberg model. 

The second part of this thesis focuses on expanding the capabilities of iJDSP to 

incorporate functionality to illustrate some key speech and audio processing concepts to 

students. The following were achieved in the second part of the thesis: 
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• Expanded the functionality of iJDSP to allow processing long signals such as 

speech and audio, and allow frame-by-frame processing and visualization of 

plots. 

• Developed a suite of functions demonstrating certain fundamental concepts 

related to signal analysis, and speech and audio processing concepts, with 

interactive user interfaces exploiting the multi-touch features of the iOS 

devices. 

• Created laboratory exercises for illustrating specific speech and audio DSP 

concepts. 

1.6. Organization of Thesis 

This thesis is organized in the following manner, with a description of the 

proposed loudness estimation algorithms and the exploration of real-time loudness 

control covered by the first few chapters, followed by the description of the 

functionalities introduced in iJDSP and enhancements made to the software in the rest of 

the chapters. Chapter 2 in this thesis gives a brief introduction to the functioning of the 

human auditory system and essential concepts related to psychoacoustics. Chapter 3 

elaborates on loudness estimation, giving an overview of different loudness estimation 

methods proposed in the literature and elaborated upon the Moore and Glasberg model, 

which is the model adopted for the research reported in this thesis. Computation pruning 

schemes to speed up loudness estimation are discussed in Chapter 4 along with 

simulation results. In Chapter 5, the implementation of real-time loudness control using 

the Moore and Glasberg model is described. Chapter 6 expands upon the enhancements 

added to iJDSP, the mobile educational app, and the set of speech and audio processing 
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functions developed as part of the software. The software assessments conducted for 

iJDSP to evaluate its qualitative aspects as an educational application for speech and 

audio processing are also presented in Chapter 6. Chapter 7 summarizes, draws 

conclusions and discusses the scope for future work. 
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Chapter 2   
 

PSYCHOACOUSTICS AND THE HUMAN AUDITORY SYSTEM 

Psychoacoustics is the study of the psychological phenomena pertaining to the 

perceptions of sound. The human auditory system, which receives auditory stimuli from 

the ear, processes it through different stages in the organ system and produces neural 

impulses. These neural impulses are transmitted to the brain through a bundle of nerve 

fibers. All auditory perceptual phenomena are the results of the interpretation of these 

nerve impulses by the brain. An overview of the functioning of the human auditory 

system and the principles of psychoacoustics is presented in this chapter. 

2.1. The Human Auditory System 

A diagram of the human auditory system structure is shown in Figure 2.1 [46]. 

The auditory system could be divided into three main stages, namely the outer ear, 

middle ear and the inner ear, which are described below. 

2.1.1. The Outer Ear 

The outer ear consists of the pinna and the external auditory canal, which collect 

the sound waves and transmitting it to the ear drum, which is located at the end of the 

auditory canal. The auditory canal is a narrow tube about 2 centimeters long, which has a 

resonant frequency at about 4 kHz. This results in a higher sensitivity of the ear to 

frequencies around 4 kHz [47]. However, due to the same reason, the ear has a higher 

susceptibility to pain and damage due to high intensity sounds at these frequencies. 

2.1.2. The Middle Ear 

The outer ear receives sound pressure through the oscillation of particles in the 

air. On the other hand, the inner ear medium is made up of a salt-like fluid material and 
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the basilar membrane is contained in it. To excite the membrane, the energy in the air 

received at the ear drum from the outer ear must be effectively transmitted to the fluid 

medium in the inner ear. This is the function of the middle ear. The air vibrations are a 

result of particles oscillating with small forces but with large displacements. 

But in the inner ear, the particles in the medium would have to oscillate with large 

forces but and small displacements. To prevent energy losses during the transfer, 

impedance matching is required. The middle ear employs a mechanical system to achieve 

this. The malleus, which is a hammer-like bone structure, is firmly attached to the 

eardrum. The malleus is connected to the incus and the incus is connected to the stapes 

[47]. The stapes footplate, along with a membrane called the oval window, is connected 

to the inner ear. The malleus, incus and the stapes are made of hard bones, and 

collectively perform the function of impedance matching and effective energy transfer 

 
 

Figure 2.1: Structure of the human auditory system, broadly divided into three parts, viz., 

the outer ear, middle ear and inner ear [46]. 
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from the outer ear to the inner ear. The best impedance match is achieved at around 1 

kHz. 

2.1.3. Inner Ear 

The inner ear, which is otherwise known as the cochlea, is a snail-shaped spiral 

structure wound two and a half times around itself [47]. The cochlea processes the 

incoming vibrations and it is the part of the ear responsible for creating the electrical 

signals, which are transmitted to the brain and hence, result in the perception of sound. 

The cochlear structure is shown in Figure 2.2 when it is unwound [48]. The cochlea 

consists of a region called the scala vestibuli, which contains a fluid different from that in 

scala media and scala tympani. The scala vestibuli and scala media are separated by the 

thin Reissner’s membrane. The scala vestibuli is located at the beginning of the cochlea, 

at the end of the oval window. The stapes transfers the vibrations to the fluid regions, 

which excite the basilar membrane. The basilar membrane runs along the length of the 

 
 

Figure 2.2: Structure of the inner ear, shown with the cochlea unwound, revealing the 

basilar membrane. Each point on the membrane is sensitive to a narrow band of 

frequencies [48]. 
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cochlea, beginning at the base and ending at the apex. The basilar membrane is narrow at 

the base but about thrice as wide at the apex. The membrane separates the scala media 

from the scala tympani and supports the Corti. Each point in the basilar membrane is 

tuned to a particular frequency. The base of the membrane is tuned to the higher 

frequencies and the lower frequencies are tuned towards the apex of the membrane. 

Hence, the basilar membrane responds faster to higher frequencies than lower 

frequencies, as the lower frequencies take longer before traveling down to their resonance 

point on the basilar membrane. This results in faster sensation for higher frequencies than 

lower frequencies. It was initially assumed by Helmholtz in 1940 that the basilar 

membrane consists of a set of dense but discrete locations, which are tuned to specific 

frequencies [49]. However, von Bekesy later discovered that the membrane consists of a 

continuum of resonators [50]. 

When the stapes transfers the vibrations to the fluids in the inner ear, the fluid 

vibrations trigger basilar membrane vibrations. Sensory hair cells contained in the Corti 

transform the mechanical vibrations of the basilar membrane to electrical signals. The 

sensory cells in the Corti are present along the length of the membrane. A number of 

these hair cells are present in the Corti, and all electrical impulses are transmitted in a 

bundle of nerve fibers called the auditory nerve to the auditory cortex. The spatial 

relationship of the individual nerve fibers is preserved in the cortex, which results in the 

perception of frequencies as they are. 

2.2. Psychoacoustics 

The field of psychoacoustics deals with measurement and modeling of 

phenomena related to the perception of sounds. Due to lack of methods to physiologically 
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measure the hearing sensations produced in the brain, indirect techniques are adopted to 

measure sensations related to specific phenomena, such as auditory masking and the 

sense of loudness. Experiments designed to measure these phenomena involve the 

presentation of an auditory stimulus to a test human subject, and recording a subjective 

response of the subject to the stimulus. Such experiments are referred to as 

psychoacoustic or psychophysical experiments. For instance, in experiments for studying 

loudness perception, a listener can be asked to rank a set of sounds on a relative scale of 

loudness with respect to a reference sound. Essential principles of psychoacoustics and 

the techniques used to measure them are described below. 

2.2.1. The Absolute Threshold of Hearing 

The most fundamental aspect of human hearing is the threshold of hearing 

sensation. The Absolute Threshold of Hearing (ATH) is defined as the smallest intensity 

level that is just audible in a quiet surrounding. The strength of an auditory stimulus, 

which is essentially a sound wave, is measured in the unit of “decibels of Sound Pressure 

Level” or dB SPL. The sound pressure level β of a stimulus is defined as follows [6]. 

 β (dB SPL) = 10 log
10

�I
I0

� � =20 log
10

�p
p

0
� �  (2.1) 

Here, I is the intensity level of the sound expressed in watts/meter
2
 and p is the 

pressure of the sound in Newton/meter
2
 (Pascal). Intensity and pressure of a sound are 

related by the following equation. 

 I = �p2

4
� 10

-10
 (2.2) 

This equation is valid only at one temperature and pressure. But the corrections in 

the equations for varying temperatures and pressures are negligible for most practical 
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acoustic experiments and hence, the equation can be assumed valid. The intensity level I0 

is 10
-12

 watts/m
2
, or correspondingly, the pressure p

0
 is equal to 20 µPa. 

Common methods for measuring the ATH involve evaluation of the pressure 

levels of pure tones at which listeners find them to be just audible. Hence, the ATH 

(which is evaluated for each frequency) represents hearing thresholds only for tones, and 

not for signals with multiple tones or with complex spectra. The ATH curve can vary 

depending on the experimental method employed to measure the sound pressure levels. 

The main types of the absolute threshold curve are the minimum audible pressure (MAP) 

and the minimum audible field (MAF). The MAP curve is estimated by measuring the 

sound pressure level in the ear canal at a point close to the eardrum using a small 

microphone that is inserted into the ear. Hence, the MAP curve represents the absolute 

hearing threshold for a single ear. On the other hand, the MAF curve is estimated by 

measuring the sound pressure level of a tone at the center of the listener’s head in the 

absence of the head, i.e., in free field. The sound is presented in such cases in an anechoic 

chamber through a loudspeaker. The MAF curve thus, represents the binaural hearing 

threshold. Monaural thresholds are about 2 dB above binaural thresholds. 

The absolute threshold of hearing is defined at each frequency f (in Hz), and is 

given by the following equation [49]. The equation was obtained through fitting data 

from psychophysical experiments. 

 ATH�dB SPL� = 3.64 � f

1000
	-0.8

-6.5e
-0.6� f

1000
-3.3	2

+10
-3 � f

1000
	4

 (2.3) 

Figure 2.3 shows the absolute threshold of hearing curve. This curve represents 

the hearing thresholds for a person with normal hearing ability. It can be notices that the 
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sensitivity of the ear is quite low at the lower and the higher frequencies, but sharply 

increases towards the mid-range frequencies. This non-uniform nature of sensitivity to 

different frequency components is a result of the properties of the outer and middle ears, 

which transmit mid frequencies with lesser attenuation than the lower and higher 

frequencies. The outer ear’s resonance around 4 kHz causes a particularly noticeable drop 

in the threshold around the same frequencies. 

The absolute threshold of hearing is exploited in many applications, particularly 

in audio encoding. Algorithms such as the MPEG - 1 Layer 3 encoding scheme ensure 

that the quantization noise of the encoded audio is contained below the absolute threshold 

of hearing to render it imperceptible. 

 
 

Figure 2.3: The absolute threshold of hearing (ATH) curve for humans, showing the 

sensitivity of the ear to tones at different frequencies. 
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2.2.2. Auditory Masking 

An important auditory phenomenon observed in everyday life is masking of one 

sound by another. Masking refers to the phenomenon where one sound is rendered 

inaudible due to the presence another. For instance, when a loud interfering noise is 

present, the audibility of speech is reduced, and sometimes the speech is completely 

inaudible. Masking can be partial or complete. When the intensity of the masking sound 

is increased, the audibility of the sound of interest gradually reduces until a level beyond 

which the sound becomes completely inaudible. The sound pressure level of an auditory 

stimulus (referred to as the ‘maskee’) at which it is just audible in the presence of a 

masking sound (also called the ‘masker’) is referred to as the masking threshold of the 

sound. In the absence of any masker, the masking threshold of a pure tone is the absolute 

threshold of hearing, which is the threshold in quiet. Also, the threshold of the tone 

 
 

Figure 2.4: Masking phenomenon illustrated by the interaction between two closely 

spaced tones, one of which is stronger than the other and tends to mask the weaker tone 

[51]. 
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remains at the threshold in quiet when the frequency of the tone and the frequencies in 

the masker are widely separated. 

Masking is heavily exploited in several state of the art audio encoders such as the 

MP3 algorithm, which ensure that the quantization noise introduced during the encoding 

process are maintained under the masking thresholds in various frequency bands so that 

the quantization noise is inaudible. Due to its importance, masking has been widely 

studied in the field of psychoacoustics. The broad classification of different kinds of 

masking scenarios are described below. 

Depending on the instant of occurrence of the masker and the maskee, masking 

can be broadly classified under the following two categories, which will be elaborated 

upon below. 

• Simultaneous masking (or Spectral masking) 

• Non-simultaneous masking (or Temporal masking) 

Simultaneous Masking 

Simultaneous masking, or spectral masking occurs when a masker and maskee 

occur simultaneously. In such a scenario, the extent to which is masking occurs depends 

on the intensity level of the maskee and masker and also on the frequency components 

present in the masker and maskee. An example is shown in Figure 2.4, where two closely 

spaced tones are present [51]. The stronger tone is the masker. The dotted line in the plot 

shows that the absolute hearing threshold (which is the black solid curve) is raised 

significantly at and around the masker tone. This modified threshold of hearing is known 

as the Masked Threshold. An interesting observation in the plot is that the masked 

threshold is also defined at the same frequency as the masker. The masking threshold at 
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the masker tone’s frequency indicates that if the second (masked) tone were at the same 

frequency as the masker, then the intensities of the tones would superpose. In this case, 

second tone’s intensity level needs to be higher than the masking threshold at that 

frequency to perceive an intensity change at that frequency. 

Consider the example shown in Figure 2.5 [52]. If a masking tone is presented, 

then the excitation it produces in the basilar membrane creates a masking pattern, whose 

masking threshold is shown by the solid black line with the gray shaded region below it 

representing the critical bandwidth around the tone. When the ear senses a tone at a 

certain frequency, it significantly affects the audibility at a narrow band of frequencies 

around the tone, whose bandwidth is referred to as the critical bandwidth. There is also a 

predictable reduction in audibility in band neighboring the critical band. This 

 
 

Figure 2.5: General structures of the masking pattern produced by a tone. The masking 

pattern resembles the response of the ear to the tone produced as vibrations on the basilar 

membrane. The masking threshold characterizes the pattern, and any spectral component 

below the threshold is inaudible [52]. 
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phenomenon is known as the spread of masking, and is exploited in audio encoders. The 

notion of critical bands will be described in detail in the next section. 

The masking capability of a sound is measured by its Signal-to-Masker Ratio or 

Signal-to-Mask Ratio (SMR). The SMR is the ratio of the masker signal power to the 

minimum masking threshold power. Higher the masking ability of a signal, higher is its 

minimum masked threshold. Simultaneous masking scenarios can be classified into four 

kinds, as described below. 

1. Tone Masking Tone (TMT) – 

In this case, as the name suggests, both the masker and the maskee are 

tones. The measurement of masked thresholds of tones is quite straightforward, 

except when the masker and the maskee are closely spaced in frequency, in which 

case the thresholds are difficult to measure because of the occurrence of beats 

[57]. The beats indicate the presence of an additional frequency apart from the 

masker, and can sometimes render an audible maskee detectable. In this case, the 

listener is not actually detecting the maskee but the beat tones. A method to avoid 

this problem is to keep the masker and maskee at a 90 degree phase difference 

[47]. The minimum SMR in TMT scenarios is usually about 15 dB. 

2. Noise Masking Tone (NMT) – 

In this scenario, a stronger noise tends to mask a tone. In most 

psychoacoustic experiments the minimum SMR is usually -5 to 5 dB [13]. This 

indicates that noise is a better masker than a tone. 
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3. Tone Masking Noise (TMN) – 

In the scenario where a tone tends to mask a noise, the tone is usually 

required to have sufficient intensity to produce enough excitation in the basilar 

membrane by itself, if the frequencies in the noise are to be masked. In most 

experiments to study this phenomenon, the noise is narrowband, with its center 

frequency at the masker tone, and the bandwidth of the noise is confined to one 

critical band. The minimum SMR usually observed in this case is from 20-30 dB 

[13]. 

4. Noise Masking Noise (NMN) – 

In this case, a narrowband noise masks another narrowband noise. In this 

scenario, it is difficult to study properties such as the minimum SMR due to the 

complex interactions between the phases of the spectra of the masker and the 

maskee [13]. This is because different phase difference between components in 

the two signals can lead to different SMRs. 

Non-simultaneous Masking 

Non-simultaneous masking refers to the masking scenarios in which one sound tends to 

mask another even when both are presented in succession. This is also known as temporal 

masking. There are two kinds of temporal masking scenarios, viz., post-masking and pre-

masking. 

1. Post-masking – 

Post-masking occurs when a masker sound is presented and immediately 

after it is turned off, the maskee occurs. Due to the gradual decay of the masker in 

time after it is switched off, the masker still produces some hearing sensations 
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which masks the subsequent stimulus. Usually, post-masking lasts for about 100-

200 ms after the masker is removed. 

2. Pre-masking – 

Pre-masking, on the other hand, is the phenomenon where a sound, which 

is immediately followed by a stronger masking sound, is briefly masked even 

before the onset of the masker sound. This does not mean that the ear can 

anticipate future sounds, but can be attributed to the fact that a stimulus is not 

asserted instantly, but requires a small build-up time for its eventual onset. This 

build-up can produce some masking before the onset. Pre-masking is much 

shorter than post-masking, lasting usually only for about 20 ms. 

2.2.3. Critical Bands 

The auditory system can be modeled as a bank of overlapping frequency selective 

bandpass filters, otherwise known as auditory filters, with the bandwidth of a filter 

increasing with increasing center frequency. This model was suggested by Fletcher in [6] 

based on the results of psychophysical experiments to analyze the functioning of the 

auditory system. 

In the experiments, the detection threshold of a pure tone was measured when it 

was presented to a listener in the presence of a narrowband noise with the same center 

frequency as the pure tone. The detection threshold of the tone was measured for varying 

bandwidths of the noise, while keeping the power spectral density of the noise constant 

(That is, the noise power increased linearly with increasing bandwidth). In the 

experiments, it was observed that the detection threshold of a tone increases as the 

bandwidth is gradually increased, but beyond a particular bandwidth, the threshold ceases 
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to increase. The detection threshold does not increase with further increase in the 

bandwidth of the noise, but instead remains constant. That is, the audibility of a tone 

depends on the noise power only within a certain bandwidth around that tone. In addition, 

it was observed that this bandwidth increased with increasing frequency of the pure tone. 

This bandwidth is termed as the critical bandwidth. 

The basilar membrane acts as this bank of bandpass filters. Each point on the 

basilar membrane responds to a narrow band of frequencies around the center frequency 

corresponding to the location on the membrane. This narrow band of frequencies is the 

critical band for that center frequency. This experiment was repeated and the notion of 

critical bands confirmed by several other authors [14]. Zwicker and Fastl proposed an 

analytical expression of the critical bandwidth CB(f ) as a function of the center 

frequency 
, as given below. 

 CB�f � = 25+75 �1+1.4 � f

1000
	2�0.69

 Hz (2.4) 

From the idea of critical bands, a scale was developed to represent frequencies in 

terms of distance units on the basilar membrane, in effect mapping the frequency scale in 

Hz onto distances along the basilar membrane. This scale is known as the critical band-

rate scale. The scale is derived by stacking critical bandwidths such that the upper limit of 

one critical band corresponds to the lower limit of the next critical band [47]. The scale 

has the units “Bark”, coined in honor of Barkhausen, who introduced the “phon” units for 

loudness level measurement. The analytical expression mapping frequency to the critical 

band-rate ‘z’ is given by the following expression [47]. 
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 z �f � �Barks� = 13 arctan �0.76f

1000
 	 +3.5 arctan � f

7500
	2

 (2.5) 

However, these experiments assumed the auditory filters to have a rectangular 

magnitude frequency response. More recent experiments estimated the shapes of auditory 

filters and discovered they are not rectangular. 

Two important techniques have been used in the past to estimate auditory filter 

responses, which are briefly discussed here [14]. In one method, the filter shape around a 

center frequency is determined by presenting narrowband masker signals along with a 

tone at the center frequency. For a masker centered at a particular frequency, the intensity 

level of the masker required to just mask the signal is estimated. Performing this 

experiment for maskers at several frequencies produces a curve referred to as the 

Psychoacoustic Tuning Curve (PTC). This curve represents the masker levels required to 

produce a constant output from the filter, as a function of frequency. On the other hand, 

conventionally, in methods of estimating the response of a system (which is the auditory 

filter in this case), the response of the system is evaluated by keeping the input level 

constant over all frequencies. But if the system is linear, the PTC is an accurate measure 

of the auditory filter shape. Hence, it must be assumed that the auditory filters are linear 

in this experiment. Since the masker is a narrowband signal, the test tone can at times be 

sensed from auditory filters adjacent to the one intended to be excited. This is called “off-

frequency” listening, and results in erroneous tuning curves [14]. 

The second method, namely the notched-noise method, overcomes this problem. 

In this method, the masker is a noise with a notch centered at the center frequency of the 

auditory filter to be studied. This ensures that the test tone at the center frequency is 
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sensed only through the corresponding auditory filter and no off-frequency responses are 

produced. 

Through notched-noise experiments, Patterson suggested a “rounded exponential” 

filter shape for the auditory filters, which had a rounded-top for the pass-bands of the 

auditory filters and an exponential roll off in the stop bands. In this case, the critical 

bandwidth of the filter is equal to the effective bandwidth of the filter, which is also 

referred to as the Equivalent Rectangular Bandwidth (ERB). The ERB bandwidth of an 

auditory filter ERB(f ) as a function of its center frequency 
 in Hz is expressed according 

to the following expression [23]. 

  ERB�f � = 24.7�4.37f 1000⁄ +1� Hz (2.6) 

Since the ERB defined in equation (2.6) is derived from the actual shapes of 

auditory filters, it is a more accurate measure of the critical bandwidth than that defined 

in equation (2.4). 

Similar to the critical band-rate scale, a scale was developed using ERB 

bandwidths, known as the ERB scale. The ERB number for any frequency is the number 

of ERB bandwidths that can be stacked under that frequency. The ERB number p of a 

frequency f in Hz is given by the following expression. 

  p �in ERB units� = 21.4 log
10

�4.37f

1000
+1	 (2.7) 

Based on the above, in the subsequent chapter, loudness estimation methods are 

explained. 
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Chapter 3   
 

HUMAN AUDITORY MODELS AND LOUDNESS ESTIMATION 

Loudness is the intensity of sound as perceived by a listener. The human auditory 

system, upon reception of an auditory stimulus, produces neural electrical impulses, 

which are transmitted to the auditory cortex in the brain. The perception of loudness is 

inferred in the brain. Hence, it is a subjective phenomenon. 

Loudness, as a quantity, is different from the measure of the sound pressure level 

in dB SPL. Through subjective experiments on human test subjects (also referred to as 

psychophysical experiments), it has been found that different signals produce different 

sensitivities in a human listener, because of which different sounds having the same 

sound pressure level can have different perceived loudness. Hence, quantifying this 

quantity requires incorporation of knowledge of the working the human auditory sensory 

system. Methods to quantify loudness are based on psychoacoustic models that 

mathematically characterize the properties of the human auditory system. Some of the 

important such models are discussed below. 

3. 1. Loudness Level and the Equal Loudness Contours (ELC) 

The early attempts to quantify loudness were based on psychophysical 

experiments on human test subjects, involving two techniques – magnitude production 

and magnitude estimation [14]. The magnitude production technique requires the test 

subjects to adjust the intensity level (dB SPL) of the test sound until its perceived 

loudness is equal to that of a reference sound. The reference is usually a 1 kHz sinusoid. 

In the magnitude estimation method, the subject is presented with a test sound of varying 

intensity levels, and is required to rank them according to their perceived loudness. 
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The magnitude production method requires the measurement of loudness level, 

which does not rely on an absolute scale of loudness, but involves judging how intense a 

1 kHz tone must be to sound as loud as a test sound. From this technique, the ‘Phon’ 

scale of measurement of loudness level was derived. For instance, if a pure tone of 

certain intensity in dB SPL sounds as loud as a 1 kHz tone of intensity 40 dB SPL, then 

the given pure tone has a loudness level of 40 Phons. 

In 1933, the magnitude production method was adopted by Fletcher and Munson 

to estimate the sensitivity of the ear to pure tones of different frequencies [1]. The 

intensities of pure tones of different frequencies were adjusted until they matched a 

reference 1 kHz tone of a fixed intensity level. The experiment was repeated for different 

intensities of the reference tone. The results of this experiment are the Equal Loudness 

Contours, shown in Figure 3.1. Each contour indicates the intensities of pure tones at 

different frequencies which have the same loudness level, measured in phons. 

 

Figure 3.1: Equal Loudness Contours [19]. 
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The lowest contour represents the absolute threshold of hearing, which is at a 

level of 3 phons. At lower frequencies, the ear is less sensitive at low loudness levels. It 

can be observed that at lower frequencies, the sensitivity of the ear to intensity increases 

as the loudness level increases. For instance, for a 100 Hz tone, the intensity at absolute 

threshold (3 phons) is 27 dB SPL, whereas at 90 phons, the intensity is 99 dB SPL. Thus, 

to increase the loudness level by 87 phons, the intensity of the 100 Hz tones needs to be 

raised by 72 dB SPL. That is, the growth of sensitivity is higher at the lower frequencies 

than middle of high frequencies.  The contours flatten out with increase in the loudness 

levels. 

Loudness Estimation Using Equal Loudness Contours 

Equal Loudness Contours have been used in loudness level meters, which attempt 

to measure loudness of a signal using the ELC to account for the contribution of different 

frequency components to the perceived loudness. This is achieved by weighting the 

intensities of individual frequency components according to the shape of an appropriately 

chosen loudness contour. 

The weighting networks of the loudness meters only roughly approximate the 

equal loudness contours. At low loudness levels, the lower frequencies contribute less to 

the perceived loudness. Hence, an approximate loudness contour is chosen and those 

weights are applied at lower intensities. Conventionally, the “A” weighting curve is used 

in these cases, which is derived from the 30-phon equal loudness contour. At moderate 

intensity levels, the “B” weighting curve, which is derived from the 70-phon contour, is 

used. At high intensity levels, the “C” weighting curve is used, which models the 

sensitivity of the ear at high intensities, where the loudness contours are flatter. Hence, 
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the C weighting curve does not filter out the lower frequencies as aggressively as the A or 

B weighting curves. Measurements obtained from loudness meters are specified 

according to the weighting curves used. For instance, a meter produces a reading 40 dBA, 

when the A weighting curve was used and produced a weighted intensity of 40 dB. The 

A, B, and C Weighting Curves as defined in the ANSI S1.4-1983 standard [15] are shown 

in Figure 3.2. 

The disadvantage of loudness meters is that the readings are only approximate, as 

they choose only an approximate weighting scheme. Moreover, the weighting schemes 

are reliable only with steady state sounds, and in the presence of transients, they do not 

produce readings true to the subjective perceptions of the loudness. They also do not 

perform well with complex sounds with energy spread over a wide range of frequencies. 

More importantly, the weighting curves provide only a measure of a physical intensity. 

They do not provide a measurement reflecting the psychological perception of loudness. 

 
 

Figure 3.2: A, B, and C Weighting Curves as defined in ANSI S1.4-1983 standard [15]. 
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3.2. Steven’s Law and the ‘Sone’ Scale for Loudness 

An absolute scale for loudness is one where when the measure of loudness is 

scaled by a number ‘x’, the perceived loudness by a listener should also be scaled by the 

factor ‘x’, as mentioned in [6]. If the number is doubled, the perceived loudness should 

be doubled. Moreover, this should be consistent with experimental results performed on a 

sufficiently large group of human subjects. This, of course, is under the presumption that 

such scales do exist. 

The development of an absolute scale of loudness by Stevens led to the ‘Sone’ 

scale, proposed in [53]. One sone is arbitrarily defined to be the binaural loudness of a 1 

kHz pure sinusoid at a level of 40 dB SPL presented to a listener from a frontal angle of 

incidence in free field. The monaural loudness of a sound (the loudness perceived when 

presented to only one ear) is approximately half its binaural loudness. The following 

relationship was proposed by Stevens in [11] between the loudness level P in phons of a 

signal and its loudness L in sones. 

  L = 2
�P-40) 10⁄

,     if P ≥ 40 (3.1) 

Steven’s Law for loudness, proposed in [12] suggests a power law dependence of 

loudness L (measured in sones) on the signal’s physical intensity I (in watts/meter
2
), as 

expressed in equation (3.2). 

 L = kI
0.3 (3.2) 

Here, k is a constant dependent on the signal spectrum. This relation suggests that 

mathematically, the intensity is compressed (through the fractional exponent) to obtain 

the loudness. For a ten-fold increase in intensity, the loudness is approximately doubled. 

This relationship does not hold for sounds with pressure levels below 40 dB SPL. The 
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power law relationship was confirmed by several experiments using a variety of 

techniques [14]. 

3.3. Loudness Estimation from Neural Excitations 

Steven’s Law is a good model to quantify the loudness of an auditory stimulus, 

which has been confirmed by a number of psychophysical experiments. However, it 

provides information only about the perceived loudness, which is but one of a number of 

psychophysical phenomena experienced from auditory stimuli. In addition, phenomena 

such as masking and the notion of critical bands is a consequence of the properties of the 

human auditory system. It is, hence, beneficial to develop models that characterize all the 

stages of the human auditory system in order to develop from them more fundamental 

metrics from which all psychophysical properties of auditory stimuli can be computed. 

It is well known that sound received by the ear is processed by the auditory 

system to produce vibrations along the basilar membrane (referred to as the excitation 

pattern) in the cochlea, which are converted to neural impulses by the hair cells in the 

cochlea and transmitted by a bundle of nerve fibers in the auditory nerve to the auditory 

cortex in the brain, where the electrical signals are interpreted. Hence, several human 

auditory models have been developed which mimic the stages of the auditory system and 

obtain neural excitations of a given stimulus [16,18,19,21,22]. These auditory models are 

employed in loudness estimation under the idea that perceived loudness is proportional to 

the intensity of neural activity produced along the length of the cochlea. The neural 

impulses are also referred to as auditory patterns or auditory representations. The term 

“auditory pattern” was introduced by Fletcher in [6]. 
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The general structure of auditory pattern based loudness estimation is shown in 

Figure 3.3. The input auditory stimulus is processed by filters that model the outer and 

middle ear transfer functions. The resulting signals are filtered by the bank of frequency 

selective critical bandwidth filters representing different locations on the basilar 

membrane in cochlea, and the excitations at these points are computed. Then, the 

loudness per critical band is calculated as a non-linear compression of the respective 

excitation. The so derived pattern is called partial loudness, or the specific loudness. The 

specific loudness represents the intensity of the neural impulses produced by the cochlear 

hair cells. The total loudness (or simply, loudness) is then computed as the integral of the 

specific loudness, by evaluating the area under the specific loudness curve. 

Prior loudness estimation methods based on the notion of auditory patterns are 

described below. In 1933, Fletcher and Munson, apart from the Equal Loudness 

Contours, also developed a method to estimate loudness of a signal through auditory 

representations [1]. Their method consisted of a transformation of loudness level of each 

frequency component to a loudness measure at that frequency. The loudness measure for 

a frequency was assumed to be proportional to the rate of firing of neural impulses from 

the nerve endings at the corresponding location in the basilar membrane. The loudness 

 
 

Figure 3.3: The basic structure of auditory representation based loudness estimation 

algorithms. 
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values for individual frequency components (which could also be thought of as the 

specific loudness) were then weighted according to a suitable scheme for measuring total 

loudness in a sound with multiple tones. These weights accounted for the effect of 

masking on the contributions of loudness of individual tones. The computed loudness 

agreed with experiments with signals containing well separated tones, but performed 

poorly when a large number of frequency components were introduced and more so when 

the signals had continuous spectra [7]. A key aspect of this method to be noted is that the 

masking phenomenon and the auditory system’s filtering properties are applied in the 

model after the computation of the loudness (or nerve impulses) of individual spectral 

components. Hence, the onus of accounting for the properties of the auditory system 

(which acts on a stimulus before the production of neural impulses) rests on the weights, 

which are applied only after computing the neural impulses (or specific loudness 

measures). 

An improved model was proposed by the same authors in [7], where a 

quantitative relationship between loudness and masking was found and implemented in 

estimating loudness of sounds containing closely spaced frequency components or a 

continuous spectrum. From the spectrum of the stimulus, a masking audiogram was 

obtained. The masking audiogram represents the intensity in dB by which the threshold in 

quiet at each frequency is raised because of the presence of nearby frequency components 

in the signal. The masking audiogram is assumed to be a measure of the neural 

excitations (i.e., the auditory pattern). Hence, the loudness is estimated by integrating the 

area under the audiogram. Though this method was found to perform satisfactorily for 

signals with continuous spectra, it did not work well with signals containing tone 
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complexes or narrowband spectral content. This is because the masking audiogram is 

difficult to obtain at regions close to a tone due to the occurrence of beats. 

In [16], a generalized model applicable to signals with both tonal and continuous 

spectra was developed by Zwicker and Scharf. In this approach, the masking patterns 

were computed by filtering the stimulus signal through a bank of bandpass filters. These 

bandpass filters have critical bandwidths that mimic the filtering of signals along the 

basilar membrane in the human auditory system. Their passband and stopband 

characteristics and the transitions in their responses determine the extent of masking. This 

leads to a more accurate representation of the masking phenomenon, as opposed to the 

aforementioned method proposed in [7]. The masking pattern obtained through the bank 

of bandpass filters is converted to the excitation pattern, which represents the basilar 

membrane vibrations along its length. The excitation pattern is then converted to neural 

impulses which represent the specific loudness (or loudness per critical band), by a non-

linear compression through a relation similar to Steven’s Law. The total loudness of the 

stimulus is then obtained by integrating the specific loudness over all the critical bands. 

In [17], Moore and Glasberg proposed several changes to the model reported in 

[16] by Zwicker and Scharf. An important modification is in the computation of the 

excitation pattern. Instead of calculating the excitation pattern after obtaining the masking 

pattern, the model proposed by Moore and Glasberg computed the excitation pattern 

directly from the signal power spectrum as the energy of the outputs of the bank of 

bandpass auditory filters modeling the basilar membrane. 

More accurate representations of auditory filter responses are essential in accurate 

modeling of the masking phenomenon, and hence, accuracy of the derived excitation 
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pattern. The rounded exponential filters were used to represent the auditory filters in 

several models [21]. Gammatone filters were developed by [54,55] to model cochlear 

filter responses in cats. A Gammatone filter of center frequency f
c
 and bandwidth B has 

the following impulse response, where n is the order of the filter, φ is its phase offset and 

k is a scaling factor. 

 h�t� = ktn-1 exp�-2πBt� cos�2π f
c
t+φ� u(t) (3.3) 

The Gammatone filters were deduced by Schofield [56] to be a good 

representation of the responses of auditory filters to explain masking data from results of 

psychophysical experiments reported by [57]. At low orders (about 3-5), the Gammatone 

filters are very similar to rounded exponential filters, as reported in [20]. The Gammatone 

filters are symmetric, linear and independent of the input sound intensity level at the 

corresponding critical band. On the other hand, psychophysical experiments reported in 

[23,58,59,60] indicated that the auditory filter shapes were asymmetrical, non-linear and 

level-dependent. Several modifications were made to modify Gammatone filters to model 

these phenomena. In [61], the gammachirp filterbank was developed to address this issue. 

In another attempt, the dual resonance non-linear filter was developed [22]. 

In the papers authored by Moore and Glasberg in [17,60], the characteristics of 

level dependence and asymmetry in the rounded exponential filters were incorporated 

into the auditory model to represent the auditory filters. These auditory filters were used 

in the loudness estimation model proposed by them in [19], which is referred to as the 

Moore and Glasberg model. The model was found to perform well for sounds of different 

types of spectra, whether tonal or continuous. In the loudness estimation scheme 
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discussed henceforth, the Moore and Glasberg model has been employed. The following 

motivate this choice. 

The model incorporates an accurate human auditory model, which captures the 

properties of each stage of processing in the human ear, and hence, produces reliable 

measures of basilar membrane excitation patterns and auditory patterns. The model 

estimates loudness accurately for both sounds with both tonal and continuous spectra. In 

addition, the loudness is estimated in sones, which is an absolute scale of loudness and 

quantizes perceived loudness in an intuitive manner. It also estimates loudness accurately 

for sounds with pressure levels below 40 dB SPL, unlike Steven’s Law. In a nutshell, the 

Moore & Glasberg model analytically provides a reliable estimate of loudness given any 

signal with arbitrary spectral content, using linear auditory filters. Due to these reasons, 

the model was standardized by ANSI in 2005 as a new loudness standard [62]. The 

detailed mathematical expressions involved in the Moore and Glasberg model are 

described below. 

3.4. The Moore and Glasberg Model for Loudness Estimation 

The block diagram describing the Moore-Glasberg model is shown in Figure 3.4. 

The model imitates the characteristics of the outer and middle ear of the human ear, by 

filtering the input signal through a filter modeling the combined transformation 

characteristics of the outer and middle ear. The filtered auditory stimulus is subsequently 

processed by a bank of bandpass filters that model the response of the basilar membrane 

of the ear in the cochlea along its length. The energies of the signals produced by the 

bandpass filters comprise the excitation pattern. The excitation pattern is then compressed 

by a rule similar to Steven’s Law to obtain the loudness pattern. The loudness pattern is 
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then integrated to obtain the total loudness, or simply, loudness. This measure of loudness 

is also referred to as instantaneous loudness. An averaged measure of the instantaneous 

loudness, called the short-term loudness is also derived by smoothing the instantaneous 

loudness over time through an averaging window. 

3.4.1. Outer and Middle Ear Transformation 

The outer ear accepts the auditory stimulus and transforms it as it is transferred to 

the ear drum. The transfer function of the outer ear is defined as the ratio of sound 

pressure of the stimulus at the eardrum to the free-field sound pressure of the stimulus. 

The outer ear response used in the experiments is derived from stimuli incident from a 

frontal direction. Other angles of incidence would require correction factors in the 

response. The free-field sound pressure is the measured sound pressure at the position of 

the center of the listener’s head when the listener is not present. The outer ear can be 

modeled as a linear filter, whose response is shown in Figure 3.5. As it can be observed, 

 

 

Figure 3.4: Block diagram representation of the Moore & Glasberg model. 
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the resonance of the outer ear canal at about 4 kHz results in the sharp peak around the 

same frequency in the response. 

The middle ear transformation provides an important contribution to the increase 

in the absolute threshold of hearing at lower frequencies, as suggested in [47]. The 

middle ear essentially attenuates the lower frequencies. The middle ear functions in this 

manner to prevent the amplification of the low level internal noise at the lower 

frequencies. These low frequency internal noises commonly arise from heart beats, pulse, 

and activities of muscles [47]. Hence, it is assumed in the Moore & Glasberg model that 

the middle ear has equal sensitivity to all frequencies above 500 Hz. And below 500 Hz, 

the response of the middle ear filter is roughly the inverted shape of the absolute 

threshold curve at the same frequencies. 

 
 

Figure 3.5: The outer ear filter response in the Moore & Glasberg model [19]. 
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In addition to the middle ear characteristics, an additional attenuation at lower 

frequencies was required to explain the observed binaural absolute threshold specified in 

ISO 389-7. This was modeled by introducing a gain factor at the cochlea (called the 

cochlear gain), which was lesser at lower frequencies [19]. Biologically, this cochlear 

amplification can be attributed to the outer hair cells, which evolved this trait to prevent 

the amplification of the low frequency internal noises in the inner ear. 

The combined outer and middle ear filter’s magnitude frequency response is 

shown in Figure 3.6. The input sound x(n) with a power spectrum Sx(ωi) (where 

ωi=exp �j2π f
i

f
s

	 when the sampling frequency is f
s
) can be processed with the combined 

outer-middle ear filter. If the frequency response of the outer-middle ear filter is M(ωi), 

then the output power spectrum of the filter is Sx
 c�ωi�=|M�ωi�|2Sx(ωi). The spectrum 

Sx
 c�ωi� reaches the inner ear and is also called the effective spectrum. 

 
 

Figure 3.6: Combined magnitude response of the outer and middle ear. 
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3.4.2. The Auditory Filters: Computing the Excitation Pattern 

The basilar membrane receives the stimulating signal filtered by the outer and 

middle ear to produce mechanical vibrations. Each point on the membrane is tuned to a 

specific frequency and has a narrow bandwidth of response around that frequency. 

Hence, each location on the membrane acts as a detector of a particular frequency. The 

auditory filters comprise a bank of bandpass filters. Each filter represents the response of 

the basilar membrane at a specific location on the membrane. The auditory filter is 

modeled as a rounded exponential filter, and the rising and falling slopes of the auditory 

filter are dependent upon the intensity level of the signal at the corresponding frequency 

band. 

The detector locations on the membrane are represented on an auditory scale 

measured by the Equivalent Rectangular Bandwidth (ERB) at each frequency. For a 

given center frequency f, the equivalent rectangular bandwidth is given by the expression 

below. 

  ERB�f � = 24.67 �4.37f 

1000
+1	 (3.4) 

The auditory filters are represented on an auditory scale derived from the center 

frequencies of the filters. This auditory scale represents the frequencies based on their 

ERB values. Each frequency is mapped to an “ERB number”, because of which it is also 

referred to as the ERB scale. The ERB number for a frequency represents the number of 

ERB bandwidths that can be fitted below the same frequency. The conversion of 

frequency to the ERB scale is through the following expression. Here, f is the frequency 

in Hz, which maps to d in the ERB scale. 
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  d�in ERB units� = 21.4 log
10

�4.37f 
1000

+1	 (3.5) 

Let D be the number of auditory filters are used to represent responses of discrete 

locations of the basilar membrane. Let Lr=� dk | �dk-dk-1� = 0.1, k = 1, 2 … D} be the set 

of detector locations equally spaced at a distance of 0.1 ERB units on the ERB scale. 

Each detector represents the center frequency of the corresponding auditory filter. The 

magnitude frequency response of the auditory filter at a detector location dk is defined as: 

  W�k,i� = �1+p
k,i

g
k,i

� exp �-p
k,i

g
k,i

� , k = 1,… D and i = 1,… N, (3.6) 

,where p
k,i

 is the slope of the auditory filter corresponding to the detector dk at frequency 

f
i
 and g

k,i
= | (f

i
 - f

ck
) / f

ck
|  is the normalized deviation of the frequency component f

i
 from 

the center frequency f
ck

 of the detector. 

The auditory filter slope p
k,i

 is dependent on the intensity level of the effective 

spectrum of the signal within the equivalent rectangular bandwidth around the center 

frequency of that detector. The intensity pattern, I(k), is the total intensity of the effective 

spectrum within one ERB around the center frequency of the detector dk. It is computed 

from the following expression. 

 I�k� = � Sx
 c

(ωi)

i∈Ak

, Ak = � i | dk - 0.5 < 21.4 log
10

�4.37f
i

1000
+1� ≤ dk + 0.5, i = 1,…N (3.7)

As known through experiments, an auditory filter has different slopes for the 

lower and upper skirts of the filter response. In the model [23], the slope of the lower 

skirt p
k
l  is dependent on the corresponding intensity pattern value, but the slope of the 

upper skirt p
k
u is fixed. The parameters are given by the expressions below. 
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 p
k,i
 l  = p

k
 51- 0.38 � p

k
 51

p
1000
 51

� �I�i�-51� (3.8) 

 p
k,i
 u  = p

k
 51 (3.9) 

In the above equation, p
k
 51 is the value of p

k,i
 at the corresponding detector 

location when the intensity I(i) is at a level of 51 dB. It can be computed as follows. 

 p
k
 51 = 4 f

ck
/ ERB �f

ck
� (3.10) 

Thus, it can be seen that the slope of the lower skirt matches the auditory filter 

that is centered at a frequency of 1 kHz, when the effective spectrum of the auditory 

stimulus has an intensity of 51 dB at the same critical band. The slope p
k,i

 chooses the 

lower skirt and the upper skirt according to the following equation. 

 p
k,i

 = �p
k,i
 l ,  g

k,i
 < 0

p
k,i
 u ,  g

k,i
 ≥ 0

�  . (3.11) 

The excitation pattern is thus, evaluated from the following expression. 

  E�k� = � W�k,i�.Sx
 c�ωi�D

i=1

, k = 1,…D and i = 1,…N (3.12) 

 = � �1+p
k,i

g
k,i

� exp �-p
k,i

g
k,i

�D

i=1

,  k = 1,…D and i = 1,…N (3.13) 

3.4.3. Specific Loudness Pattern 

The specific loudness pattern as mentioned earlier, represents the neural 

excitations generated by the hair cells, which convert the basilar membrane vibrations at 

each point along its length (which is the excitation pattern) to electrical impulses. The 

specific loudness, or partial loudness is a measure of the perceived loudness per ERB. 
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The specific loudness is computed from the excitation pattern as per the following 

expression. 

  S�k� = c ��E�k�+A�k��∝
-A

∝�k�	  for k = 1,…D (3.14) 

The constants are chosen as c = 0.047 and α = 0.2. It can be observed that the 

specific loudness pattern is derived through a non-linear compression of the excitation 

pattern. A(k) is a frequency dependent constant which is equal to twice the peak 

excitation pattern produced by a sinusoid at absolute threshold, which is denoted by 

ETHRQ (i.e.,  A�k� = 2 ETHRQ�k� ) [19]. It can be inferred from this expression that the 

specific loudness is greater than zero for any sound, even if below the absolute threshold 

of hearing. Hence, the total loudness, which would be derived by integrating the specific 

loudness over the ERB scale, will also be positive for any sound. At frequencies greater 

than or equal to 500 Hz, the value of ETHRQ is constant. For frequencies lesser than 500 

Hz, the cochlear gain is reduce, hence, increasing the excitation ETHRQ at the 

corresponding frequencies. This can be modeled as a gain g for each frequency, relative 

to the gain at 500Hz and above (the gain at and above 500 Hz is constant), acting on the 

excitation pattern [19]. It is assumed that the product of g and ETHRQ is constant. The 

specific loudness pattern is then expressed as follows. 

  S�k� = c ��gE�k�+ A�k��∝
- A∝�k�	  for k = 1,…D (3.15) 

The rate of decrease of specific loudness is higher when the stimulus is below 

absolute threshold, than what is predicted in equation (3.15). This is modeled by 

introducing an additional factor dependent on the excitation pattern strength. Hence, if 

 E�k� < ETHRQ(k), the following holds for the specific loudness pattern. 
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  S�k� = c � E�k�
E�k�+ETHRQ�k��1.5 ��gE�k�+ A�k��∝

- A∝�k�	 (3.16) 

Similarly, when the intensity is higher than 100 dB, the rate of increase of specific 

loudness is higher, and is modeled by the following equation, which is valid when 

 E�k� > 10
10

. 

  S�k� = c � E�k�
1.04×10

6
�0.5

 (3.17) 

Hence, putting together equations (3.15), (3.16) and (3.17), the specific loudness 

function can be expressed as in equation (3.18). The constant 1.04×10
6
 is chosen to make 

S(k) continuous at  E�k� = 10
10

. 

 S�k� =
���
�
��� c ��gE�k�+ A�k��∝

- A∝�k�	                              ,  E�k�< ETHRQ�k�
c � E�k�

E�k�+ETHRQ�k��1.5 ��gE�k�+A�k��∝
- A∝�k�	 ,  ETHRQ�k� ≤ E(k) ≤ 10

10

c � E�k�
1.04×10

6
�0.5

                                             ,  E�k� > 10
10

� (3.18)

3.4.4. Total Loudness 

The total loudness is computed by integrating the specific loudness pattern S(k) 

over the ERB scale, or computing the area under the loudness pattern. While 

implementing the model with a discrete number of detectors, the computation of the area 

under the specific loudness pattern can be performed by evaluating the area of trapezia 

formed by successive points on the pattern along with the x – axis (which is the ERB 

scale). The loudness can then be computed using the following expression. 
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  L = � �S�k�δd+
1

2
�S�k+1�- S�k��δd�D-1

k=1

 (3.19) 

  L = δd  � S�k�D-1

k=2

+
1

2
�S�1�+ S�D��! (3.20) 

The loudness computed in this manner quantifies the loudness perceived when a 

stimulus is presented to one ear (the monaural loudness). The binaural loudness can be 

computed by summing the monaural loudness of each ear. 

3.4.5. Short-term and Long-term Loudness 

The measure of loudness derive above is also referred to as the instantaneous 

loudness, as it is the loudness for a short segment of an auditory stimulus. This measure 

of loudness is constant only when the input sound has a steady spectrum over time. 

Signals in reality are time-varying in nature. Such sounds exhibit temporal masking, 

which results in fluctuating values of the instantaneous loudness. Hence, it is important to 

derive metrics of loudness that are steadier for time-varying sounds. 

In [63], loudness estimation for time-varying sounds was performed by suitably 

capturing variations in the signal power spectrum to account for the temporal masking. 

The power spectrum was computed over segments of the signals windowed with different 

lengths, viz., 2, 4, 6, 8, 16, 32 and 64 milliseconds. Then, particular frequency 

components were selected from the obtained spectra to get the best trade-off time and 

frequency resolutions. The spectrum was updated every 1 ms, by shifting the windowing 

frame by 1 ms every time. The steady state spectrum hence derived was processed with 

the model described above and the instantaneous loudness was computed. 
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The short-term loudness is calculated by averaging the instantaneous loudness using a 

one-pole averaging filter. The long-term loudness is calculated by further averaging the 

short-term loudness using another one-pole filter. The short-term loudness smoothes the 

fluctuations in the instantaneous loudness, and the long-term loudness reflects the 

memory of loudness over time. The filter time constants are different for rising and 

falling loudness. This models the non-linearity of accumulation of loudness perception 

over time. Increasing loudness due to an attack rapidly accumulates, unlike reducing 

loudness, which is more gradual. If L(n) denotes the instantaneous loudness of the nth 

frame, then the short-term loudness Ls(n) at the nth frame is given by the following 

expression, where αa and αr are the attack and release parameters respectively. 

  Ls(n) = "αaL�n�+�1- αa�Ls(n-1),  L(n) > Ls(n-1)

αrL�n�+�1- αr�Ls(n-1),  L(n) ≤ Ls(n-1)
� (3.21) 

  αa=1- e
- 

Ti
Ta , αr=1- e

- 
Ti

Tr (3.22) 

The value Ti denotes the time interval between successive frames. Ta and Tr are 

the attack and release time constants respectively. Similarly, the long-term loudness Ll(n) 

can be computed from the following expression. 

  Ll(n) = �αla
Ls�n�+�1- αla

�Ll(n-1),  Ls(n) > Ll(n-1)

αlr
Ls�n�+�1- αlr

�Ll(n-1),  Ls(n) ≤ Ll(n-1)
� (3.23) 

3.5. Moore and Glasberg Model: Algorithm Complexity 

The structure of the Moore and Glasberg Model is shown in Figure 3.4, where the 

complexity of each element in the algorithm is indicated. Enlisted below in detail are the 

complexities of the operations in the algorithm. 
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1. Given a frame of # samples of an input signal x(n), the computation of the N-

point FFT, and hence, the power spectrum of the signal �Sx�ωi�$i=1
N  of the 

signal has a complexity of Θ�NlogN�. 

2. The effective power spectrum reaching the inner ear Sx
 c�ωi� is computed by 

filtering the spectrum Sx�ωi� through the outer-middle ear filter M�ωi�. In the 

dB scale, this reduces to additions of the magnitudes of the signal power 

spectrum and he filter response, which has a complexity of Θ�N�. 

3. The next few steps are part of the auditory filtering process on effective 

spectrum. 

a. The determination of the intensity pattern I(k) has a complexity of 

Θ(D). 

b.The subsequent computation of the auditory filter slopes %& has a 

complexity of Θ(D). 

c. The computation of the auditory filter responses �W�k,i�$
k=1,i=1
D,N

 has 

a complexity of Θ(ND). 

d.Then, the auditory filter operates on the effective spectrum to 

determine the excitation pattern E(k), which has a complexity 

Θ(ND). 

4. The computation of the specific loudness pattern S�k� from the excitation 

pattern has a complexity of Θ(D). 

5. The step of integrating the specific loudness pattern to estimate the total 

instantaneous loudness ' has a complexity of Θ(D). 
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6. The final steps of computing the short-term and long-term loudness require a 

constant number of operations and hence, have a complexity of Θ(1). 

It can be seen from the above analysis that the steps of computing the auditory 

filter responses and the filtering of the effective spectrum with the auditory filters has the 

highest complexity, of Θ(ND). This complexity can be reduced by pruning the number of 

spectral components to be computed and by pruning the number of detector locations 

required to accurately capture the excitation pattern shape. 
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Chapter 4   
 

EFFICIENT LOUDNESS ESTIMATION – COMPUTATION PRUNING 

TECHNIQUES 

The human auditory system, upon reception of a stimulus, produces neural 

excitations as described in Chapter 3. These neural excitations are transmitted to the 

auditory cortex where all higher level inferences pertaining to perception are made. 

Hence, in auditory patterns based perceptual models, excitation patterns can be viewed as 

the fundamental features describing a signal, from which perceptual metrics such as 

loudness can be derived. The excitation pattern, after non-linear compression, is 

integrated to obtain an estimate of loudness. Errors in the excitation pattern have a 

profound effect on the accuracy of the estimated loudness, because of accumulation of 

errors in the integration. 

The excitation of a signal at a detector is computed as the signal energy at that 

detector. The computation of the excitation pattern is intensive, having a complexity of 

Θ(ND) when the FFT length is N and the number of detectors is D. Pruning the 

computations involved in evaluating the excitation pattern can be achieved by explicitly 

computing only a salient subset of points on the excitation pattern and estimating the rest 

of the points through interpolation. 

Pruning can be achieved in two forms. In one case, the number of frequency 

components can be pruned to approximate the spectrum with only a few components 

such that the total loudness is preserved. That is, one can choose to retain a subset of 

frequencies {f
i
}

i=1

N
 for computing the excitation pattern. This is referred to as Frequency 

Pruning [25]. In the other case, the set of detectors {dk}
k=1

D
 can be pruned to choose only a 



55 

subset of detector locations for evaluating the excitation pattern {E(k)}
k=1

D
. This approach 

is referred to as Detector Pruning [25]. This is synonymous to non-uniformly sampling 

the excitation pattern along the basilar membrane to capture its shape. 

The intensity pattern, defined in equation (3.7), gives the energy per ERB. The 

intensity pattern can be used for determining the pruned frequency components and 

detector locations, as described below. 

Frequency Pruning 

Pruning the frequency components in the spectrum can be performed by using a 

quantity called the averaged intensity pattern. The average intensity pattern Y(k) is 

 
 

Figure 4.1: A frame of music sampled at 44.1 kHz (top). The intensity pattern along with 

the spectrum in the ERB scale (middle), and the intensity pattern along with the 

excitation pattern (bottom) are shown. 
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computed by filtering the intensity pattern, as show in equation (4.1).  The average 

intensity pattern is a measure of the average intensity per ERB. 

  Y�k� = 
1

11
� I(k-i)

5

i=-5

 (4.1) 

This allows us to divide the spectrum into tonal bands and non-tonal bands. Tonal bands 

are ERBs in which only a dominant spectral peak is present. The intensity pattern in these 

bands is quite flat, with a sudden drop at the edge of the ERB around the tone. The tonal 

bands can be represented by just the dominant tone, ignoring the remaining components. 

 
 

Figure 4.2: The intensity pattern shown with the average intensity pattern (top). The 

corresponding outer-middle ear spectrum and the pruned spectrum are shown in the 

bottom. 
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These tonal bands are identified as the locations of the maxima of the average intensity 

pattern Y�k� (see Figure 4.2). 

The portions of the spectrum which do not qualify as tonal bands are labeled as non-tonal 

bands. Each non-tonal band is further divided into smaller bins B1:Q of width 0.25 ERB 

units (Cam), where Q is the number of sub-bands in the non-tonal band. Each sub-band 

Bp is assumed to be approximately white.  From this assumption, each sub-band Bp is 

represented by a single frequency component S(p, which is equal to the total intensity 

within that band. If Mp is the indices of frequency components within Bp, then S(p is given 

by the following expression. 

  S(p = � Sx
c
(ωj)

j∈Mp

 (4.2) 

This method of dividing the spectrum into smaller bands and representing each band with 

a single equivalent spectral component is justified, as it preserves the energy within each 

critical band and consequently, preserves the auditory filter shapes and their responses. 

Spectral bins smaller than 0.25 ERB may also be chosen for non-tonal bands, but it 

would result in less efficient frequency pruning. 

Detector Pruning 

The excitation at a detector location is the energy of the signal filtered by the 

auditory filter at that detector location. Since the intensity pattern at a detector defined in 

equation (3.7) is the energy within the bandwidth of the detector, the intensity pattern 

would have some correlation with the excitation pattern. This is illustrated in the plot in 

Figure 4.1. It can be observed that for the given signal in Figure 4.1, the shape of the 

excitation pattern is to a significant extent, dictated by the intensity pattern. The peaks 
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and valleys of the excitation pattern largely follow the peaks and valleys in the intensity 

pattern. 

In [25], detector pruning was achieved by choosing salient points based on the 

averaged intensity pattern. The detectors at the locations of the peaks and valleys of the 

averaged intensity pattern are chosen for explicit computation. If the reference set of 

detectors is Lr = �dk| �dk-dk-1� = 0.1, k = 1, 2…D}, then the pruning scheme produces a 

smaller subset of detectors Le=�dk| ∂Y(k)

∂k
 = 0, k = 1, 2 … D}. The points on the excitation 

pattern are computed for the detectors in Le. The rest of the points in the excitation 

pattern are computed through linear interpolation. 

 
 

Figure 4.3: The intensity pattern and average intensity pattern (top) for a sinusoid of 

frequency 4 kHz sampled at a rate of 44.1 kHz. The reference excitation pattern of the 

sinusoid, the estimated excitation pattern and the pruned detector locations are shown 

(bottom). 
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In Figure 4.3, the top plot shows the intensity pattern and the averaged intensity 

pattern of a 4 kHz sinusoid. The bottom plot shows the reference excitation pattern, the 

pruned detector locations obtained by choosing the locations of maxima and minima 

(depicted as ‘*’) [25], and the estimated excitation pattern as the interpolated curve. It can 

be seen that many detectors critical to accurately reproducing the original excitation 

pattern are not chosen. For the purposes of loudness estimation, the accumulation of 

errors during integration of specific loudness results in a significant error in the loudness 

estimate. Hence, attempts must be made to choose more detectors which better capture 

the shape of the excitation pattern curve. 

4.1. Estimating the Excitation Pattern from the Intensity Pattern 

The excitation at a detector location strongly depends on the energy of Sx
 c

(ω) 

within the bandwidth (i.e., the ERB) of the detector. It is higher when the magnitudes of 

frequency components of the signal in the ERB are higher. This can be observed in 

Figure 4.1, where rises and falls in the excitation pattern closely follow those of the 

intensity pattern. Moreover, it is observable that sharp transitions in the intensity pattern 

 
 

Figure 4.4: The averaged intensity pattern, median filtered intensity pattern and the 

excitation pattern of a frame of sinusoid of frequency 4 kHz. 
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correspond to steep transitions in the excitation pattern. Detector locations at to these 

transitions must also be chosen to accurately capture the shape of the excitation pattern. 

To ensure retention of sharp transitions in the intensity pattern and yet effectively 

smoothen the pattern, median filtering is more effective than averaging. This is illustrated 

in the plots in Figure 4.4. The median filtered intensity pattern Z(k) better captures the 

sharp rises and falls in the intensity pattern. 

  Z�k� = median({I�k-2� I�k-1� I�k� I�k+1� I�k+2�}) (4.3) 

This is particularly useful when there are strong tonal components in the signal, 

such as sinusoids and music from single instruments. When the intensity pattern does not 

have sharp discontinuities, the filtered patterns are smoother and closely follow the 

excitation pattern. 

 
 

Figure 4.5: The comparison of the excitation pattern estimated through Approach 1 (top) 

and the proposed pruning method (bottom). 
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4.1.1. Interpolative Detector Pruning 

In order to capture salient points in addition to the maxima and minima of the 

averaged intensity pattern Y(k), the following method is adopted. The initial pruned set is 

chosen to be Le=�dk| ∂Y(k)

∂k
= 0 or 

∂Z(k)

∂k
= 0, k = 1, 2 … D} and the pruned excitation pattern 

sequence Ee is computed. If the first difference of the excitations is high in any location 

with a large separation of pruned detectors at that location, then, more detectors are 

chosen in between these two detectors. 

 Ee = )�dk,E�k��| dk∈Le, k = 1,2, … D* (4.4) 

For any two consecutive pairs �dm, E�m�� and �dm+n, E�m+n+1�� ∈Ee, if 

�E�m+n+1� - E�m�� > Ethresh and �dm+n+1- dm� > dthresh, then the detectors 

�dk | k = m+P, m+2P, …, k < m+n+1} are chosen and Le is reassigned as shown in 

equation (4.5). The value of P in the experimental setup was chosen to be 25. Ethresh was 

chosen as 30 dB and dthresh was chosen as 5.0. Zthresh was chosen as 10. 

 
Le = �dk | ∂Y�k�

∂k
 = 0 or 

∂Z(k)

∂k
 > Zthresh, k = 1, 2 … D} 

                 ∪ �dk | k = m+P, m+2P, …, k < m+n+1} 

(4.5) 

An example is shown in Figure 4.5 for comparing the excitation patterns 

estimated from the original pruning method involving choosing only detectors at maxima 

and minima of the intensity pattern and the proposed interpolative pruning approach. For 

convenience, the original pruning approach is henceforth denoted “Pruning Approach I”, 

and the proposed scheme “Pruning Approach II”. It can be seen from the figure that 

Pruning Approach II produces an estimate of the excitation pattern which better 

resembles the reference pattern, when compared to that of Pruning Approach I. Capturing 
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the additional detectors is useful at sharp roll-offs in the excitation pattern. Such patterns 

can be commonly produced by tonal and synthetic sounds. 

4.1.2. Exploiting Region of Support of Auditory Filters in Computation Pruning 

The auditory filters, as already discussed, are frequency selective bandpass filters. 

Hence, by exploiting their limited regions of support, huge computational savings can be 

achieved. The regions of support for the filters W(k,i) (denoted by ROS(W(k,i))) given an 

N-point FFT, are shown in Figure 4.6. It is seen that the region of support is small for the 

lower detector locations and gradually rises for detectors at higher center frequencies. 

Hence, choosing more detectors at lower center frequencies does not add significant 

computational complexity as opposed to choosing detectors at higher center frequencies. 

4.2. Simulation and Results 

In this section, results of simulations for evaluating the performances of the 

proposed pruning technique are presented and compared with the original pruning 

 

 
 

Figure 4.6: The region of support (ROS) of detectors in the current experimental setup. 
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method. Performance metrics include accuracy of estimated loudness and the excitation 

pattern, and the empirical complexity of the algorithms. The experimental setup is 

described below, followed by discussion of the results. 

4.2.1. Experimental Setup 

In the experiments, signals from the Sound Quality Assessment Material (SQAM) 

database were used as auditory stimuli to examine the pruning algorithm’s performance. 

The SQAM database consists of 70 sounds tracks which are categorized as described in 

Table 4.1 [64]. The SQAM database is comprised of variety of audio clips, which can be 

used to test the pruning scheme’s performance with different types of spectra. The sounds 

in the SQAM database were recorded at a sampling frequency of 44.1 kHz in stereo 

mode. The experimental setup involved estimation of the monaural loudness of the 

signals, for which the signals were converted to single channel mode. 

Frames of 512 samples (amounting to a duration of 11.61 ms) of the signals were 

provided as input to the loudness estimation algorithm. The spectra of frames were 

Table 4.1: Categories of sounds in the Sound Quality Assessment Material (SQAM) 

database and the indices of their tracks [64]. 

Sound Category Track Indices 

Alignment Signals Tracks 1 and 2 

Artificial Signals Tracks 3 to 7 

Single Instruments Tracks 8 to 43 

Vocal Tracks 44 to 48 

Speech Tracks 49 to 54 

Solo Instruments Tracks 55 to 60 

Vocal & Orchestra Tracks 61 to 64 

Orchestra Tracks 65 to 68 

Pop Music Tracks 69 and 70 
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computed using a 512 point FFT (i.e., N = 256). The number of detectors in the reference 

set was chosen to be D = 420, uniformly spaced in the ERB scale. 

4.2.3. Performance of Proposed Detector Pruning 

The results of the proposed pruning technique are presented here. The loudness 

estimation performance of the proposed algorithms is measured in terms of their Mean 

 

Figure 4.7: Comparison of MRLEs of Pruning Approaches I and II for sounds in the 

SQAM database (top). The corresponding complexities relative to the baseline algorithm 

are shown (bottom). 
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Absolute Loudness Errors (MALE) and Mean Relative Loudness Errors (MRLE) in the 

SQAM database. 

 MALE = 
1

P
� |Li - L( i|

P

i=1

 ,for P frames in the signal (4.6) 

MRLE =
1

P
� �Li - L( i�

Li

P

i=1

 (or) 
1

P
� �Li - L( i�

Li

P

i=1

 ×100 % (mean percentage error) (4.7) 

Max. ALE = max |Li - L( i| , i = 1, … P (4.8) 

The excitation pattern error is measured by the Mean Relative Excitation Error 

(MREE), as expressed in the equation below. 

 MREE = 20 log
10

, 1

P.D
� � �Ei�k� - E-i�k��

Ei�k�
D

k=1

P

i=1

. (4.9) 

The complexity of the pruning algorithm relative to the baseline approach is 

computed as: 

 

Figure 4.8: Comparison of MRLEs of Pruning Approaches I and II for individual sound 

tracks in the SQAM database (top). The corresponding complexities relative to the 

baseline algorithm are shown (bottom). 
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 Relative Complexity (Cr) = 
∑ �∑ 1ROS�W�k,i�� �k:dk∈Le∑ �∑ 1ROS�W�k,i�� �D

k=1

 ×100 % (4.10) 

The complexity of the baseline algorithm is O �∑ �∑ 1ROS�W�k,i�� � D
k=1 � and that of 

the pruned algorithm is O �∑ �∑ 1ROS�W�k,i�� �k:dk∈Le
�. 

The top plot in Figure 4.7 shows the MRLE for Pruning Approach I and the 

Pruning Approach II for sound categories in the SQAM database. Shown in the lower 

plot are the corresponding complexities of the two schemes. It can be seen that the 

complexity of Pruning Approach II is about 0.5% more than that of Pruning Approach I. 

But significant reduction in the MRLE error percentage is achieved by this small addition 

in complexity. 

Table 4.2: Maximum Loudness and Excitation Pattern Error performance comparison of 

Pruning Approach II with Pruning Approach I for categories of sounds in the SQAM 

database. 

 

Sound Category 

(Max. ALE) 

(Sones) 

Mean EP 

Error (dB) 

Pruning 

Approach 

I 

Pruning 

Approach 

II 

Pruning 

Approach 

I 

Pruning 

Approach 

II 

Alignment Signals 1.1852 0.2874 -9.995 -17.616 

Artificial Signals 2.5716 0.4497 -9.912 -19.268 

Single Instruments 2.0567 0.8380 -11.421 -17.650 

Vocal 1.2124 0.8686 -12.098 -15.974 

Speech 1.6845 0.8703 -11.973 -17.293 

Solo Instruments 1.2751 0.5618 -11.823 -17.256 

Vocal & Orchestra 2.1875 1.0169 -11.822 -16.979 

Orchestra 2.1602 0.5590 -12.736 -17.594 

Pop Music 1.3017 0.4277 -12.446 -17.990 
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The top plot in Figure 4.8 compares MRLEs of Pruning Approaches I and II for 

audio tracks in the SQAM database. The bottom plot shows the corresponding mean 

relative complexities of the two approaches. It can be seen that the Pruning Approach II 

significantly reduces the percentage errors in most sounds over the first approach. It can 

be seen that corresponding to significant percentage error reductions, significant 

increases in the complexity for can be seen Pruning Approach II. In most other cases, the 

complexity increase is not significant. Thus, the interpolative approach increases 

computations whenever required. 

Table 4.2 shows the maximum loudness error of the two approaches and again 

evinces the improved accuracy of the interpolative pruning approach. Also, the excitation 

pattern error is reduced in Pruning Approach II. 

 

 



68 

Chapter 5   
 

LOUDNESS CONTROL 

5.1. Background 

Control of perceptual loudness of audio must involve variation of the intensity of 

the signal over time such that the perceived spectral content of the signal is preserved as 

much as possible, while the perceived loudness of the signal over the duration of the 

signal is at a level desirable to the user. Also, it must be ensured that this is achieved 

without introducing any significantly perceptible audio artifact in the signal. 

A common technique used to control the intensity of sound is the Automatic Gain 

Controller (AGC). The AGC modifies the incoming signal’s power to a desired level by 

appropriately scaling it. If the AGC processes the incoming audio input frame-by-frame 

and modifies the signal power for every frame, while concatenatively resynthesizing the 

signal, it must be ensured that the variation of the output signal power across consecutive 

frames is smooth enough to avoid discontinuities at frame boundaries which may give 

rise to undesirable audible artifacts. For this purpose, the scaling factor for the signal 

power is limited by range compression or other such mechanisms. 

While the AGC effectively controls the signal intensity, it is not tantamount to 

controlling the perceived loudness of the signal, as the loudness has a non-linear 

relationship with the intensity and a complicated dependence on the spectrum of the 

signal, both of which are governed by the properties of the human auditory system. 

Hence, the loudness control system is to be designed taking into account the 

characteristics of the human auditory system and hence, the resulting relationship 

between the perceived loudness of the signal and its content. 
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One method of designing this system is to establish a mapping from the 

parameters that characterize any signal to its perceptual loudness. Based on this mapping, 

the signal intensity (or signal power) can be scaled to produce an output signal of the 

desired loudness. This technique essentially gives the conventional AGC system 

knowledge about the effect of gain modification on the loudness of the signal. For the rest 

of the article, the terms intensity, power and RMS value will be used interchangeably to 

denote the signal power. The signal scaling factor may also be referred to as the gain. 

Several conventional loudness control systems implement volume control through 

a wideband manual gain control with a bass boost or a treble boost to equalize the 

intensities of the respective frequencies according to the Equal Loudness Contours. Such 

control does not preserve the tonal balance at all listening levels. But using auditory 

models, more precise tonal balance can be achieved at all levels through sub-band gain 

control. 

The Moore and Glasberg model itself is a mapping from the signal content (viz. 

the spectrum) to its loudness. But because of the non-linear transformation of the 

excitation patterns of individual bands to form the loudness pattern, the relationship 

between the signal intensity and the loudness is very complex. Thus, it is difficult to 

analytically derive a closed form solution and instead, iterative methods would have to be 

resorted to for estimating the target gain required to achieve a desired loudness. 

Instead, in the approach described in this chapter, an approximate relation 

between the power and the loudness of a signal is derived by fitting functions to 

empirically obtained data from the Moore and Glasberg model. Since the Moore and 

Glasberg model represents the perceptual loudness of a signal as a function of the signal’s 
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spectrum, the attempt to express loudness as a function of the signal power would have to 

result in a parametric representation of the loudness in terms of the intensity, where the 

parameters would be functions of the signal’s normalized spectral shape and independent 

of the intensity. 

5.2. Loudness Based Gain Adaptation 

The model described herein provides such an explicit mapping between a signal’s 

intensity and its loudness, and the equation is a function of a single parameter which is 

dependent on the spectrum of the signal. As it will be shown, the model is another form 

of Steven’s Law, which in this case, has been derived as an empirical approximation of 

the mapping provided by the Moore and Glasberg model. 

By obtaining the loudness estimates of the Moore-Glasberg model for a signal of 

varying intensities, and performing the same for various types of signals, empirical 

mappings of signals to their loudness are obtained. For instance, when the Moore - 

 
Figure 5.1: Loudness versus sound pressure level for a set of sinusoids. 
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Glasberg model estimates the loudness of different sinusoids for varying gains, it gives us 

information about the variation of loudness with signal power for sinusoids and how the 

relationship changes with changing frequency. The plot in Figure 5.1 illustrates the 

obtained data from a set of such sinusoids. 

In Figure 5.1, the topmost curve corresponds to a sinusoid of about 4 kHz. That is, 

for a fixed signal power, the sinusoid at 4 kHz has the highest loudness. This is in 

accordance with the equal loudness contours. 

Similarly, narrowband noise signals were created with different frequencies and a 

bandwidth equaling one critical band around the respective center frequency. Their 

loudness values were estimated from varying gains by the Moore-Glasberg model and a 

plot of the same data is shown in Figure 5.2. Since these signals are noise, different 

frames of the signal would exhibit random fluctuations in the spectral shape. Hence, to 

get a good estimate of the loudness, averaging of the processed signal needs to be done at 

some stage in the model. Averaging of the excitation patterns can be performed before 

estimating the loudness of the signal. Since, the operations in the auditory model till the 

stage of the calculation of excitation pattern is linear it is logical to average the excitation 

pattern over multiple frames. 

The excitation patterns are then non-linearly transformed as elaborated in the 

description of the Moore-Glasberg model. This would give a good estimate of the 

loudness. In another approach, the loudness of the signal at different frames can be 

averaged to get an estimate of the loudness. This is a reasonable approach if the loudness 

fluctuations of the frames can be considered insignificant compared to the mean level of 

the loudness. In the experiment of estimating loudness of narrowband noise signals, the 
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short term loudness is averaged over multiple frames to obtain an estimate the loudness 

for a fixed signal power. 

It is evident from the Moore-Glasberg model that for a fixed spectrum, the 

loudness of a signal is a function of the signal power. On this premise, it is obvious that 

all signals whose spectra can be considered invariant over a given time period display a 

consistent behavior in the variation of loudness with signal power. It can be observed that 

as the signal power increases, the loudness is less sensitive to changes in the signal 

power. This is in consistency with Steven’s Power Law, based on which the mapping 

from the excitation pattern to the loudness pattern is derived in the Moore-Glasberg 

model. 

Steven’s Law relates signal intensity to loudness by a power law, which in 

mathematical form is  L = qgα, where g is the signal’s power. α and q are parameters 

dependent on the signal. This equation can be modified as follows. 

 

Figure 5.2: Loudness versus signal power for a set of critical band noises. 
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 log
10

dL

dg
 = �α-1� log

10
g + log

10
�αq� (5.1) 

The logarithm of the derivative of loudness w.r.t. the signal power vs. the 

logarithm of the sound pressure is shown in Figure 5.3 for a set of critical-bandwidth 

noise signals. It is seen that beyond about 40 dB SPL, the rate of increase of loudness 

with gain reduces has the power increases. 

It is observed that when loudness levels are higher than 0.5 sones, the curves for 

the set of signals are nearly parallel to each other. The behaviors of the curves are similar, 

except for their levels, which may be attributed to their spectral content. These inferences 

from the curves form the basis for the model derived here. 

 

Figure 5.3: Rate of change of loudness with sound pressure for critical bandwidth noise 

signals, whose corresponding center frequencies are mentioned in the figure. 
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Each curve is modeled using a piecewise linear model, assuming all the curves to 

be approximately parallel to each other in the regions where loudness levels are 

significant enough. The range of the signal power is split so that each segment of the 

curve can be approximated to a straight line. Since all the curves are parallel to each 

other, the corresponding segments of all the curves in the piecewise linear model would 

have the same slope. These slopes can be easily determined by fitting the data in each 

piece-wise linear segment to a straight line. The intervals separating the line segments in 

the curves’ model were chosen by visual inspection and the goodness of the fit was 

acceptable for all the signals testing the model. 

Consider any two consecutive straight lines on the curve with the following 

equations with p as the slope and q as the constant, where g is the signal power (RMS of 

the signal). 

 log �dL

dg
	  = p

k
log�g� +q

k
 (5.2) 

 log �dL

dg
	  = p

k+1
log�g� +q

k+1
 (5.3) 

If they intersect at the RMS value g
t
, then p

k
log�g

t
� +q

k
= p

k+1
log�g

t
� +q

k+1
. That 

is, q
k+1

=�p
k
 - p

k+1
� log�g

t
� +q

k
. Hence, q

k+1
 is expressible as a function of q

k
. In the same 

manner, the constant of one straight line can be represented in terms of the next straight 

line. Now, by splitting a given curve into m piece-wise linear segments, all the constants 

in all the individual straight line equations can be represented in terms of the first straight 

line’s constant. 
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 log �dL

dg
	 = p

0
log�g� +q

0
 , if g < g

0
 (5.4) 

 log �dL

dg
	  = p

i
log�g� +q

i
 , if g

i-1
≤ g ≤ g

i
 for i = 1,2,…,m-2 (5.5) 

 log �dL

dg
	  = p

m-1
log�g� +q

m-1
 , if g ≥ g

m-2
 (5.6) 

Now, q
1
, q

2
 , q

3
, … q

m -1
 can be represented in terms of q

0
. Since the slopes p

i
’s 

are obtained through data fitting as mentioned above, the only parameter left to be 

determined is the constant of the first straight line, q
0
. Hence, the relation between 

loudness and signal power derived from these equations is reduced to a parametric model 

relating the signal power to its loudness, with a single parameter q
0
 that depends on the 

 

Figure 5.4: The comparison between the experimentally obtained short term loudness 

variation with frequency for the band-limited noise from 0-2kHz (the red curve) and the 

same curve predicted by the proposed parametric model mapping the signal intensity to 

loudness. 
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signal’s content (spectrum). The above equations can be suitably integrated to determine 

the explicit relation between loudness and signal power, as shown below. 

 
dL

dg
 = eq0gp0 , if g ≤ g

0
 (5.7) 

  L�g� = 0 eq0νp0dν

g

0

 = 
eq0gp0+1

p
0
+1

 , if g ≤ g
0
 (5.8) 

Similarly, the relation can be derived for other regions of g, as shown in the equation 

below. 

  L�g� = L�g
i-1

�+ 0 eq
iνp

idν

g

g
i-1

     , if g
i-1
≤ g ≤ g

i
 for i > 0 (5.9) 

It is thus possible to successfully separate the signal intensity and the spectral 

content in the equation into different variables. By achieving this, the signal-dependent 

 

Figure 5.5: RMS error between achieved loudness and target loudness for sinusoids and 

narrow-band noise signals. 
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parameter in the equation can be estimated when the loudness of the signal and the 

intensity (or RMS value of the signal) are known. The loudness can be estimated online 

using the Moore-Glasberg model, and the signal intensity can also be easily computed. 

Hence, the parameter q
0
 can be estimated online and can be used to estimate the required 

gain to achieve a desired perceptual loudness. 

Shown in Figure 5.4 is the variation of the short term loudness with signal power 

for a sound clip containing bandlimited noise from 0-2kHz, which is the red curve. The 

blue curve is the variation of the short term loudness with power for the same signal 

predicted by the model derived above. It can be seen that the model predicts the loudness 

variation with good accuracy. 

Upon setting a target loudness level, a set of sinusoids and narrowband noise 

signals with varying intensities were scaled to reach the target loudness, where the 

scaling factor was determined by the proposed model. This experiment was conducted 

was varying target loudness levels & varying intensities of the input signals, and the 

loudness of the scaled output signals were compared against the target loudness. The 

errors in the loudness are plotted in Figure 5.5. 

5.3. Preserving the Tonal Balance 

From the Equal Loudness Contours, it is known that by changing the intensity of 

a signal, the shape of the auditory pattern is distorted because the variation of sensitivity 

with intensity is different for different critical bands. This structure of the auditory pattern 

is also referred to as ‘tonal balance’. A common example of tonal balance distortion is 

speech, which sounds boomy when the volume is raised to a large level. This is because 

the sensitivity of lower frequencies rapidly increases at high intensities and boosts the 
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perception of lower frequencies. Hence, in addition to the wideband gain control 

described above, gain control for narrow frequency bands is required to preserve the tonal 

balance of the signal. 

The narrowband gain control is implemented in the following manner, as 

illustrated in Figure 5.6. For narrowband gain control, the signal can be filtered by a bank 

of pseudo-QMF filters as part of an analysis-synthesis system. For an M-channel filter 

bank, the filters can have a tap length of L=MK, where K is the length of filters in the 

polyphase filter implementation of the filters. The filters are defined by the following 

equation. 

 hk�n� = h�n� cos 1�k+
1
2

� �n-
M-1

2
� π

N
+φ

k
2 , k = 0,… M-1 (5.10) 

The prototype lowpass filter h�n� satisfies the following conditions. 

 

|H�ω�|2= 0 for |ω| ≥ π/M 

|H�ω�|2+|H�π M⁄ -ω�|2= 2 for |ω| < π/2M 

(5.11) 

 

Figure 5.6: Sub-band gain control using an analysis-synthesis framework. 
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The phases are constrained by the equation φ
k
-φ

k-1
= �2p+1�π 2⁄ , where p is an 

integer. The corresponding synthesis filters are defined as  f
k
�n�=hk(L-1-n). 

The gains in the individual sub-bands ρ
k
 are computed from the specific loudness 

within the individual sub-bands. If each individual sub-band of the original audio has the 

specific loudness Sb�k�, then by Steven’s Law, its relation with the intensity g
k
 of that 

band is Sb�k�= τkg
k
2α. Similarly, if the wide-band gain controlled audio has a 

corresponding specific loudness Sb
' �k�, then Sb

' �k�= τkg
k
' 2α

. Assuming that the target 

intensity for preserving tonal balance is  g
k
t , then, 

 g
k
t = �Sb�k�

Sb
' �k� .

Sb
' �k0�

Sb�k0�� 1
2α

g
k
'  . (5.12) 

Thus, 

 ρ
k
= �Sb�k�

Sb
' �k� .

Sb
' �k0�

Sb�k0�� 1
2α

. (5.13) 

 

Figure 5.7: Block diagram of the loudness control system. 
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5.4. Loudness Control System Setup 

The loudness-aware gain controller based on the mathematical model derived 

above is incorporated in the loudness control system shown in the setup in Figure 5.7. 

The incoming signal is processed frame-wise by the system. A 512-point frame of the 

signal is processed by the loudness estimation algorithm. The estimated loudness and the 

signal power are used to compute the required scaling factor to achieve the desired 

loudness level in the output. 

This gain is then applied to the subsequent frame of the signal. This is a feedback 

system, where the current frame’s loudness is measured and the signal is scaled 

accordingly in the consecutive frame. An assumption of quasi-stationarity of the 

incoming signal is made, which justifies the relevance of the reactive nature of the 

system in controlling the loudness. 

 

Figure 5.8: Loudness of a music file over time shown by the yellow graph is controlled 

by the loudness control system to produce an output with controlled loudness, which is 

plotted as the graph in magenta. 
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As an example, a sound clip was passed to the loudness control system. As it can 

be seen in Figure 5.8, a portion of the original signal (plotted as the yellow graph) has a 

significantly higher loudness than the rest. The output of the loudness control system 

suppresses the increase in the loudness, successfully controlling it. 
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Chapter 6   
 

SPEECH/AUDIO PROCESSING FUNCTIONALITY IN IJDSP 

To be able to support speech and audio processing and visualization capabilities, 

iJDSP requires extensive enhancements in certain capabilities. One among these is the 

ability to process long signals, which are common in some audio processing schemes 

such as MP3 compression and psychoacoustic analysis. But in the conventionally 

designed functions of iJDSP, the maximum signal length permitted falls short of the 

requirements of such functions. For this purpose, a software framework was developed to 

create blocks which are capable to processing long signals, and yet are compatible with 

the conventional blocks in signal transmission, allowing easy creation of blocks that can 

smoothly interact with all other blocks without software bugs or exceptions, regardless of 

the signal handling capabilities of the blocks. 

Another important capability is to perform frame-by-frame processing, which is a 

common technique adopted for speech or audio signals. The frame-by-frame processing 

ability was created for the relevant blocks to be actively used for speech and audio 

processing. In addition, blocks for data visualization such as plots and frequency response 

were also enhanced by augmenting them with frame-by-frame visualization capabilities. 

These enhancements will be described in detail in the following sections. 

Presented in Section 2 this report are the aforementioned enhancements appended 

to the architecture of iJDSP and the expansion of its functionalities to perform more 

sophisticated simulations. Section 3 describes the functional blocks created in iJDSP to 

illustrate basic speech and audio processing concepts. 
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6.1. The iJDSP Architecture: Enhancements 

This section discusses details of the supporting software framework developed for 

enhancing the capabilities of iJDSP. These software constructs have resulted in 

significant increase in the sophistication of the architecture, and an additional level of 

abstraction in the types of function blocks supported by iJDSP. This software design 

pattern is also recommended to be adopted by future developers involved in the iJDSP 

project, who are required to create new abstractions for function blocks for providing 

architecturally novel capabilities. 

6.1.1. Framework for Blocks with Long Signal Processing Capabilities 

iJDSP is built extensively using object-oriented programming practices using 

objective-C. Objective-C is a programming language created by augmenting C with 

 

Figure 6.1: UML diagram describing the inheritance of the class ‘Part’ by 

‘LongCapablePart’. The ‘SignalGenerator’ block inherits from ‘Part’. The 

‘LongSignalGenerator’ block inherits from ‘LongCapablePart’. 
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object-oriented programming primitives. In iJDSP, a class called ‘Part’ is defined, which 

is the skeleton class describing a function block. It defines basic attributes of the function 

blocks and defines operations to manage parent-and-child relationships between blocks 

in a block diagram, and signal flow through the blocks. In essence, it defines the core 

attributes and operations of a typical function block. A DSP block is created by inheriting 

the ‘Part’ function, and suitably defining additional attributes and operations specific to 

the particular block. The operations of the block define how the block acquires data from 

specific input pins, process them and to which pins it dispatches the desired outputs. The 

attributes of the block define the state of the block, which parameterize the signal 

processing operations performed by the block. 

The essential attributes and operations of the ‘Part’ class are shown in the UML 

diagram in Figure 6.1. MAXSIZE denotes the maximum size of signal can be received as 

input, or that can be given as output, by a block built around the ‘Part’ class. For instance, 

the ‘SignalGenerator’ block, which creates signals and provides them as output through 

its output pin, inherits the ‘Part’ block. Hence, it can only provide output signals that can 

be up to 256 samples long. It is not advisable to simply increase the ability of the ‘Part’ 

class to be able to transmit longer signals because given the architecture of the 

application, it would result in excessive memory usage by every block, and reduce the 

number of blocks that can be used. Moreover, majority of the blocks do not require long 

signal transmitting capabilities. Hence, it would be wastage of resources. 

To overcome these issues, a new class ‘LongCapablePart’ was created. This 

inherits ‘Part’, and customizes itself to handle long signals, while retaining the 

capabilities of connecting to ‘Part’ based blocks. Functions in ‘Part’ were suitably 
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overridden in ‘LongCapablePart’ to achieve this. The blocks inheriting 

‘LongCapablePart’ are capable of transmitting signal frames of size up to 

LONGMAXSIZE (2048) samples. Only blocks requiring this capability are allowed to 

inherit ‘LongCapablePart’. For instance, the ‘LongSignalGenerator’ block, which 

generates frames of signals from a set of pre-defined speech and audio signals, can be 

used as a signal source for the speech and audio processing functions which would be 

described in the forthcoming sections. This block inherits ‘LongCapablePart’, hence, 

possessing the capability to transmit long frames. 

6.1.2. Frame-by-Frame Processing and Visualization 

Another major augmentation to the capabilities of iJDSP is the provision of plots, 

frequency response, and other such data visualization interfaces with the ability to view 

the data frame-by-frame, and traverse through all frames of the signal sources involved in 

the simulation setup. 

 

Figure 6.2: The interface for configuring the long signal generator block. Frames of the 

signal can be traversed using the playback buttons. A plot of the current frame of signal 

at the output pin is shown. 
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The Long Signal Generator block configuration user interface is shown in Figure 

6.2. The interface allows the user to configure parameters of the signal through the table 

on the left side of the screen. On the right, a plot of the current frame of signal is shown. 

The frames of the chosen long signal can be traversed using the playback buttons at the 

bottom of the table in the interface, indicated by the labels (a) – (e). As labeled in Figure 

6.2, the buttons (a) and (e) respectively seek the first and last frames of the chosen signal. 

Buttons (b) and (d) respectively seek the previous and next frames of the signal. Button 

(c) traverses the signal frame-by-frame from the current frame to the last frame. The right 

half of the view displays the current frame of signal at the pin. The frame-wise traversal 

in the Long Signal Generator and such blocks with frame-wise capabilities need to be 

 

Figure 6.3: The block diagram in the figure shows signal from a Long Signal Generator 

block being fed to a Plot block. The top right picture shows the configuration GUI for the 

Long Signal Generator block. The bottom right screenshot shows the visualization 

interface for the Plot block. 



87 

made easier from a user-experience perspective, and GUI enhancements were introduced 

in many existing functionalities for this purpose. 

As an example, a block diagram where a Long Signal Generator block is 

connected to a Plot block is shown in Figure 6.3. The Long Signal Generator has a 

visualization interface shown in the top right of Figure 6.3, which allows the user to 

traverse through the frames of the chosen signal through the playback buttons. In the Plot 

block’s visualization interface, the graph of the frame of signal currently produced as 

output by the Long Signal Generator block is shown. It is convenient for the user to be 

able to traverse through the frames of the long signal from directly from within the Plot 

block’s user interface, without having to access the Long Signal Generator block’s 

configuration interface. For this purpose, the frame-wise traversal buttons were also 

added to the Plot block visualization interface, as shown in the bottom right screenshot in 

Figure 6.3. Using these buttons, one can directly control the Long Signal Generator block 

connected to the Plot block. 

Similarly, this functionality has the sophistication of being able to handle multiple 

signal sources if they are present in the block diagram in the canvas. For instance, 

consider the block diagram shown in Figure 6.4. In this case, if a playback button in the 

Plot interface is pressed, then both the Long Signal Generators change their signal frames 

 

Figure 6.4: A block diagram where signals from two Long Signal Generators are added 

sample-wise and viewed in the Plot block. 
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accordingly. This is achieved programmatically by identifying all signal sources in the 

simulation setup that affect the blocks in the simulation setup, and then modifying the 

output frames of those signal sources. 

6.1.3. Planned DSP Simulations 

In order to illustrate specific concepts through elaborate block diagrams, certain 

complex block diagrams are stored as pre-defined simulation setups. Users can directly 

use these setups, without having to laboriously add all the individual blocks and establish 

all connections. For instance, the simulation setup for illustrating the concept of linear 

predictive coding, a popular speech coding technique, has been pre-stored in iJDSP. The 

simulation setup is shown in Figure 6.11, and will be discussed in detail in Section 3.3. 

6.2. Developed DSP Blocks 

This section describes some of the blocks developed in iJDSP for acquiring and 

rendering sounds, and for illustrating techniques of analyzing and processing 

speech/audio. 

6.2.1. Signal Generation Functions 

Long Signal Generator 

In many applications, such as those involving long speech or audio signals, 

splitting the acquired signals into equally sized frames and processing them frame-by-

frame is a common paradigm in digital systems. To illustrate processing of such signals, 

the Long Signal Generator function is supported in iJDSP. The Long Signal Generator 

provides a set of pre-defined long signals such as speech, music, and noise. The user is 

allowed to choose one from the provided set of signals. Figure 6.2 shows the interface of 

the Long Signal Generator. 
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The gain for the signal, the length of each frame and the overlap between adjacent 

frames can be configured by the user. The “current frame” indicates the index of the 

frame given as output in the format “Current Frame / Total No. of Frames in the Signal”. 

The desired frame of the signal can be chosen from the playback buttons. The right half 

of the view displays the current frame of signal at the pin. The Plot-Hide/Show button 

allows the user to show or hide the plot view on the right half of the interface. 

Sound Recorder 

Apart from the signals provided in the Long Signal Generator, it is also beneficial 

for students to record speech/audio from microphones and process them frame-by-frame. 

The Sound Recorder function is provided for this purpose. Audio can be recorded from 

the microphone by the Sound Recorder as 16-bit PCM samples. The user interface of the 

sound recorder block is shown in Figure 6.5. The Sound Recorder has options to acquire 

sounds at three different sampling frequencies: 8000 Hz, 16000 Hz and 44100 Hz. The 

function’s user interface has control buttons to start or stop recording, and playback 

control buttons to traverse through the frames of the signal. The length of the output 

frame can be configured by the user. The frame length, sampling frequency and the 

 

Figure 6.5: User interface for the Sound Recorder block. 
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current frame index of the recorded signal being output are also displayed in the user 

interface. The recorded sound can be processed and played by the Sound Player block. 

The Sound Player block can be configured to play the received samples at any of the 

aforementioned sampling frequencies supported by the Sound Recorder. 

Sound Player 

The Sound Player function aggregates signal frames provided as input, and plays 

the resulting signal as audio. The sound player block can be configured by the user to 

play the audio at a specific sampling frequency. The options provided by the sound 

player for the sampling frequency are 8000 Hz, 16000 Hz and 44100 Hz. The sound 

player block can be connected to the output of a designed DSP block diagram in the 

canvas. The options provided by the sound player upon double tapping the block in the 

main canvas are ‘Set Sampling Frequency’, ‘Parse’ and ‘Play Sound’ (Figure 6.6). 

The ‘Sampling Frequency’ option allows the user to configure the block’s 

operating sampling frequency as any one of the aforementioned options. The ‘Parse’ 

button simulates the entire block diagram and enforces the Sound Player block to 

aggregate the signal frames provided as input to itself. This is achieved by the block by 

 

Figure 6.6: Options provided by the Sound Player block. 
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identifying all signal sources in the block diagram which are processed to provide signal 

input to the sound player, and then parsing through the signals frame-by-frame in all the 

signal sources. This mechanism also enforces concurrency of the system at the input of 

the Sound Player block. That is, the algorithm ensures that redundant execution of the 

block diagram does not result in intermediate results (between the completion of a single 

frame traversal for all the signal sources in the canvas) being incorrectly interpreted as 

valid frames to be aggregated by the Sound Player for rendering as audio. Hence, the user 

is always advised to use the Parse button at the Sound Player to aggregate signals for 

audio rendering. 

When the input signal sources host longer signals that require time for processing 

through an elaborate block diagram, for the entire duration of the parsing process, a 

rotating activity indicator graphic appears on the screen, as shown in Figure 6.7. The 

‘Play Sound’ button renders the aggregated audio signal at the sampling frequency with 

which it was parsed. Hence, it must be ensured that the sound is always parsed with the 

appropriate sampling frequency in order to get the intended rendering while playing it. 

 

Figure 6.7: A rotating activity indicator with a translucent background is displayed while 

parsing through the signals generated by the sources from the Sound Player. 
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6.2.2. Spectrogram 

Time-frequency analysis involves the study of variations in the spectral 

composition of signals with time. The spectrogram is a popular time-frequency 

representation and is particularly useful for speech/audio processing algorithms. The 

spectrogram captures the temporal variations in the spectrum of a signal by computing 

the square of the magnitude of the FFT of the signal over successive windows of time. 

The spectrogram is elaborated upon in detail in [65]. 

The Short-time Fourier Transform (STFT) of a discrete-time signal x(n) of a 

length of M samples is evaluated from the following expression, using a W-point 

window w(n). 

  X�f,n0� = � x �n - �n0- 4W

2
5	� w�n�W-1

n=0

e-j2πfn  , -π ≤ f ≤ π (6.1) 

Implementing the above transform as an N-point DFT, the equation could be expressed as 

  X�k,n0� = � x �n - �n0- 4W

2
5	� w�n�W-1

n=0

e
-
j2πkn

N  , k = 0,1,…N-1. (6.2) 

The spectrogram is evaluated from the signal as Sx�k,n0�=|X�k,n0�|2. This is 

synonymous to computing the magnitude frequency response of the Short-time Fourier 

Transform of the signal. 

The spectrogram’s frequency resolution is higher when the window is longer and 

has a narrower main lobe. But longer windows reduce temporal resolution. For higher 

temporal resolution, smaller window lengths and higher overlap between successive 

windows in time are required. These trade-offs need to be carefully taken into 

consideration while choosing the right settings to compute the spectrogram. 
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The Spectrogram block in iJDSP displays the spectrogram of the input signal. The 

block can be configured by the user to: (a) choose the desired size of the FFT (64, 128 or 

256), (b) set the length of each frame of the signal for the FFT window (can be a 

maximum of 256), (c) set the number of overlapping samples between adjacent frames 

and (d) set the type of window to be applied. The spectrogram block detail view is shown 

in Figure 6.8(a). An example of the spectrogram of a sum of two sinusoids, each of 

length of 100 samples and normalized frequencies 0.1 and 0.15 radians is shown in 

Figure 6.8(b). 

 

(a) 

 
(b) 

Figure 6.8: (a) Spectrogram block detail view. (b) Spectrogram of a sum of two 

sinusoids, each of length of 100 samples and normalized frequencies 0.1 and 0.15 

radians. 
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Spectrogram for Long Signals 

The spectrogram of speech and audio signals is very useful to visualize how the 

spectral content of signals change over time. In particular, every phonetic sound produced 

in speech has characteristic spectral peaks called formant frequencies. The formant 

frequencies characterize the sound, and many speech recognition algorithms exploit this 

property of speech in some form. Over time, in a spectrogram, these formant frequencies 

are visible as clearly defined horizontal lines. An example is shown in Figure 6.9, where 

a Long Signal Generator block is connected to the Spectrogram block. In the Long 

Signal Generator, the ‘FemaleSpeaker’ signal is chosen. In the Spectrogram block, the 

spectrogram is defined to have an FFT length of 256, a Triangular window of length 200 

 

Figure 6.9: Spectrogram of speech clip of a female speaker generated by the Long Signal 

Generator block. The screenshot on the top shows the spectrogram of a single frame. The 

view on the bottom shows the spectrogram of the entire speech. 
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and a window overlap of 192. The resulting spectrogram can be visualized as shown in 

Figure 6.9. 

The playback buttons allow the user to traverse through the input signal and view 

the spectrogram for every frame of the input signal. Particularly useful is the ‘>>|’ button, 

which when pressed, aggregates all the spectrograms over all the frames of the input 

signal and displays the spectrogram of the whole signal as shown in Figure 6.9. This 

feature of the Spectrogram block can be used with any signal source. It is to be noted that 

the Spectrogram block shows the spectrogram of at most 64 frames of an input signal at a 

time. This is done to avoid memory overruns in the app which may cause the app to 

crash. 

For signals that have more than 64 frames (such as speech/audio recorded from 

the sound recorder block), the ‘>>|’ must be repeatedly pressed to shows successive sets 

of 64 frames of the input signal. 

6.2.3. Linear Predictive Coding (LPC) 

Linear predictive coding (LPC) is a well-known approach used to represent 

speech signals, where speech is modeled as a time-varying system excited by a signal 

[66,67]. The speech is divided into small frames, and within each frame, the speech is 

assumed to be quasi-stationary. Hence, the time-varying system for a frame can be 

approximated as an LTI system, with the LPC coefficients representing the LTI system. 

The excitation signal is a train of impulses for voiced signals, and white noise for 

unvoiced signals. The system being excited is modeled as an all-pole filter  S�z�= 1/A(z). 

The filter coefficients of the denominator  A�z�=1+ ∑ aiz
-iM

i=1  as well as the exciting signal 

are estimated by the LPC technique. The coefficients of the filter {ai}i=1

M
 are called the 
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LPC coefficients. The exciting signal is also referred to as the LPC residual.  In iJDSP, 

the LPC function performs linear predictive coding for a given input signal and provides 

as output the LPC coefficients and the residual. 

Shown in Figure 6.10 are some screenshots of the user interface of the LPC block. 

The LPC block acquires an input frame of signal, and computes the LPC filter 

coefficients and the residual using the Levinson-Durbin algorithm. The interface displays 

the LPC coefficients, the magnitude response of the LPC filter, the pole-zero plot of the 

same filter, and the LPC residual. The user can view any one of these views at any time 

by choosing them through the Options button, which opens up a pop-down menu listing 

these views. The playback buttons in the right side of the interface allow the user to 

control the signal source (the Long Signal Generator in this example) and traverse 

through all the input signal frames. 

 

Figure 6.10: The LPC block computes the coefficients of the LPC filter and the residual. 

It gives as output the LPC coefficients at the top pin and the residual at the right pin. 
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The speech of any signal can be resynthesized from its LPC coefficients and the 

exciting residual signal. Hence, the resynthesized signal can be observed by filtering the 

residual signal with the LPC filter in a Filter block. It can be compared with the original 

signal by observing the SNR between the original signal and the signal resynthesized 

from the LPC coefficients. This allows us to formulate interesting exercises. One such 

exercise is described below. 

Planned Exercise for Observing Quantization Effects on LPC 

In iJDSP, a pre-planned simulation setup is provided for illustrating the variation 

of the Signal-to-Noise ratio of the resynthesized speech signal with respect to the original 

 

Figure 6.11: LPC Quantization and analysis-synthesis setup. 

 

Figure 6.12: User interface of the SNR block. The SNR is displayed in decibels. The 

playback buttons allow traversal through the input frames to view the resulting SNR for 

each input frame. 
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speech signal. The simulation setup can be chosen from the “LPC Quantization Setup” 

provided in the menu of the available blocks accessed through the “+” button in the 

toolbar at the bottom of the main simulation workspace. The block diagram is 

automatically generated, as shown in Figure 6.11. 

The Quantizer block quantizes any input according to the bit depth that is 

specified by the user. By setting a particular bit depth in a quantizer, the output SNR for 

the signal can be observed in the SNR block. The interface of the SNR block is shown in 

Figure 6.12. Playback buttons have been added to the interface to allow the user to view 

the SNR frame-by-frame for any input speech. The user can view the SNR for the current 

frame being processed, or also the SNR for the entire speech signal by pressing the “>>|” 

button. 

6.2.4. Line Spectrum Pairs 

Line Spectrum Pairs (LSPs) are derived as a pair of linear phase filters from the 

LPC filter coefficients [66]. If the LPC synthesis all-pole filter of order M is 

 F�z�= 1/A(z), then the line spectral pairs are the polynomials  P�z� and Q�z�. 

  P�z� = A�z� + z-�M+1�A(z-1) (6.3) 

  Q�z� = A�z� - z-�M+1�A(z-1) (6.4) 

It is easily deducible that 

  P�z� = z-�M+1� P(z-1),  Q�z� =-z-�M+1� Q(z-1). (6.5) 

If M is even, then P�z� is a linear phase filter of odd order with even symmetry. 

Hence, it has a zero at z = -1. Similarly, Q�z� is a linear phase filter of odd order with odd 

symmetry. Hence, it has a zero at z = 1. The original LPC coefficients can be obtained 

from the line spectral pairs by adding them. 
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Line spectrum pairs have the property that when the LPC filter is stable (that is, 

when the roots of A�z� lie within the unit circle), their zeros lie on the unit circle. A 

detailed proof for this condition can be found in [68]. This allows the filters to be 

represented simply by the frequencies of their zeros. These frequencies are referred to as 

Line Spectral Frequencies (LSFs). Another interesting property of the LSFs is that when 

the all the roots of  A�z� are within the unit circle, the zeros of  P�z� and  Q�z� are 

interlaced on the unit circle, as shown in Figure 6.13 [68]. 

For transmission of speech signals, one can either quantize the LPC coefficients 

and transmit them along with the residual, or transmit quantized LSFs along with the 

residual. Upon quantizing the LPC coefficients, the LPC filter 1/A�z� is susceptible to 

becoming unstable [66]. On the other hand, quantizing the Line Spectral Frequencies 

maintains the line spectral pair zeros on the unit circle. Hence, as long as the quantization 

 

   (a)      (b) 

Figure 6.13: (a) The pole – zero plot showing the poles of a stable filter, which represent 

the LPC synthesis filter (b) The frequency response of the LPC filter, with the LSF 

frequencies labeled on the plot. 
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maintains the interlacing of the zeros of the LSPs, the stability of the filter is maintained. 

Additionally, the quantization error for a particular frequency affects the LPC filter’s 

response only locally, i.e., only around that frequency. Hence, LSFs can be encoded at 

lower bit rates than LPC coefficients without introducing instability in the reconstructed 

LPC coefficients. Taking advantages of these properties, any modern audio encoders 

encode speech signals using Line Spectral Frequencies. In iJDSP, the line spectral pairs 

and its properties are illustrated by a set of blocks, which are described below. 

The LPC-LSP Function 

The LPC-LSP block computes the Line Spectrum Pairs and the Line Spectral 

Frequencies. In its visualization interface (Figure 6.14), it displays the LPC filter poles 

and the LSP zeros in a pole-zero plot, and also the values of the line spectral frequencies. 

On the right side of the screen, the playback buttons perform the function of traversing 

through the frames of the signal source in the simulation setup. The functions of the 

  

  (a)     (b) 

Figure 6.14: (a) The LPC-LSP block can accept a set of filter coefficients from a block 

and gives as output the LSF frequencies through its top pin. (b) The figure shows the 

visualization of the LPC-LSP block.  
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buttons are similar to those in other blocks such as the Long Signal Generator (Figure 

6.2), which are explained in Section 6.1. 

LPC-LSP Placement Demo Block 

The LPC-LSP Placement Demo block shows a demonstration of the variation of 

zeros of the LSP filters. Shown in Figure 6.15 is the interface of this demonstration block. 

The user can place poles on the z-plane on the left side of the screen to construct an LPC 

synthesis filter. The user can move the pairs of conjugate pairs of poles on the z-plane 

through the touch-screen interface. As the LPC poles are placed and moved on the z-

plane, the corresponding LSP zeros displayed on the z-plane on the right side of the 

interface change dynamically in real-time. 

This interface can be used to create test cases of configuration of LPC poles to 

better understand how the positions of the poles reflect in the LSFs. In particular, it can 

be shown through this demo that LPC poles outside the unit circle cause the LSP filters to 

lose the property of having interlaced zeros on the unit circle, and often cause the LSP 

  

Figure 6.15: This figure shows a screenshot of the interface of the LPS-LSP Placement 

Demo block. The user can place poles on the z-plane on the left side to create an LPC 

synthesis filter. The corresponding pole-zero plot of the LSP filters is shown to its right.  
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zeros corresponding to an unstable pole to move away from the unit circle. These two 

properties of LSP poles are also tests for instability of the corresponding LPC filter. 

The LPC-LSP Quantization Demo Block 

The LPC-LSP Quantization Demo block demonstrates the effect of quantizing the 

LPC poles or the LSF frequencies on the pole-zero locations of the original LPC filter 

and the LPC filter reconstructed from the quantized LSFs. The user interface of the block 

is shown in Figure 6.16. The block has an input pin at the bottom, which accepts a set of 

LPC filter coefficients and computes the Line Spectral Frequencies from them. On the z-

plane on the left, it shows pole-zero plots – the poles colored black are the poles of the 

LPC filter when it is directly quantized. The poles colored red are the LPC poles when 

the LPC coefficients are converted to LSF frequencies, and the LPC filter is reconstructed 

after quantizing the LSFs. The z-plane on the right side shows the Line Spectral 

Frequencies after they are quantized. 

 

Figure 6.16: The LSP-LSP Quantization Demo block accepts as input LPC filter 

coefficients and computes the LSFs and reconstructs the LPC filter from the LSF. It

compares the effect of quantizing LPC coefficients versus quantizing LSFs. 
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The number of bits of quantization for the LPC and the LSF quantization can be 

chosen from the corresponding sliders, which allow the users to choose from 2 to 16 bits 

of quantization bit depth. The LPC and LSF quantization can also be turned ON or OFF 

from the corresponding switches provided. This allows the user to visually compare the 

pole-zero plots original LPC filter and the LPC filter reconstructed form the LSF 

frequencies. 

A useful example that can be constructed is the creation of LPC filter pole-zero 

configurations which can potentially lead to unstable LPC filters if they are directly 

quantized. It can be shown that the reconstruction of the filters from LSFs is more 

resilient to instability. An example of such a setup is shown in Figure 6.17. The LPC-LSP 

Placement demo block is used to create an LPC filter. The constructed LPC filter 

coefficients are passed to the LPC-LSP Quantization Demo block, in which the user can 

observe the effect of quantization of the LPC coefficients and compare it with the filter 

reconstructed from the LSFs. In this particular example, the LPC filter, upon directs 

quantization to 4 bits, becomes unstable. But the LPC filter reconstructed from the LSFs 

remains stable. 

 

Figure 6.17: The LPC-LSP Placement Demo block is used to create a test case of an LPC 

filter, which can be studied for quantization effects in the LPC-LSP Quantization Demo 

block. 
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6.2.5. The Psychoacoustic Model 

The Psychoacoustic Model II is the human auditory model used by the MPEG I 

Layer III audio encoder for exploiting the human ear’s perceptual properties in improving 

the coding efficiency by neglecting those frequency components in the sound signal 

which cannot be perceived by the ear due to its spectral and temporal masking properties 

[66,52]. The basic outline of implementation of Psychoacoustic Model II for estimating 

the masking thresholds is shown in Figure 6.18. Note that the window switching 

techniques are not dealt with here for simplicity. 

The psychoacoustic model used consists of a set of bands of frequencies, each 

with a response and bandwidth modeling the human auditory system’s characteristics. 

The input signal is analyzed through this model and parameters derived from this analysis 

are used to set masking thresholds according to which frequency components in the 

signal extracted from the analysis filter bank would be discarded or retained for encoding. 

The input frame is 1152 samples long. In the analysis section, a 1024 point FFT 

of the incoming signal frame is taken after it is windowed first using a 1024 point 

 

Figure 6.18: Block diagram for computing the masking thresholds in the MPEG I Layer 3 

psychoacoustic model. 
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Hanning window. Since the signal frame is too long for this analysis window, the frame 

is split into two frames, each with 576 samples. The frames are placed in a buffer such 

they align with the analysis window of the filter bank. This buffer is then processed using 

the Hanning window and then a 1024 point FFT is taken. 

From the FFT, the energy eb of the signal is computed in each threshold partition 

of the psychoacoustic model. 

  eb�z� = � R2(f )

bhz

f=blz

  , for the zth critical band (6.6) 

A measure of the signal’s unpredictability for each threshold partition is derived 

by computing the predicted energy of the current frame from the two preceding frames 

and the actual energy of the current frame. Usually, tonal bands have more predictability 

than noise-like bands. The unpredictability is given by the following equation. 

 cw�f � = ��Rj�f � cos ∅j�f � -R- j�f � cos ∅-j�f ��2
+�Rj�f � sin ∅j�f � -R- j�f � sin ∅-j�f ��2�78

Rj�f �-�R- j�f �� (6.7)

Here, R- j�f �=2Rj-1
�f �-Rj-2(f ) and ∅-j�f �=2∅j-1

�f �-∅j-2(f ). The weighted unpredictability 

in energy is 

  cb�z� = � R2�f �cw(f )

bhz

f=blz

. (6.8) 

The ability of a strong signal to mask weaker signals in the same threshold 

partition and also mask weak signals in neighboring partitions is an important property of 

the human ear, which is modeled by the psychoacoustic model by means of a spreading 

function to spread the energy of a threshold partition into its neighboring partitions. The 
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basilar excitation pattern is then computed by convolving the signal energy of the critical 

bands with the spreading function, denoted by spf (i,j) for the effect of the masker in the 

jth band upon the ith critical band, through the following expression. 

  ecb�z� = � eb�zb�spf (zb,zm)

zmax

b=1

   (6.9) 

Here, zm is the mean Bark value of the zth band. The excitation pattern is then 

normalized to compensate for the increase in the energy due to the spreading function, to 

give the normalized pattern enb(z). 

  enb�z� =
ecb�z�∑ spf �zmb,zm�zmax

b=0

 (6.10) 

Also, the unpredictability in the threshold partitions is convolved with the 

spreading function to incorporate the spreading function into the unpredictability. 

  ctb�z� = � cb�zb�spf(zb,zm)

zmax

b=1

 (6.11) 

Here, zm is the mean Bark value of the zth band. The masking characteristics of 

tonal and non-tonal bands are different and hence, it becomes essential to identify if a 

critical band has tonal components or otherwise. A parameter called ‘tonality’ is 

estimated for this purpose. The tonality of the signal in each threshold partition tbb(z) is 

computed from the spread unpredictability and the spread signal energy. 

 cbb�z� = log �ctb�z�
ecb�z��    ,   tbb�z� = -0.299-0.43cbb�z�  , 0 < tbb�z� < 1 (6.12) 

The masking thresholds are then determined by providing an offset to the 

excitation pattern, where the value of the offset strongly depends on the nature of the 
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masker. The offset is obtained by weighting the maskers with the estimated tonality 

index. 

  O�z� = 29tbb�z�+ 6�1- tbb�z�� (6.13) 

The SNR for each threshold partition is computed as, 

  SNR�z� = max[ min val(z) , O(z)] (6.14) 

Transforming the SNR to the linear scale, 

  bc�z� = 10
 - SNR�z�/10

 (6.15) 

Then, the energy threshold for the basilar excitation pattern in each threshold partition is 

  nb�z� = enb�z�bc(z) (6.16) 

Then, the masking threshold for the given frame of signal is given by the following 

expression. 

  thr�z� = max9Tq�z�, min9nb�z�, nbt-1�z�, nbt-2�z�:: (6.17) 

 nbj-1�z� = 2.nb�z� (6.18) 

 nbj-2�z� = 16.nb�z� (6.19) 

Tq(z) is the absolute threshold of hearing, and nbj-1
�z� and nbj-2

�z� are the energy 

thresholds from the past two frames. The masking thresholds decide which frequency 

components can be discarded on perceptual grounds. 

In iJDSP, the Psychoacoustic Model block is supported to illustrate the 

psychoacoustic model used in MP3 encoders. The block accepts an input signal frame 

and computes its masking thresholds, and displays the plot of the masking thresholds 

versus frequency, along with the signal spectrum (Figure 6.19). The block provides to the 

user the option of passing signals recorded at either 16 kHz or 44.1 kHz. This option can 
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be chosen while selecting the block in the main canvas for viewing the plots of the 

masking thresholds. 

The block also performs a peak-picking on the signal frame by removing the 

spectral components that fall below the masking threshold in their respective threshold 

partitions, and resynthesizes the peak-picked signal to show its similarity to the original 

frame of signal. The plot of the original and resynthesized signal is shown in the block’s 

user interface (Figure 6.20). The Options button at the top of the interface can be used to 

 

Figure 6.19: Psychoacoustic Model block interface showing the signal spectrum as the 

blue curve and the masking threshold for the frame as the red curve. The signal spectral 

components falling below the masking threshold are perceptually irrelevant, that is, they 

are masked and hence, inaudible to the listener. 

 

Figure 6.20: Psychoacoustic Model block interface showing the original frame of signal 

as the blue curve and the signal resynthesized after truncating the masked frequency 

components as the red curve. 
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switch between the different plots. The playback buttons on the right of the plot can be 

used to traverse through the frames of the input signal. 

6.2.6. Loudness 

The phenomenon of loudness and the methods for its quantification and 

estimation were described in Chapter 3. iJDSP provides an illustration of loudness 

estimation as part of the Psychoacoustic Model block. Given a frame of input signal, the 

block, along with the masking thresholds and the signal resynthesized after truncating the 

masked frequency components, also computes the loudness using the Moore and 

Glasberg model and displays the loudness pattern and the total loudness value of the 

signal frame. The loudness pattern plot can be viewed in the Psychoacoustic Model user 

interface by selecting the ‘Loudness Pattern’ from the pop down menu that appears on 

pressing the Options button. 

6.2.7. System Identification Demonstration: LMS Demo 

The estimation of characteristics of an unknown system is an important process in 

many DSP systems in a variety of applications. In one approach, a known signal x(n) is 

 

Figure 6.21: View showing the signal energy normalized in the dB scale as the blue graph 

and the specific loudness (or loudness pattern) of the signal as the red curve. The 

playback buttons on the right allow the user to traverse through all the frames of the input 

signal to view their respective loudness patterns. 
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passed through the unknown system with impulse response b(n) and its response y(n) as 

shown in equation (6.20) is obtained. The estimate of the unknown system b((n) (which is 

assumed to be modeled as an L-order FIR filter) is obtained through the sequential Least 

Mean Square (LMS) algorithm [66]. The sequential LMS algorithm involves comparing 

the response of the original system y(n) to the known input x(n) with that of the estimated 

system y;(n), and adapting the filter coefficients b((n) such that the error function in 

equation (6.22) is minimized. Minimizing this error is mathematically synonymous to 

minimizing the mean square error of the system response. 

  y�n� = � b(k)x(n-k)

∞

k=0

 (6.20) 

  y;�n� = � b((k)x(n-k)

L

k=0

 (6.21) 

  e�n� = y�n�- y;(n) (6.22) 

At each instant ‘n’, the filter taps are updated according to the steepest descent 

method in order to minimize the cost function given by the equation (6.23), where E{} 

denotes the expectation operation when e(n) is a random variable. The gradient descent 

method is in fact only stochastic, that is, the filter taps are adapted only based on the error 

at that instant, and not by averaging over all the past errors. The steepest descent 

algorithm minimizes the cost function by traveling against the gradient of the cost 

function evaluated at any instant. This requires the computation of partial derivatives of 

 C�e�n�� with respect to each filter tap of b((k), which give the filter tap update equations 

as given in (6.24). Here, b(n(k) denotes the filter taps at instant < and the taps are updated 

to b(n+1(k) before filtering at the �n+1�th iteration. 
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  C�e�n�� = E{|e�n�|2} (6.23) 

  b(n+1�k� = b(n�k� + µe�n�x�n-k�    , k=0,1,…L (6.24) 

µ is the step size of the descent. The step size controls how fast the filter taps 

converge towards the filter taps of the unknown system. If the step size is high, the speed 

of convergence is faster but the filter taps fluctuations around the minimum error are 

higher, hence, giving a higher mean square error in steady state. On the other hand, a low 

step size results in a slow convergence rate, although the steady state mean square error is 

lower. 

In iJDSP, the LMS Demo is a standalone demonstrative block provides an 

interface to visualize the demonstration of the LMS algorithm in system identification. 

The interface of the LMS Demo block is shown in Figure 6.22. The user interface allows 

the configuration of the input signal x(n) and the unknown system b(k) through the pop 

down menu which appears upon pressing the Options button, as described in Figure 6.23. 

The filter tap values of the original filter and the estimated filter are color-coded as blue 

and red respectively and listed in the view with a gray background. The portion of the 

screen with the gray view can be scrolled into in order to view the remaining tap values. 

 

Figure 6.22: The visualization interface of the LMS Demo block. 
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The step size is shown in an editable text field in the top right corner of the view. The 

magnitude frequency response of the original and the estimated system are shown in the 

plot on the left. The plot on the right shows the mean square error, until the last computed 

iteration. The system b(k) is allowed to be configured as an FIR filter for simplicity of 

illustration of the concept in the user interface. The input signal is of a fixed length of 512 

samples, and the estimate of the unknown system b((k) is represented as a 10
th

 order filter. 

The available choices for the input signal are white noise, brown noise, or white 

noise filtered by a customizable filter that a user is allowed to configure. The 

customizable filter can have an order of up to 10, and be an FIR or IIR filter. These 

options allow the user to test the LMS algorithm with a variety of input signals and infer 

the effect of the input signal’s characteristics on the accuracy of the estimated system 

when the LMS algorithm is implemented. 

The filter representing the original filter can be configured only as an FIR filter, in 

order to ensure simplicity in representing convergence of error in the plots in the user 

interface. Students can configure the filter taps to observe the speed of convergence as 

 

Figure 6.23: The interface for configuring the filter taps of the noise in the ‘Custom-

Filtered Noise’ option in the LMS Demo block. 
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the complexity of the filter characteristics is varied. The step size can also be varied to 

observe the speed of convergence of the filter taps for different step sizes. 

6.3. Assessments 

The effectiveness of reinforcing relevant speech and audio processing concepts 

through illustrative simulations using the above described speech/audio DSP 

functionalities in iJDSP was evaluated through assessments conducted at ASU in Fall 

2013. Graduate students specializing in Signal Processing and Communications were 

taught specific speech/audio DSP concepts, namely spectrograms and their properties, 

linear predictive coding for speech encoding, its motivation and application, line spectral 

pairs and their properties, and the concept of perceptual loudness with complementary 

exercises using iJDSP on the same concepts. The process adopted for the evaluation 

exercises comprised the following steps, (a) a pre-lecture questionnaire on the concepts 

involved in the exercise, (b) lecture on the pertinent signal processing concepts, (c) a 

 

Figure 6.24: Pre- and post-assessment results to assess student performance before and 

after using iJDSP. 
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simulation exercise using iJDSP, and (d) a post-questionnaire to test the efficacy of 

iJDSP in improving student understanding of the concepts. In addition to the technical 

assessments, general assessments on the learning experience were solicited and student 

feedback about iJDSP was also collected. The simulation exercises are given in Appendix 

A. In this section, we present the results of these assessments. 

6.3.1. Impact on Student Performance 

The pre- and post-quizzes were aimed at understanding the effect of the iJDSP 

app in learning the speech/audio concepts delivered in the lecture. Fig. () illustrates the 

improvement in student understanding of the different concepts by using the iJDSP 

visualization tools. In each case, we show the average number of students that correctly 

answered the questions pertinent to a topic. For each topic, the improvement in the post-

assessment, when compared to the pre-assessment, is shown in Figure 6.24. The 

percentage of students who understood spectrograms after the assessments were 85%, 

Figure 6.25: Response of students indicative of subjective opinions on effectiveness of 

iJDSP in understanding delivered speech/audio DSP concepts. 
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showing an improvement of about 10% over the pre-assessment quiz. Similarly, an 

improvement of 25% was seen with learning about linear predictive coding and its 

properties. Overall, by using iJDSP, more than 80% of the students understood all topics 

presented in the exercise as opposed to 63% with the lecture alone. 

6.3.2. Technical Assessments 

In the post assessment questionnaire, students provided subjective opinions on 

whether the speech processing modules in iJDSP were useful in improving understanding 

in each of the exercises. The responses were used to evaluate the usefulness of the 

developed iJDSP functions, in improving student understanding of the topics covered in 

the exercise. The students were asked to respond with one of the following options: 

 

Figure 6.26: Response of students indicative of opinions on the quality of the iJDSP 

interface, ease of use, and responsiveness. 
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Strongly Agree, Agree, Neutral, Disagree, and Strongly Disagree. The results of the 

evaluation are shown in Figure 6.25. Almost unanimously, the students responded that 

iJDSP helped them understand the speech/audio DSP concepts taught in the assessment 

session. 

6.3.3. Application Quality Feedback 

In addition to the technical assessments, the app’s quality was also assessed 

through a set of questions recording the user’s opinion on the qualities of the app such as 

the fluidity of the interface, aesthetics and user-friendliness. As shown in Figure 6.26, it 

was found that more than 90% students got familiarized with the iJDSP user environment 

in less than 15 minutes. They also indicated that the interface is appealing and the 

simulations are easy to setup. The interface was also reported to be responsive, with the 

students indicating that the speed of the application’s execution is satisfactory. 
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Chapter 7   
 

CONCLUSIONS AND FUTURE WORK 

Human auditory models based loudness estimation was explored in this thesis 

along with its application on real-time automatic loudness control. Methods to efficiently 

estimate loudness from the Moore and Glasberg model by pruning computations based on 

the signal properties were examined. Detector pruning and frequency pruning were 

employed to reduce the computations involved in evaluating the excitation pattern, which 

is the computational bottleneck in the algorithm. The existing detector pruning algorithm 

was improved to address its shortcomings in estimation of auditory patterns and loudness 

in the presence of sharp transitions in the excitation pattern. This significantly boosted the 

performance for sound tracks in the Sound Quality Assessments Materials (SQAM) 

database, with insignificant increase in the computation load. The examination of the 

improvement of the percentage error in the loudness with the computational error for 

individual sound tracks showed that higher increases in computations relative to the 

original detector pruning approach correspond to larger reductions in the percentage 

error. The Moore and Glasberg model was used to implement a perceptual loudness 

based real-time automatic loudness control system in Simulink. The loudness control 

system, which was developed as a perceptually controlled adaptive gain control system, 

involved both dynamic wide-band as well as dynamic narrow-band gain control 

mechanisms. The wide-band control’s function is primarily to control the perceptual 

loudness in real-time while the narrow-band gain controller preserves the tonal balance of 

the output. 
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Given the ability to speedily estimate excitation and auditory patterns, they can be 

easily extracted from audio data and used as feature vectors for applications such as 

binaural source separation and direction finding, auditory scene analysis, objective sound 

quality measurements, audio coding, and perceptual bandwidth extension. 

The application of sophisticated audio DSP algorithms in iOS devices was 

explored for creating interactive simulation environments in the educational mobile App 

iJDSP for illustrating key speech and audio DSP concepts. The system simulation 

architecture of iJDSP was enhanced to provide the necessary framework for facilitating 

speech and audio processing and visualization. Features such as the ability to handle long 

signals and frame-by-frame processing and visualization are important contributions in 

this regard. Using these developed functions, sample exercises were formulated to 

demonstrate specific DSP concepts such as the use of spectrograms in analyzing speech, 

Linear Predictive Coding (LPC), Line Spectrum Pairs (LSP) and the phenomenon of 

perceptual loudness. 

The effectiveness of the software along with the developed software modules in 

enhancing student learning was examined by allowing students to perform exercises on 

speech and audio processing on iJDSP, and assessing their scores in quizzes before and 

after the use of iJDSP. The results indicate that the software helped increase student 

understanding of the concepts taught through the exercises. The students also gave 

positive responses about the user friendliness of the app, its speed of execution and 

overall appeal. Future work on improving the app can involve the utilization of larger 

screens on devices such as iPads to provide more comprehensive visualizations for better 

clarity of illustration.  
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APPENDIX A   

SPEECH AND AUDIO PROCESSING ASSESSMENT EXERCISES USING iJDSP 
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A.1 Spectrogram 

The objective of this exercise is to visualize the spectrograms of signals, a popular 

time-frequency representation for speech and audio signals, and hence, understand the 

properties of spectrograms. 

In this exercise, the focus is on examining and visualizing the spectrograms of 

signals in the Signal Generator and long signal generator functions. Set up the block 

diagram shown in Figure A.1 by connecting two Signal Generator blocks to an Adder 

and connecting it to a Spectrogram block. 

Configure one signal generator to create a sinusoid of frequency 0.2π radians with 

a Pulsewidth of 256 samples. Configure the other signal generator to create a sinusoid of 

frequency 0.3π radians with a Pulsewidth of 128 samples. Choose the spectrogram block 

and open its parameter configuration window. 

Choose: FFT Length = 256, Window size = 200 samples, Window overlap = 192 

samples, Window Type: “Rectangular”. Press Update to view the spectrogram for the 

current frame. 

Notice that the sinusoids spectra are visible as horizontal spectral lines. 

 

Figure A.1: Spectrogram simulation setup. 
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Problem 1.1 

With the rectangular window, one may be able to see the sidelobes around the 

harmonics. These are visible as horizontal red lines on either side of the thick red lines 

representing the input sinusoid tones. The sidelobes arise due to the spectral 

characteristics of the rectangular window. 

Now, return to the spectrogram parameter configuration menu, choose a 

Triangular window and view the spectrogram for the entire signal. 

The resolution of the harmonics in the spectrogram improved. (True/False) 

The intensity of sidelobes increased. (True/False) 

Now, choose the Blackman window, and view the spectrogram. 

In comparison with the Triangular window, the spectral resolution of the sinusoids in the 

spectrogram improved. (True/False) 

Problem 1.2 

Now, choose the window length to be 64, change the overlap to 56, and view the 

spectrogram. 

With change in window length, the spectral resolution of the sinusoids in the 

spectrogram has improved. (True/False) 

The side lobes have reduced. (True/False) 

Change the overlap to 32 and view the spectrogram again. 

With reduced overlap, the temporal resolution has improved (True/False). 

With reduced overlap, the spectral resolution is unchanged (True/False). 
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A.2 Linear Predictive Coding 

The objective of this exercise is to understand the concepts underlying the 

representation of speech signals through the linear predictive coding technique. Linear 

Predictive Coding (LPC) is a popular technique for representing speech signals, where 

speech is modeled as a signal produced by exciting a system with either a train of 

impulse, or with white noise. The system being excited is modeled as an all-pole filter 

 S�z�= 1/A(z). The filter coefficients of the denominator  A�z� = 1 + ∑ aiz
-iM

i=1  as well as 

the exciting signal are estimated by the LPC technique, given the generated speech 

signal. The coefficients of the filter {ai}i=1

M
 are called the LPC coefficients. The exciting 

signal is also referred to as the LPC residual. This representation is suitable for modeling 

the human speech production mechanism, where the vocal cords vibrate to produce the 

exciting signal. The vocal tract, which represents the system, resonates due to the 

excitation and hence, produces the sound. The filter S(z) represents the response of the 

vocal tract and the residual represents the vocal cord vibrations. 

In the menu of blocks in iJDSP, choose “LPC Quantization Setup 2”. It will 

 

Figure A.2: Linear Predictive Coding analysis-synthesis setup. 
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automatically setup the simulation in Figure A.2. 

Problem 2.1 

Select the long signal generator, and choose the 10
th

 frame of the “Male Speaker” 

signal. You will find a frame of quasi-periodic speech plotted on the right. Due to the 

vibration of vocal cords, voiced sounds have a quasi-periodic nature, as opposed to 

unvoiced sounds such as /f/ or /s/, which are generated by mechanisms not involving the 

vocal cords. The chosen frame shows a voiced sound. 

Return to the canvas and select the LPC block to view its details. Let the order 

remain as 10 and press Update. The LPC coefficients of the signal will be displayed. 

Press the Options button and choose ‘Input Signal’ to view the input signal frame. 

Measure the distance between successive periods of the signal. You can see the 

coordinates of the points by the pressing on the points, which will display the green cross 

hairs over the points and their coordinates on the lower left portion of the plot view. 

The difference obtained is in the units of samples. Multiplying this difference 

with the sampling period (1/(8kHz)), the period is obtained in seconds. 

This period is defined as the pitch period of the voiced speech and its reciprocal is 

defined as the pitch frequency or the fundamental frequency (in Hz). Compute the 

fundamental frequency. 

Now, press the Options button and choose ‘Residual Signal’ to view the exciting 

signal. Find the time difference between the successive impulses in the residual, and 

compare it with the distance period of the signal. Are they similar? 

In particular, voiced sounds such as vowels have a strong first formant. The effect 

of this can be observed in the time domain of the speech signal. Choose the ‘Input Signal’ 
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option again in the LPC user interface. Compute the time difference between successive 

rising zero-crossings of the signal. 

Now, press the Options button and choose ‘Frequency Response’ to view the 

magnitude response of the LPC coefficients. Find the frequency of the first formant 

(denote it as ω1) (the first peak in the response). Compute ω1/2π to get the normalized 

frequency. Now, compute the reciprocal of the frequency, and compare it with the 

distance between the rising (or falling) zero crossings of the signal in time domain. Are 

they similar? 

Problem 2.2 

In Figure A.2, the LPC filter is excited by the LPC residual to resynthesize the 

speech signal. This part explores the effect of quantizing LPC coefficients on the 

resynthesized sound quality. Disconnect the Long Signal Generator from the LPC block 

and connect a Sound Recorder block to the LPC block. Record speech at a sampling rate 

of 8 kHz in the Sound Recorder. Currently, the quantizer has a bit precision of 6 bits. 

Double tap on the Sound Player block and press ‘Parse’ to process all frames of the 

recorded speech. Again, double tap on the Sound Player block and press ‘Play Sound’ to 

the play the resynthesized sound. 

Do you notice any artifacts in the resynthesized sound? (Yes/No) 

If you increase the number of bits in the quantizer block, parse the signal again at the 

Sound Player, and replay the Sound at the Sound Player, do you notice any reduction in 

the resynthesized sound quality? (Yes/No) 

Thus, it can be concluded that increase in the number of bits for quantizing the 

LPC coefficients results in reducing artifacts in the resynthesized speech. (True/False) 
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A.3 Line Spectrum Pairs 

Line Spectrum Pairs (LSPs) are polynomials derived as a pair of linear phase 

filters from the LPC filter coefficients. If the LPC synthesis all-pole filter of order = is 

 F�z�= 1/A(z), then the line spectrum pairs are: 

 P�z� = A�z� + z-�M+1�A(z-1) 

Q�z� = A�z� - z-�M+1�A(z-1) 

It is easily deducible that  P�z�= z-�M+1�P(z-1) and  Q�z�= -z-�M+1� Q(z-1). If M is 

even, then  P�z� is a linear phase filter of odd order with even symmetry. Hence, it has a 

zero at z = -1. Similarly,  Q�z� is a linear phase filter of odd order with odd symmetry. 

Hence, it has a zero at z = 1. The original LPC coefficients can be obtained from the line 

spectral pairs by adding them as 

 A�z� = 
1

2
�P�z�+ Q�z�� 

The polynomials  P�z� and  Q�z� representing the Line Spectrum Pairs have the 

property that when the LPC filter is minimum phase, i.e. the filter 1/A(z) is stable, their 

zeros lie on the unit circle. This allows the filters to be represented simply by the 

frequencies of their zeros. That is, given just the values of these frequencies,  A�z� can be 

reconstructed. These frequencies are referred to as Line Spectral Frequencies (LSFs). 

Another interesting property of the LSFs is that when the all the roots of  A�z� are within 

the unit circle, the zeros of  P�z� and  Q�z� are interlaced on the unit circle. These 

properties will be examined in the following problems. 
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Problem 3.1 

Add the PZ to LSF Demo block to the simulation canvas. Double tapping on the 

block will open its interface. Here, on the z-plane on the left, you are allowed to create a 

test case of an LPC filter by placing and moving poles. Now, add a pair of poles by 

pressing the Add Pole button and place it within the unit circle. On the plot on the right, 

along with the poles you placed, the zeros of the line spectral pairs of the LPC filter are 

also shown. The LSPs are color coded, with the zeros of one filter being shown in blue 

and the other being shown in red. Notice that the zeros of the two filters alternate on the 

unit circle. 

Now, when a pair of poles is moved out of the unit circle, notice what happens to 

that pair’s corresponding LSFs and the locations of those LSP zeros on the z-plane. Note 

that the values of the corresponding LSFs are not in increasing order anymore, and the 

zeros do not alternate. 

Problem 3.2 

In this exercise, the effects of quantizing LPC coefficients on the stability of the 

LPC filter will be observed and compared with quantization of LSFs. Create a pole-zero 

 

Figure A.3: A test case for the PZ to LSF Demo block. 
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plot in the PZ to LSF Demo block similar to that shown in Figure A.3 (note that the 

created LPC filter’s order must be even for this example). 

Now, add the LPC-LSP Quantization Demo block to the canvas, and connect it to 

the PZ to LSF Demo block. This will pass the LPC filter coefficients generated by the PZ 

to LSF Demo block as input to the LPC-LSP Quantization Demo block. Then, double tap 

on the LPC-LSP Quantization Demo block to open its user interface. 

Enable the LPC quantizer and gradually reduce the number of bits for LPC 

quantization. Press the Show/Hide LPC Coeff button to see the pole values for the 

quantized LPC filter and the LPC filter reconstructed from quantized LSFs. At low bit 

resolutions, poles of the quantized LPC filter will move out of the unit circle, hence, 

becoming unstable. But it can be seen that the poles of the LPC filter reconstructed from 

quantized LSFs have a lesser tendency to move out of the unit circle. 

A.4 Loudness 

The objective of this exercise is to understand the principle of loudness, which is 

the measure of perceived intensity. Loudness is a non-linear quantity, which depends on 

 

Figure A.4: The view of the LPC-LSP Quantize Demo block with LPC quantization 

enabled and the quantized LPC pole locations being listed next to the LPC PZ plot. 
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the spectrum of the signal. The measure of loudness is different from the conventional 

scale of measurement of signal energy in dB. Two signals can have the same energy, but 

different perceived loudness. 

Loudness is measured in ‘sones’. 1 sone is the loudness of a 1 kHz sinusoid which 

has a sound pressure (or energy) of 40 dB. The conversion from energy E (dB) to 

loudness L in sones is defined by the following law, where k is a constant dependent on 

the signal spectrum. 

L = k10
0.03*E

 

The human ear consists of many hair-like cells in the innermost part of the ear 

(called the cochlea), which convert incident sound waves into neural impulses (called 

excitations). Different hair cells respond to different parts of the spectrum. These cells act 

like a bank of selective bandpass filters. 

The loudness is higher when there is higher neural excitation. The loudness 

pattern, which quantifies the perceived loudness at a given frequency, is derived from 

these neural excitations. The loudness pattern is integrated to obtain the (total) loudness 

of the signal. 

Problem 4.1 

Add a Signal Generator producing a sinusoid of frequency 0.02π rad, gain 0.1 and 

pulsewidth of 256 samples. Connect it to the Psychoacoustic Model block. Now, double 

tap on the psychoacoustic model block in the canvas and choose the ‘Sampling Rate: 

44100 Hz’ option to view its interface. Choose ‘Loudness Pattern’ from the pop-down 

menu of the Options button. This shows the loudness pattern along the spectrum. The 

energy of the signal and the total loudness of the signal are displayed along with the plot 



135 

of the loudness pattern. Note down the energy and loudness values in the table given 

below. Now, change the frequency of the sinusoid to 0.1π and note down the new energy 

and loudness values. Similarly, note the values for a frequency of 0.2π. 

Sinusoid 

Frequency 
Energy (dB) Loudness (Sones) 

0.02π   

0.1π   

0.2π   

 

The loudness of a sinusoid gradually increases with increasing frequency up to a 

point and then decreases with further increase in frequency. (True/False) 

Problem 4.2 

Case I: 

In the Signal Generator in the previous problem, set the frequency to 0.202π, set 

the gain to 0.017136 and note the energy and loudness values. 

Energy (dB): _______________   Loudness (Sones): _______________ 

Case II: 

Now, create the setup shown in Figure A.5. Set the following parameters in the 

blocks: 

Sig Gen 0 -  Gain = 0.01, Frequency = 0.04π, Pulsewidth = 256. 

Sig Gen 1 -  Gain = 0.01, Frequency = 0.044π, Pulsewidth = 256. 

Sig Gen 2 -  Gain = 0.01, Frequency = 0.048π, Pulsewidth = 256. 

Now, note the energy and loudness of the cumulative signal in the Psychoacoustic 

Model interface for the Sampling Rate of 44100 Hz. 

Energy (dB): _______________   Loudness (Sones): _______________ 
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Compare these values with the values previously noted for the sinusoid of 

frequency 0.202π. 

In this example, the energies in the two cases are the same, but the presence of 

larger number of spectral components results in higher perceived loudness. (True/False) 

 

  

 

Figure A.5: Setup for loudness estimation. 
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APPENDIX B  

LOUDNESS CONTROL SIMULINK DEMO 

H 
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B.1 Introduction 

This appendix describes the Simulink model implementing the Moore and 

Glasberg Model for loudness estimation as part of the real-time automatic loudness 

control system. Simulink models help elegantly describe the structure of a system as a 

block diagram. A complex system can be abstracted and represented as a simple network 

of subsystems, where each subsystem is a network of smaller less complex subsystems. 

Another advantage of simulating a system as a Simulink model is that real-time 

demonstration of processing, real-time interaction with the system and visualization of 

data is possible, which is an easy way of evaluating the feasibility of real-time 

implementation. In addition, fixed-point and floating point models can be generated from 

floating point models, which is beneficial for testing fixed-point implementations. It is 

also possible to generate embedded C code for target DSPs. The Moore and Glasberg 

model implemented as a Simulink model is shown in Figure B.1. 

Figure B.1: The AUDMODEL block implements the Moore and Glasberg model for 

loudness estimation. 
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The model accepts a signal frame and computes the excitation pattern (Esig), 

loudness pattern (LP), the instantaneous loudness (IL), and the short-term (SL) and long-

term (LL) loudness. The functional blocks comprising the AUDMODEL block are briefly 

described below. 

B.1.1. Sound Pressure Level Normalization 

The power spectrum of the input signal frame is computed after preprocessing 

using a Hamming window. The input signal is normalized to convert the full-scale 

decibel level to 0 dB. The spectrum is then normalized to a full-scale sound pressure level 

of 90 dB SPL, and the resulting power spectrum in dB is produced as output. The 

Selector block chooses only the first half of the FFT points as the signal is real. The DC 

component is not transferred as it is not in the range of human hearing. 

B.1.2. Outer-Middle Ear Filtering 

The outer and middle ear filter magnitude responses are modeled by this block in 

the ‘OMEC’ vector. The input signal is filtered by this block before being presented to 

the block modeling the auditory filters in the inner ear (which is referred to as the 

effective spectrum). The filtering is performed by adding the dB values of the magnitude 

 

Figure B.2: Sound pressure level normalization Simulink model. 
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spectra of the signal and the filter and the response is recomputed in linear scale and 

produced as output.  

B.1.3. Computing the Excitation Pattern 

The excitation pattern is the computed as the energy of the signal at the output of 

each auditory filter in the filter bank. The energy at the output of each auditory filter is 

computed as the sum of the energies of the individual spectral components of the filter 

output spectrum. The excitation pattern is computed as a matrix multiplication. The 

 

Figure B.3: Outer-middle ear filtering in the auditory model. 

 
Figure B.4: Functional block for evaluating excitation pattern. 
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vector of the effective spectrum fed through the input pin is multiplied by the auditory 

filter magnitude responses pre-computed and stored in the matrix W. Each row in W 

contains the normalized response of the corresponding auditory filter. The auditory filters 

have equally spaced center frequencies in the auditory scale. When the FFT length is N 

and the number of detectors is D, the matrix W has the dimensions D×N. The excitation 

pattern is a D-dimensional vector. 

B.1.5. Loudness Pattern Computation 

The loudness pattern implements the equation (3.15) to compute the loudness pattern 

from the input excitation pattern. The numerical constants in the equation are c=0.047 

and α=0.2. 

B.1.6. Total Loudness 

The specific loudness is integrated as shown in Figure B.6 to obtain the total 

loudness. The integration is performed according to equation (3.19). The integration is 

approximated for discrete loudness pattern by computing the area of trapeziums under the 

 

Figure B.5: Block diagram for evaluating the loudness pattern given an excitation pattern. 
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curve. The constant ‘b’ is equal to the distance between consecutive detectors in the 

auditory scale. 

B.1.7. Short-term and Long-term Loudness 

The short-term loudness and long term loudness are computed by the Simulink 

sub-system shown in Figure B.7, according to equation (3.21). The time constants for the 

short-term and long-term loudness are defined in the ‘if Action Subsystems’. 

 

Figure B.6: Computing the total loudness from specific loudness. 

 

Figure B.7: Model for computing the short-term or long-term loudness. 
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B.2. Real-time Loudness Control Using the Moore and Glasberg Model 

The real-time loudness control system is a loudness-based adaptive gain control 

system. The system estimates the loudness of a frame of output signal, and adapts the 

value of the gain applied to it to maintain it at the target loudness, fixed by the Target 

Loudness Slider (see Figure B.8). The system applies a wide-band gain control 

mechanism to control the overall loudness through a single multiplicative gain that is 

derived from equation (5.9). Then, a narrowband gain control is applied to the resulting 

signal as defined in equation (5.13). 

 

 

 

 

 

 

Figure B.8: A real-time loudness control system. 


