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On the Comparisons of Decorrelation Approaches
for Non-Gaussian Neutral Vector Variables

Zhanyu Ma , Senior Member, IEEE, Xiaoou Lu, Jiyang Xie , Student Member, IEEE,

Zhen Yang , Member, IEEE, Jing-Hao Xue , Zheng-Hua Tan , Senior Member, IEEE,

Bo Xiao , and Jun Guo

Abstract— As a typical non-Gaussian vector variable, a neutral
vector variable contains nonnegative elements only, and its
l1-norm equals one. In addition, its neutral properties make it
significantly different from the commonly studied vector variables
(e.g., the Gaussian vector variables). Due to the aforemen-
tioned properties, the conventionally applied linear transfor-
mation approaches [e.g., principal component analysis (PCA)
and independent component analysis (ICA)] are not suitable for
neutral vector variables, as PCA cannot transform a neutral
vector variable, which is highly negatively correlated, into a set of
mutually independent scalar variables and ICA cannot preserve
the bounded property after transformation. In recent work,
we proposed an efficient nonlinear transformation approach,
i.e., the parallel nonlinear transformation (PNT), for decorrelat-
ing neutral vector variables. In this article, we extensively com-
pare PNT with PCA and ICA through both theoretical analysis
and experimental evaluations. The results of our investigations
demonstrate the superiority of PNT for decorrelating the neutral
vector variables.

Index Terms— Decorrelation, neutral vector variable, neutral-
ity, non-Gaussian, nonlinear transformation.

Manuscript received July 19, 2019; revised December 25, 2019; accepted
March 3, 2020. This work was supported in part by the National
Key R&D Program of China under Grant 2019YFF0303300 and under
Subject II No. 2019YFF0303302, in part by the National Science and
Technology Major Program of the Ministry of Science and Technology
under Grant 2018ZX03001031, in part by the National Natural Science
Foundation of China (NSFC) under Grant 61773071, Grant 61922015,
Grant U19B2036, and Grant 61671030, in part by the Beijing Academy
of Artificial Intelligence (BAAI) under Grant BAAI2020ZJ0204, in part by
the Beijing Nova Programme Interdisciplinary Cooperation Project under
Grant Z191100001119140, in part by the Beijing Municipal Natural Science
Foundation under Grant L172030 and Grant 19L2020, in part by the Impor-
tation and Development of High-Caliber Talents Project of Beijing Municipal
Institutions under Grant CIT&TCD20190308, in part by the Scholarship
from China Scholarship Council (CSC) under Grant CSC 201906470049,
and in part by the BUPT Excellent Ph.D. Students Foundation under
Grant CX2019109. (Corresponding authors: Zhanyu Ma; Zhen Yang.)

Zhanyu Ma, Jiyang Xie, Bo Xiao, and Jun Guo are with the Pattern
Recognition and Intelligent System Laboratory, School of Artificial Intelli-
gence, Beijing University of Posts and Telecommunications, Beijing 100876,
China (e-mail: mazhanyu@bupt.edu.cn).

Xiaoou Lu and Jing-Hao Xue are with the Department of Statistical Science,
University College London, London WC1E 6BT, U.K.

Zhen Yang is with the College of Computer Science, Faculty of Information
Technology, Beijing University of Technology, Beijing 100022, China (e-mail:
yangzhen@bjut.edu.cn).

Zheng-Hua Tan is with the Department of Electronic Systems, Aalborg
University, 9220 Aalborg, Denmark.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2020.2978858

I. INTRODUCTION

DECORRELATION of a random vector variable plays
an essential role in multivariate data analysis, signal

processing, pattern recognition, and machine learning [1]–[3].
It can transform a correlated vector variable into a set
of mutually uncorrelated scalar/subvector variables. That is,
although the covariance matrix of the vector variable may
not be diagonal, the covariance matrix of the resultant scalar
variables can be made diagonal by a decorrelation transform;
in other words, the correlations between the variables have
been removed by the decorrelation transform.

A process closely related to decorrelation is called whiten-
ing, which removes not only the correlations between vari-
ables but also the variances of variables, transforming the
original covariance matrix into an identity matrix. To achieve
the whitening of a vector variable, there are many linear
transforms, including the Mahalanobis transform, the Cholesky
decomposition, and the eigendecomposition of the precision
matrix (i.e., the inverse of the covariance matrix) [4]. However,
using whitening transforms for decorrelation has a limita-
tion. After whitening transformation, every uncorrelated scalar
variable has unit variance; this means that the uncorrelated
scalar variables are not distinguishable from each other in
terms of variance (or “energy”). It is possible to further
recover the original variances (on the diagonal entries of the
original covariance matrix) to the uncorrelated variables [4],
but this also means that the distribution of the variance over
the elements of the vector variable does not change after
transformation. A distributional change like the concentration
of variance, such that the resultant uncorrelated scalar variables
can be better distinguished, is often desirable in practice
for tasks, such as data compression, dimension reduction,
and feature selection. To this end, one can resort to linear
orthogonal transforms.

Linear orthogonal transforms, including the renowned
Fourier transform, discrete cosine transform, and Karhunen–
Loève transform, are not only able to decorrelate the ele-
ments of a vector variable to various extents but also able
to concentrate the “energy” (in terms of variance) of the
vector in a small number of scalar variables obtained from
the transformation [5]. Hence, linear orthogonal transforms
are widely used to decorrelate a vector variable.

The Karhunen–Loève transform, also better known as prin-
cipal component analysis (PCA) [6], among others, is a
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ubiquitously applied linear orthogonal transformation method
that can decorrelate a vector variable into a set of uncorrelated
scalar variables. Moreover, if the original vector variable
follows a multivariate Gaussian distribution, PCA can yield
a set of mutually independent scalar variables. By applying
eigenvalue analysis to the covariance matrix of vectors, PCA
linearly maps the original vector into space spanned by the
covariance matrix’s eigenvectors [1]. If we treat the eigenvalue
as the “energy” of the corresponding variable and select K
eigenvectors that correspond to the top K eigenvalues as
the representative features, PCA serves as a feature selec-
tion/dimension reduction approach to the vector [6]. The
PCA-based feature selection/dimension reduction approach
(and its extended versions, e.g., kernel PCA [7], [8]), which
can also be considered as low-rank matrix approximation,
has been widely applied in face recognition [9], [10], speech
enhancement [11], text analysis [12], blind source separa-
tion [13], source coding [14], and so on.

In order to get mutually independent variables with PCA,
the multivariate Gaussian assumption is usually applied to
the original vector. However, it is uncommon to have true
Gaussian distributed data in real-life applications [15]. For
example, the gray or color pixel values in image process-
ing [16], the rating scores to an item in a recommendation
system [17], and the genome-wide DNA methylation level
value in bioinformatics [18] are all strictly bounded and
distributed in the interval [0, 1]. The speech signal’s spectrum
coefficients are distributed as x ∈ (0,+∞), which is semi-
bounded [19]. The l2-norms of the spatial fading correlation
and the yeast gene expressions [20] are all equal to 1, and
such data convey directional property (i.e., �x�2 = 1). Another
type of data is the proportional/compositional data [21],
which are nonnegative and have a l1-norm equal to one.
The aforementioned data all have asymmetric or constrained
distributions [22], and they do not match the natural definition
of the Gaussian distribution (i.e., the definition domain is
unbounded, and the distribution shape is symmetric). Hence,
these data are non-Gaussian distributed [23]. Recently, it has
been demonstrated in many studies that explicitly utilizing
the non-Gaussian characteristics can significantly improve the
practical performance [16], [19], [20], [23]–[25]. Applying
PCA to non-Gaussian distributed data can only get uncor-
related but also not independent variables, and therefore,
the consequent performance, which requires the variables’
mutual independence, will be decreased [23], [25], [26].

Independent component analysis (ICA) can decorrelate
any vector variable (observed data) into a set of mutu-
ally independent scalar variables (data sources) [27], [28],
with the assumption that the data sources are mutually
independent and non-Gaussian distributed. Hence, apply-
ing ICA to non-Gaussian distributed vectors can lead to
not only decorrelation but also independence. However,
ICA is computationally costly because it requires several
preprocessing steps, including centering, whitening, and/or
dimension reduction before implementation [29]. ICA has
been widely applied in several fields, such as face recog-
nition [30], blind source separation [31], and wireless
communications [32].

Neutral vector variables [33], [34] are a typical
non-Gaussian vector variable. The non-Gaussian properties of
neutral vector variables are as follows: 1) all the elements in
a neutral vector variable are nonnegative; and 2) the l1-norm
of a neutral vector variable equals one. The neutral vector
variable has been widely applied in many real-life applications.
In biological research, the neutral vector had been applied
to data on bone composition in rats and scute growth in
turtles [33]. To describe the characteristics of the proportional
data/compositional data, neutral vector variable has been
extensively applied in document analysis [35], [36], image
processing [37], and speech signal processing [38], [39].
A typical distribution for modeling the distribution of a
neutral vector variable is the Dirichlet distribution [40].
As a classical method for constructing nonparametric
models, several Dirichlet distribution-based Dirichlet process
models have been proposed for the purpose of feature
selection [41], [42], cognitive radios [43], [44], and so on.
In order to explicitly explore the properties of the neutral-like
data,1 the Dirichlet distribution and the corresponding
Dirichlet mixture model (DMM) have been applied to model
the underlying distributions of such data [25], [45], [46].
The Bayesian estimation of DMM with variational inference,
which provides an analytically tractable solution for parameter
estimation, has been proposed in [47].

The neutral vector variable can be considered as a point
process distributed variable in the plane of

�N
i=1 xi = 1.

Both of them are used for analyzing bounded data. How-
ever, the point process focuses on discussing spatial and
temporal relationships between data points and is mainly
for modeling data with three types: 1) sequential data in
continuous time [48], [49]; 2) spatial representations of
locations [50], [51]; and 3) spatiotemporal data [52], [53],
while the neutral vector variable can be applied for modeling
not only spatiotemporal data but also other data without
temporal and spatial correlations. Thus, the point process
distributed variable can be considered as a special case of the
neutral vector variable in the fields of applications.

Obviously, directly applying PCA to neutral vector variable
can only yield uncorrelated variables. The mutual indepen-
dence, which is required in many cases, is not guaranteed
due to the non-Gaussian properties. With linear projection,
the Dirichlet component analysis (DCA) was proposed to
replace PCA for the Dirichlet variable decorrelation and
dimension reduction [54]. Although DCA preserves the rel-
evant constraints among the elements of the vector variable,
it can only guarantee that the mapped components are decor-
related as much as possible. Mutual independence cannot be
obtained by DCA either. With ICA, mutually independent
scalar variables can be obtained after decorrelation. However,
the bounded property cannot be preserved.

By explicitly exploring the completely neutral property [34],
we have proposed a special nonlinear transformation strat-
egy, namely, the parallel nonlinear transformation (PNT),

1“Neutral-like” data denote data simply satisfying the nonnegative and unit
l1-norm properties. However, these data may not have all the neutral vector
variable’s properties.
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to decorrelate the neutral vector variable into a set of mutually
independent scalar variables or a set of mutually independent
subvector variables [25], [55]. The PNT has been successfully
applied in many areas, such as speech linear predictive cod-
ing (LPC) model quantization [25] and feature selection for
EEG signal classification [26].2

For neutral vector variable decorrelation, PNT, PCA, and
ICA have several similarities: 1) all of them transform a vector
variable into a set of uncorrelated scalar variables and 2) by
yielding uncorrelated variables, they can all serve as feature
selection methods. However, there are also some dissimilarities
among these methods.

1) PCA and ICA are linear transformations, while PNT is
nonlinear.

2) PCA is optimal3 for Gaussian vector variables, ICA
is optimal for any non-Gaussian sources, and PNT is
optimal for neutral vector variables.

3) Neither PCA or ICA can preserve bounded support
property, while PNT preserves it.

4) The eigenvalue analysis is the prerequisite for conduct-
ing linear transformation in PCA, several preprocessing
steps are required for ICA, while PNT does not require
the computation of statistical properties in its imple-
mentation. Hence, it is of sufficient interest to conduct
extensive comparisons among these strategies for the
neutral vector variables.

Several improved variants of PCA or ICA exist, such as
nonlinear PCA [56], fast robust PCA [57], kernel PCA [58],
kernel ICA [59], and binary ICA [28]. However, the purpose
of this article is to analyze and compare the fundamental
decorrelation methods for neutral vector variables, rather than
involving the improved variants of them. Hence, we com-
pare only the proposed PNT with the original PCA or ICA.

The contribution of this article can be summarized as
follows.

1) We provide a thorough study of the so-called PNT decor-
relation strategy for the non-Gaussian neutral vector
variable, which is optimal, preserves the non-Gaussian
properties, and does not need to calculate the statistical
properties during operation.

2) Intensive comparisons between the proposed PNT and
the conventionally used PCA and ICA have been con-
ducted. Theoretical analysis and synthesized and real
data evaluations demonstrate the effectiveness and the
robustness of the proposed method.

The remaining parts of this article are organized as follows.
In Section II, we briefly introduce the neutral vector and its
related concepts and properties. The details of PNT, PCA, and
ICA will be provided in Section III. Extensive comparisons
among these methods, with theoretical analysis and data

2Part of the work in the submitted manuscript [the RBF-SVM+PCA and the
RBF-SVM+PNT results in Fig. 7(c)–(f)] has been published in [26]. Focusing
on the general framework for decorrelating a completely neutral vector, this
article introduces the concept of a completely neutral vector and demonstrates
the advantages (by comparing with PCA and ICA) of this framework with
both synthesized data and real-life data applications. In contrast, the work
in [26] is only a use case of the proposed methods.

3Hereby, “optimal” means that the transformation can yield not only
uncorrelated but also mutually independent scalar variables.

evaluations, will be conducted in Section IV. We will draw
some conclusions in Section V.

II. NEUTRAL VECTOR VARIABLE

Assume that we have a random vector variable x = [x1,
x2, . . . , xK , xK+1]T, where xk > 0 and

�K+1
k=1 xk = 1. Let

xk1 = [x1, . . . , xk]T and xk2 = [xk+1, . . . , xK+1]T. The vector
xk1 is neutral if xk1 is independent of wk = (1/(1 − sk))xk2

(i.e., xk1 ⊥ wk), for 1 ≤ k ≤ K [33], [34], where sk = �k
i=1 xi

and s0 = 0. If for all k, xk1 are neutral, then x is defined as a
completely neutral vector variable [33], [60]. A (completely)
neutral vector variable with (K + 1) elements has K degrees
of freedom.

A completely neutral vector variable has the following
relatively proportional properties [55]:

Property 1 (Mutual Independence): For completely neutral
vector variable x, define zk = xk

1−sk−1
and z1 = x1, and we have

that z1, z2, . . . , zK are mutually independent.
Property 2 (Aggregation Property): For a completely neu-

tral vector variable x, when adding any adjacent elements
xr and xr+1 together, the resulting K -dimensional vector
xr�r+1 = [x1, . . . , xr +xr+1, . . . , xK+1] is a completely neutral
vector again.

Property 3 (Exchangeable Property): For a completely
neutral vector variable x, if any arbitrarily permuted version
of x is still completely neutral, then this vector variable is
exchangeably completely neutral.
For the convenience of expression, we use “neutral vector
variable” to represent the term “completely neutral vector
variable” for short.

The Dirichlet variable is a typical case of neutral vector
variable [1], [61], and it contains nonnegative elements with
summation equals one. The probability density function of a
(K + 1)-dimensional Dirichlet distribution, given parameter
vector α = [α1, α2, . . . , αK+1]T, is defined as

Dir(x; α) =
�

��K+1
k=1 αk

�
�K+1

k=1 �(αk)

K+1�
k=1

xαk−1
k ,

xk ≥ 0,

K+1�
k=1

xk = 1, αk > 0. (1)

The covariance matrix of the Dirichlet distribution is [62]

Cov[x]i, j =

⎧⎪⎨
⎪⎩

αi (s − αi )

s2(s + 1)
, i = j

−αiα j

s2(s + 1)
, i 	= j

(2)

where s = �K+1
k=1 αk . Obviously, the covariance matrix of the

Dirichlet vector variable is negatively correlated (off-diagonal
elements are negative), which reflects the proportional property
of the neutral vector variable.

In summary, a neutral vector variable should satisfy the
following:

1) nonnegative elements and unit l1-norm;
2) relatively proportional properties;
3) negatively correlated covariance matrix.
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Fig. 1. Flowchart of PNT.

III. DECORRELATION APPROACHES

Both PCA and ICA are commonly known for the com-
munities of signal processing, pattern recognition, machine
learning, and so on. Due to the limitation of space, we skip
the introduction to the technical details of these two methods
and focus on PNT in this article. Detailed information about
PCA and ICA can be found in [1].

With the aforementioned properties, a neutral vector vari-
able exhibits a particular type of statistical independence
among its elements [33]. In order to explicitly explore such
type of independence, we proposed a so-called PNT scheme
to transform a neutral vector variable into a set of mutually
independent scalar variables [55]. For a neutral vector variable,
PNT carries out a nonlinear transformation according to the
procedure illustrated in Fig. 1.

For a (K +1)-dimensional neutral vector variable, K mutu-
ally independent scalar variables, each of which is distributed
in the interval [0, 1], can be obtained. The proof of mutual
independence has been presented in [55]. An example of
applying PNT to a 7-D (i.e., K = 6) neutral vector variable
is shown in Fig. 2. A fast implementation of PNT (FPNT),
which involves zero-padding, was introduced in [55].

Note that the proposed PNT scheme can be simply
implemented by iterative elementwise summation and divi-
sion operations. No statistical information of the variables,

Fig. 2. Example of PNT with K = 6. The transformed coefficients are u1 =
x1,1/x1,2, u2 = x3,1/x2,2, u3 = x5,1/x3,2, u4 = x1,2/x1,3, u5 = x3,2/x2,3, and
u6 = x1,3. R represents the reciprocal operation.

e.g., covariance matrix, is required. In other words, unlike
PCA or ICA, which needs to get eigenvalues and eigenvectors
in advance, the PNT can be carried out based on the neutral
vector variable itself.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

PNT is a nonlinear decorrelation method specially designed
for neutral vector variables. Meanwhile, PCA or ICA is a
typically and widely applied decorrelation method, which can
also be applied to neutral vector variables. Hence, in terms of
decorrelation performance for neutral vector variables, it is
of sufficient interest to conduct extensive comparisons for
these two methods, with theoretical analysis, synthesized data
evaluation, and real data evaluation.

A. Comparisons With Theoretical Analysis

1) Mutual Independence: The importance of independence
arises in many applications. With the scheme introduced in
Section III, a neutral vector can be transformed to a set
of mutually independent scalar variables by PNT, in a non-
linear manner. PCA can be applied to transform any vector
variable, with a linear manner, to a set of uncorrelated scalar
variables. However, PCA can yield mutually independent
scalar variables only when the vector variable is multivariate
Gaussian. With ICA, a neutral vector variable can be trans-
formed into a set of mutually independent scalar variables as
well, which is due to the principles of ICA.

Hence, in terms of mutual independence, PNT and ICA are
optimal for neutral vector variables.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on April 02,2020 at 11:48:12 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MA et al.: ON THE COMPARISONS OF DECORRELATION APPROACHES FOR NON-GAUSSIAN NEUTRAL VECTOR VARIABLES 5

2) Computational Complexity: In practical applications,
the computational complexity of decorrelation is usually an
essential concern. We now compare the computational com-
plexities of PNT, PCA, and ICA.

PNT can be conducted in a parallel manner. According
to the algorithm described in Fig. 1, it requires at most

log2(K + 1)� iterations. Within each iteration, about L/2
summations and L/2 divisions with an even L or (L + 1)/2
summations and (L+1)/2 divisions with an odd L are needed.
Therefore, if we treat the summation as one floating-point
operation and the division as eight times of that,4 the com-
putational complexity for PNT is O(K log K ) since L = K at
the first iteration and L will reduce to (approximately) half in
each of the consequent iteration.

Implementation of PCA generally contains two stages:
1) eigenvalue analysis of the covariance matrix and 2) linear
mapping of the vector via eigenvectors. To the best of our best
knowledge, the fastest method for eigenvalue analysis so far is
the method proposed by Luk and Qiao [64]. With the method
proposed in [64], the computational cost of eigenvalue analysis
is about O(K 2 log K ) for a K × K covariance matrix. For
the linear mapping, multiplying a vector with the eigenvector
matrix has a computational cost around O(K 2). Therefore,
the computational cost for PCA is, on average, O(K 2 log K ).

In terms of source separation, ICA has a robust perfor-
mance. However, one drawback of the algorithms designed for
carrying out ICA is the high computational load required in
implementation [65]. Generally speaking, algorithms for ICA
require centering, whitening, and dimension reduction as the
preprocessing steps for the purpose of facilitating calculation.
As mentioned in [29], the computational cost for ICA is
O(M K 2), where M denotes the number of iterations required.
This indicates that the convergence of ICA depends on the
number of iterations as well.

As PNT avoids the eigenvalue analysis/whitening for
PCA/ICA, the computational complexity is significantly
reduced. For neutral vector variable decorrelation, PNT has
less computational cost than both PCA and ICA.

3) Preservation of Non-Gaussian Property: An important
property of a neutral vector is its bounded support property.
It is usually required that such property can be preserved
after transformation. The proposed PNT method meets this
requirement with its division operation. Neither PCA nor
ICA can preserve the bounded support property,5 as there
is no constraint applied during transformation to ensure the
resultant scalar variables (uncorrelated or independent) have
unconstrained support range.

In terms of non-Gaussian property preservation only, PNT
is capable and, thus, outperforms PCA and ICA.

4) Discussion: The summary of the aforementioned theo-
retical comparisons is listed in Table I. It is observed that PCA
and ICA both have more computational complexity than the
PNT method. ICA usually has a larger computational cost than
PCA since M is a number larger than log K . Meanwhile, ICA
needs many iterations to converge, and analytically tractable

4According to T. Minka’s Lightspeed MATLAB toolbox [63].
5Some kernel methods can be applied to preserve the bounded support

property; however, it is out of the scope of this article.

TABLE I

PROPERTIES OF PNT, PCA, AND ICA FOR DECORRELATION OF
N SAMPLES. SEE TEXT FOR ANALYSIS

solution does not exist. In terms of non-Gaussianity, PNT is
the only one that preserves the bounded support property.

In summary, for neutral vector variables, PNT performs
better than PCA and ICA, in terms of decorrelation, compu-
tational complexity, and non-Gaussianity preservation. Com-
pared with PNT and PCA, ICA does not have an analytically
tractable solution. Therefore, ICA algorithms typically resort
to iterative procedures with either difficulties or high com-
putational load. Moreover, although ICA can yield mutually
independent scalar variables (PNT can do this as well for
neutral vector variable), it cannot preserve the NG property
and is not a “suitable” method for fair comparisons. Hence,
we compare only PNT and PCA in the following.

B. Comparisons Through Synthesized Data Evaluation

1) Decorrelation Effect on Neutral Vector Variables: Vec-
tors generated from a Dirichlet distribution are completely
neutral. In order to illustrate the decorrelation effect of the
PNT and PCA on neutral vector variables, we generated
vectors from a given Dirichlet distribution with parameter
α = [3, 5, 15, 9, 12, 8, 7, 20]T. PNT and PCA were applied
to this generated data set, respectively.

In order to measure the decorrelation effect quantitatively,
the distance correlation (DC) [66], [67] was calculated to
evaluate the mutual independence after decorrelation. The
conventionally used the Pearson correlation coefficient [68],
[69] can only measure correlations between two random
variables. Unlike the Pearson correlation coefficient, the DC
is zero if and only if the random variables are mutually
statistically independent [70]. Given a set of paired samples
(Xn, Yn), n = 1, . . . , N , all pairwise Euclidean distances ai j

and bi j are calculated as

ai j = �Xi − X j�, bi j = �Yi − Y j�, i, j = 1, . . . , N. (3)

Taking the doubly centered distances, we have

Ai j = ai j − āi· − ā· j + ā··, Bi j = bi j − b̄i· − b̄· j + b̄·· (4)

where āi· denotes the mean of the i th row, ā· j is the mean
of the j th column, and ā·· stands for the grand mean of the
matrix. The same definitions apply to b̄i·, b̄· j , and b̄··. The DC
is calculated as

DC =
�� �N

i, j=1 Ai j Bi j��N
i, j=1 A2

i j

�N
i, j=1 B2

i j

. (5)

In order to evaluate the statistical significance of the DC, a per-
mutation test is employed. The p-value for the permutation test
is calculated as follows.
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Fig. 3. Decorrelation performances of PNT and PCA measured with
p-values. See text for details. (a) PNT, N = 100. (b) PNT, N = 200. (c) PNT,
N = 400. (d) PCA, N = 100. (e) PCA, N = 200. (f) PCA, N = 400.

1) For the original data (Xn, Yn), create a new data set
(Xn, Yn∗), where n∗ denotes a permutation of the set
{1, . . . , N}. The permutation set is selected randomly as
drawing without replacement.

2) Calculate a DC for the randomized data.
3) Repeat the above-mentioned two steps a large number

of times, and the p-value for this permutation test is the
proportion of the DC values in step 2, which are larger
than the DC from the original data.

The null hypothesis, in this case, is that the two variables
involved are independent of each other (the DC is 0). When the
corresponding p-value is smaller than 0.05, the null-hypothesis
is rejected so that these two variables are not independent (but
could still be uncorrelated). Hence, p-value greater than 0.05
indicates mutual independence. We choose the significance
level as 0.05 in this article.

The decorrelation performance, with different amounts of
generated data, is illustrated in Fig. 3. PNT and PCA were
applied to transform the generated vectors, respectively. The
p-values of the transformed data were calculated. We chose
0.05 as the threshold to encode the p-values to black
(if p-value is smaller than 0.05, which indicates dependence)
or gray (otherwise).

When the amount of data is small (e.g., N = 100),
the generated data cannot reveal obvious complete neutral
properties. Hence, both PCA and PNT perform well, and they
can decorrelate such a “semi”neutral vector variable into a set
of mutually independent scalar variables.

As the amount of generated data increases, clear complete
neutrality can be expected. It can be observed that PNT always
transforms a neutral vector variable into a set of mutually
independent scalar variables [the diagonal elements of the
p-value matrix are smaller than 0.05, and all the off-diagonal
elements are larger than 0.05, as shown in Fig. 3(a)–(c)].
PCA does not perform well in terms of yielding mutually
independent scalar variables when applied to neutral vector
variables [some of the off-diagonal elements are smaller than
0.05, as shown in Fig. 3(e) and (f)].

Fig. 4. Effect of PNT versus PCA on energy distribution. (a) Comparisons
of normalized variance ratio. (b) Comparisons of differential entropy.

Similar performances can be obtained when choosing other
parameter settings, and we show only one example. For neutral
vector decorrelation, PNT outperforms PCA.

2) Effect on Energy Distribution: In pattern recognition
applications, getting a set of independent/uncorrelated vari-
ables from a correlated vector variable is helpful for feature
selection. Given the independent/uncorrelated features, we can
select features to construct a new subspace, in which it is easier
to distinguish data according to their labels.6 It is generally
useful to select the dimensions that have relatively large
variances such that the multimodality of the data distribution is
preserved. From the perspective of information theory, feature
selection always favors the dimensions with relatively large
differential entropies. In this article, we treat either variance
or differential entropy as the “energy” of the dimension. In this
case, the feature selection task aims at selecting the dimensions
with relatively large energies.

With similar Dirichlet parameter settings as in
Section IV-B1, we generated 5000 vectors from a Dirichlet
distribution. After applying PNT and PCA on these data,
separately, we compared the energy distributions yielded by
these two schemes. The variances of the scalar variables after
transformation are first normalized to have a unit l1-norm
and then sorted in the descending order. The normalized
variance distributions obtained via PNT and PCA are shown
in Fig. 4(a). We also calculated the differential entropies of
each dimension after PNT and PCA transformations. The
differential entropies obtained from each scheme were sorted
in descending order as well. Comparisons of differential
entropies are shown in Fig. 4(b).

For feature selection, it is usually preferred to have energies
concentrated at a few dimensions. The largest normalized
variance ratio (1st dimension) in the PNT scheme is larger
than that in the PCA scheme. A similar phenomenon is also
observed for the differential entropy case. This indicates that
PNT can make better energy concentration than PCA when
applying them to decorrelate neutral vector variables.

In order to make fair comparisons for the aforementioned
energy distributions, we defined a so-called “flatness coeffi-
cient (FC)” as the measurement. The FC for the normalized

6For the classification task, each data sample has a class label. These labels
are known for the training set and unknown for the test set. For the clustering
task, we assume that the class labels are the missing underlying variables that
need to be estimated.
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TABLE II

FC AND KLD COMPARISONS. α2 IS THE SWITCHED VERSION OF α1,
WHERE THE SWITCHED ELEMENTS ARE HIGHLIGHTED WITH

UNDERLINE. FCV AND FCE DENOTE FC CALCULATED BASED

ON THE NORMALIZED VARIANCE RATIO AND DIFFERENTIAL

ENTROPY, RESPECTIVELY. THE SAME
DEFINITION APPLIES TO KLD

variance ratio case is defined as the standard deviation as

FC =
�� 1

K − 1

K−1�
k=1

(nvark − nvarmean)2 (6)

where nvark is the normalized variance ratio for the kth
dimension and nvarmean is the mean of all the ratios. A large
FC means the energy distribution to be nonflat. Therefore,
the larger the FC, the better the scheme. In addition to
FC, the Kullback–Leibler divergence (KLD) of the energy
distribution from the uniform distribution is also calculated
as a metric to measure how likely the energy distribution
is uniformly distributed. Larger KLD indicates better energy
distribution. The ratios of variance/differential entropies are
treated as a probability distribution in the KLD calculation.
The FCs and KLDs for PNT and PCA are listed in Table II.
In the first row of Table II, all the FCs and KLDs (under both
the normalized variance ratio and differential entropy cases)
obtained via PNT are larger than those obtained via PCA,
respectively. With such observations, we conclude that PNT
can yield a feature distribution, which is favorable in feature
selection. Feature selection performance for real data will be
presented in Section IV-C.

According to the nonlinear transformation procedure (the
summation and division operations), the results of PNT depend
on the order of dimensions in the neutral vector variable
(however, PCA will not be affected by the permutation of
dimensions). With the exchangeable property, any permuted
version of a neutral vector variable can also be optimally
decorrelated by PNT. Hence, the order of dimensions has
significant effect on the resulting energy distribution. In order
to demonstrate such effect, we repeat the abovementioned
procedures with a Dirichlet distribution, where the parameter
setting is α2 = [15, 5, 3, 9, 12, 8, 7, 20]T. This is a permuted
version of α1 = [3, 5, 15, 9, 12, 8, 7, 20]T by switching the
first and third elements. A set of 5000 data samples were
generated from this Dirichlet distribution. The aforementioned
energy distribution evaluation procedure was applied to these
data. The effect of PNT and PCA on energy distribution are
shown in Fig. 5, where the largest normalized variance ratio
in the PNT scheme is smaller than that in the PCA scheme.
Meanwhile, the differential entropy in PNT is also smaller
than that obtained via PCA. Comparing with the procedure
(with α1), this observation yields opposite comparison results
on energy distribution. Moreover, when comparing the FCs
and KLDs (listed in the second row of Table VI), PNT

Fig. 5. Effect of PNT versus PCA on energy distribution, with the first
and third dimensions switched. (a) Comparisons of normalized variance ratio.
(b) Comparisons of differential entropy.

underperforms PCA in resulting in a more favorable feature
distribution.

With α1 and α2, we have obtained opposite performance
rankings of the two methods, only by permuting the neutral
vector variable. This indicates that the permutation of the
neutral vector variable (the order of neutral vector elements)
has an effect on the energy distribution after applying PNT.
It remains future work to design a strategy to find the optimal
permuted version of a neutral vector variable such that the
energy distribution obtained by PNT is the best among all the
possible permutations.

3) Decorrelation Effect on Neutral-Like Vector Variables:
Definition: A vector x of dimension (K + 1) is referred to as
a neutral-like vector if xk, k = 1, 2 . . . , K + 1 satisfies xk ≥ 0
and

�K+1
k=1 xk = 1.

The neutral vector is a subtype of compositional data.
Compositional data are commonly present in real problems so
testing the performance of PNT in such a more general data
class is important. In this section, we extend our experiment
to the compositional data. Compositional data may not satisfy
neutral vector’s neutrality properties, so we call this kind of
vector variables neutral-like variables. In order to illustrate the
decorrelation effect of PNT and PCA on neutral-like vector
variables, we implement an experiment, which is similar to
the experiment in Section IV-B1, on a neutral-like data set
(i.e., logistic normal distributed data).

Definition: A (K +1) part composition x = [x1, . . . , xK+1]T

is said to have a K dimensional additive logistic normal (LN)
distribution L K (μ,�) when y = [y1, . . . , yK ]T (where yi =
log(xi/(xK+1)), i = 1, 2, . . . , K ) follows a K -dimensional
normal distribution NK (μ,�).

The logistic normal distributed data can have either fully
negative (FN) covariance matrix or partially negative (PN)
covariance matrix, which is more flexible in topic model
applications [71]. We generated two data sets, one with
an FN covariance matrix and one with a PN covariance
matrix, each with 400 samples (N = 400), from two logistic
normal distributions with sample covariance matrices shown
in Table III(a) and (e).

In order to investigate whether PCA and PNT can reduce
the mutual dependence evaluated by DC, we first computed
the DCs of the original data, PCA and PNT were then applied
to transform the data separately, and, finally, the DCs of the
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TABLE III

SAMPLE COVARIANCE MATRICES OF LN-DISTRIBUTED DATA AND DC MATRICES OF THE ORIGINAL AND THE TRANSFORMED DATA. (A) FN:
COVARIANCE MATRIX (in ×10−3). (B) FN: DC MATRIX, ORIGINAL. (C) FN: DC MATRIX, WITH PNT. (D) FN: DC MATRIX, WITH PCA. (E) PN:

COVARIANCE MATRIX (in × 10−3). (F) PN: DC MATRIX, ORIGINAL. (G) PN: DC MATRIX, WITH PNT. (H) PN: DC MATRIX, WITH PCA

TABLE IV

COMPARISONS OF AVERAGE DCs

Fig. 6. p-values of PNT and PCA on FN and PN logistic normal data,
respectively. The significance level is 0.05. (a) FN and PNT. (b) FN and
PCA. (c) PN and PNT. (d) PN and PCA.

transformed data obtained by PCA and PNT were computed.
The DC matrices of the original and transformed data are
shown in Table III(b)–(d) and (f)–(h), respectively.

It can be observed that, for neutral-like vector variables,
most of the DCs were reduced by PNT. In contrast, most of the
DCs were increased after PCA. The average DCs before and
after transformation are listed in Table IV. From these results,
we can conclude that PCA is incapable of reducing neutral-like
vector variable’s dependence as measured by DC, while
PNT is capable of to some extent. Similar to Section IV-B1,
we implemented a permutation test, and the experimental
results of the p-value matrix are shown in Fig. 6, for PNT
and PCA, respectively. From Fig. 6, we can observe that PNT
outperforms PCA in terms of mutual independence measured
by DC although some p-values are less than 0.05. (In contrast,
for PCA, almost all p-values are equal to zero, which means
that the null hypothesis of mutual independence was rejected.)
With other logistic normal distribution’s parameter settings,
similar results can also be obtained.

In the abovementioned experiments, PNT can significantly
reduce the DCs although the transformed data may not be fully
mutually independent, and it outperforms PCA in this sense.

C. Comparisons With Real Data Evaluation

1) EEG Signal Classification: As a typical signal that can
reflect the brain activities, the electroencephalogram (EEG)
signal is the most studied and applied one in the design of
a BCI system [72], [73]. A BCI system connects persons
with external devices by recording and analyzing signals
through a communication pathway. For those who suffer from
neuromuscular diseases, a BCI system plays an important role
in assisting them to communicate with others.

In order to classify the EEG signal properly, various types
of features have been proposed. The marginal discrete wavelet
transform (mDWT) vector, among others, has been widely
adopted [74]–[76], as the elements in a DWT vector reveal
features related to the transient nature of the EEG signal.
To make the DWT vector insensitive to time alignment [74],
the marginalization operation is applied. Therefore, the mDWT
vector contains nonnegative elements and has unit l1-norm,
which is a type of “neutral-like” data.

The EEG signal data used in this article are from the
BCI competition III [77]. The data set contains two types of
actions: a subject performed an imagined movement of the
left small finger or the tongue. The classification task is then
a binary one. The electrical brain activity was picked up during
these trials using an 8 × 8 ECoG platinum electrode grid that
was placed on the contralateral (right) motor cortex. In total,
64 channels of EEG signals were obtained. For each channel,
several trials of the imaginary brain activity were recorded.
In total, 278 trials were recorded as the labeled training set,
and 100 trials were recorded as the labeled test set. In both
the training and test sets, the data are evenly recorded for each
imaginary movement. All the data were labeled according to
their ground truth. For each trial, 64 channel data of length
3000 samples were provided.

1) Channel Selection: The aforementioned EEG signals
were recorded from 64 independent channels, and these
channels were located on different positions of the scalp.
Although it is commonly recognized that the classifi-
cation accuracies are highly correlated with/dependent
on the channels (i.e., recording positions), it is not
clear which channels are more relevant to the imaginary
tasks than the rest [78]. Hence, we applied two criteria,

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on April 02,2020 at 11:48:12 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MA et al.: ON THE COMPARISONS OF DECORRELATION APPROACHES FOR NON-GAUSSIAN NEUTRAL VECTOR VARIABLES 9

namely, the Fisher ratio (FR) [79] and the generaliza-
tion error estimation (GEE) [26], to select the relevant
channels such that the irrelevant channels, which would
be considered as noise for the task of classifications,
can be discarded from the data set. The channels are
ranked with FR or GEE, and the best m channels can
be selected for the classification task. More details for
channel selection can be found in [26], [55].

2) Feature Selection: The selection of relevant features
that correlate with class label plays an essential role in
EEG signal classification [26], [55], [80]. For each of
the aforementioned channels, the dimensionality of the
extracted mDWT feature vector is 5. Assuming that the
mDWT feature vectors from one channel are neutral,
we applied the PNT algorithm to transform the mDWT
vectors into a set of 4-D vectors, each of which contains
mutually independent scalar elements. The obtained four
dimensions were sorted according to their variance in
the descending order. With the new order, we selected
the relevant D (D ≤ 4) dimensions for the classification
task. The abovementioned procedure was applied to both
the mDWT vectors from the training and test sets.

With the abovementioned channel and feature selection
procedures, the support vector machine (SVM) [81], [82] with
radial basis function (RBF) kernel was applied to this binary
classification task. With LIBSVM toolbox [81], we adjusted
the parameters in the RBF-SVM so that the cross valida-
tion of training accuracy is the highest. We calculated the
classification accuracies of the test data set to evaluate the
feature selection strategy. To make comparisons with PCA,
a conventional PCA was also applied to transform the mDWT
vectors. The mDWT vectors in the test set were transformed
with the eigenvectors obtained from the training set. The
relevant dimensions were selected according to their variances
(eigenvalues). An RBF-SVM was also designed and tuned for
the PCA-selected features.

The classification accuracies are summarized in Table V.
The classification results were obtained with the top m chan-
nels (ranked via FR or GEE). For each channel, the most rel-
evant D features (ranked via variance) were selected. In total,
we obtained (m × D)-dimensional feature vector to train the
RBF-SVM. It can be observed that the RBF-SVM+PNT yields
the highest recognition accuracies, both for FR case and GEE
cases.

Fig. 7 shows the classification results obtained with top m
channels and different amounts of relevant dimensions. For
each channel, the most relevant D dimensions were selected
and concatenated to an (m × D)-dimensional supervector as
a classification feature. Generally speaking, channel selection
improves the classification results by skipping the irrelevant
channels. From Fig. 7(a)–(f), it can be observed that the
RBF-SVM+PNT method outperforms both the benchmark
RBF-SVM and the RBF-SVM+PCA method when m is
smaller than 17, 26, 23, 27, 29, and 27. The highest classifica-
tion rates for different methods all happen in this range. The
abovementioned facts demonstrate that the proposed nonlinear
transformation strategy can indeed improve the classification
accuracy by decorrelation and feature selection. Moreover,

TABLE V

SUMMARY OF BEST CLASSIFICATION RATES. D = 4 IS THE CASE WITH
LINEAR/NONLINEAR TRANSFORMATION BUT WITHOUT FEATURE

SELECTION. m DENOTES THE NUMBER OF CHANNELS THAT HAVE

BEEN SELECTED ACCORDING TO FR OR GEE

it also shows that, for neutral-like data, the PNT-based nonlin-
ear transformation is more preferable than the conventionally
applied PCA-based linear transformation. As m increases,
the classification performance decreases due to the fact that
more noisy channels are involved in the classifier. Interestingly,
when only one dimension (D = 1) is selected from each
channel [see Fig. 7(g) and (h)], both the RBF-SVM+PNT
and the RBF-SVM+PCA perform worse than the benchmark
method. This is because these two methods ignored too
many dimensions so that valuable information for classifi-
cation is also discarded. However, the RBF-SVM+PNT still
has a higher classification rate than that obtained by the
RBF-SVM+PCA. This further supports our hypothesis that
the PNT-based nonlinear transformation method is better than
the PCA-based linear transformation for the neutral-like data.

In summary, with the nonnegative and unit l1-norm prop-
erties, we assumed that the mDWT vectors are neutral-like
vectors and applied PNT and PCA, separately, to them as
feature selection methods. Experimental results demonstrate
that feature selection via PNT significantly improves the
classification accuracy, for both FR and GEE cases.

2) Reconstruction of LPC Model: In speech coding, effi-
cient transmission of the LPC model plays an essential
role [83]. There exist many representations of the LPC para-
meters, such as the reflection coefficients (RCs), the arcsine
RCs (ASRC), the log-area ratios (LARs), the immittance
spectral frequencies (ISFs), and the line spectral frequencies
(LSFs) [25], [83]. The LSF representation, among others,
is the most commonly used one because it has a relatively
uniform spectral sensitivity [84], [85]. By explicitly exploiting
the boundary and the order properties, the LSF vector can
be linearly transformed into the so-called LSF differences
vector (�LSF). The �LSF vector has less variability, and
the range is more compact compared with the absolute LSF
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Fig. 7. Classification accuracy comparisons of RBF-SVM (benchmark), RBF-SVM+PCA, and RBF-SVM+PNT. The RBF-SVM+PCA and the RBF-
SVM+PNT results in Fig. 7(c)–(f) have been reported in [26]. (a) Channel selection with FR and D = 4. (b) Channel selection with GEE and D = 4.
(c) Channel selection with FR and D = 3. (d) Channel selection with GEE and D = 3. (e) Channel selection with FR and D = 2. (f) Channel selection with
GEE and D = 2. (g) Channel selection with FR and D = 1. (h) Channel selection with GEE and D = 1.

Fig. 8. Diagram of LPC reconstruction performance comparisons.

value [25], [39], [86]. It contains nonnegative elements and
has unit l1-norm, and it is natural to model the underlying
distribution of the �LSF vectors with a DMM [25]. Recent
studies demonstrated that, with DMM modeling, the perfor-
mance of related applications can be significantly improved,
such as LSF quantization in transmission [25], [39] and LSF

vector estimation in packet networks [38]. This is because
the �LSF vector has neutral-like property, and the Dirichlet
variable is a typical neutral vector.

In this article, we study the performance of PNT for the
LPC model reconstruction. The TIMIT data set [87] was used
for evaluation. The speech data from the TIMIT database have
a sampling rate of 16 kHz, and LPC parameters were extracted
and transformed to LSF/�LSF vector.7 With window length of
25 ms and step size of 20 ms, approximately, 964k LSF/�LSF
vectors were extracted from the database. The Hann window
was applied to each frame.

According to [25], the LSF vector is 16-D, and the
corresponding �LSF vector is 17-D (with degrees of

7The details of transformation from LPC to LSF/�LSF (and its inverse
transformation) can be found in [25].
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Fig. 9. Comparisons of LPC reconstruction performances via boxplots. The missing dimensions are �1, �8, and �16, respectively. (a) Reconstruction
performance with first dimension (the one with the largest variance) estimated. Boxplot of mse. (b) Reconstruction performance with the eighth dimension
estimated. Boxplot of mse. (c) Reconstruction performance with 16th (the one with the smallest variance) dimension estimated. Boxplot of mse.
(d) Reconstruction performance with first dimension (the one with the largest variance) estimated. Boxplot of LSD. (e) Reconstruction performance with
the eighth dimension estimated. Boxplot of LSD. (f) Reconstruction performance with the 16th dimension (the one with the smallest variance) estimated.
Boxplot of LSD.

TABLE VI

FC AND KLD COMPARISONS FOR ENERGY DISTRIBUTIONS OF

TRANSFORMED �LSF VECTORS. FCV AND FCE DENOTE

FC CALCULATED BASED ON THE NORMALIZED
VARIANCE RATIO AND DIFFERENTIAL ENTROPY,

RESPECTIVELY. THE SAME DEFINITION

APPLIES TO KLD

freedom K = 16). For the �LSF parameters, we applied the
proposed PNT algorithm to obtain a set of 16-D scalars.
With the assumption that the �LSF vector is neutral vectors,
the resultant scalars are mutually independent. These scalars
are sorted in the descending order according to their variances.
The FC and KLD comparisons for energy distribution yielded
by applying PNT and PCA on �LSF parameters, respectively,
are listed in Table VI.

We evaluate the robustness of the decorrelation strategy with
the following steps.

1) The �LSF vectors are decorrelated by the PNT method,
and the decorrelated dimensions are sorted according to
their variances in descending order.

2) Assume that some dimensions are missing during trans-
mission, and we replace these dimensions by their
corresponding mean values.

3) Reconstruct the LPC model and evaluate the distortion
between the original model and the reconstructed one.

Two metrics, namely, the mean squared error (mse) and
the log spectral distortion (LSD), are used to measure the
distortion. The mse between the original �LSF vector and
the reconstructed one is calculated as

mse = 1

N

N�
n=1

(�LSFn − ̂�LSFn)
2 (7)

where �LSFn and ̂�LSFn denote the original and
reconstructed �LSF vectors, respectively. With the origi-
nal/reconstructed �LSF vectors, the corresponding LPC mod-
els can be obtained. The LSD between the original and
reconstructed LPC models is evaluated as

LSDn =
�

1

Fs

� Fs

0

�
10 log10 Pn( f ) − 10 log10

�Pn( f )
�2

d f

(8)

where n is the index of the vector, Fs is the sampling frequency
in Hz, and Pn( f ) and �Pn( f ) are the original and quantized
LPC power spectra of the nth vector. P( f ) and �P( f ) are
calculated as

Pn( f ) = 1/|An(e
j2π f/Fs )|2, A(z) = 1 +

K�
k=1

akz−k

�Pn( f ) = 1/|�An(e
j2π f/Fs )|2, �A(z) = 1 +

K�
k=1

�akz−k (9)
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TABLE VII

COMPARISONS OF RECONSTRUCTION PERFORMANCE OF THE LPC MODEL WITH DIFFERENT DECORRELATION METHODS. FOR THE STUDENT’S t-TEST,
THE SIGNIFICANT LEVEL FOR THE NULL HYPOTHESIS THAT PNT AND PCA ARE SIMILAR METHODS IS 0.05

Fig. 10. Illustration of LPC spectrum reconstructions. The reported LSD value is for the selected frame (LPC vector). (a) Reconstructed spectrum with missing
dimension �1. LSDPNT = 0.3352, and LSDPCA = 1.0896. (b) Reconstructed spectrum with missing dimension �8. LSDPNT = 0.8252, and LSDPCA = 2.1809.
(c) Reconstructed spectrum with missing dimension �16. LSDPNT = 1.2125, and LSDPCA = 0.9831.

where ak, k = 1, . . . , K are the corresponding LPC para-
meters. From the speech quality point of view, the LSD
is the most preferred objective distortion measure in
the literature [85], both for narrowband and wideband
speech [88], [89]. In order to make comparisons with PCA,
we applied PCA to the �LSF vectors as the method
of decorrelation. After transformation, the aforementioned
approaches were conducted to evaluate the reconstruction per-
formance achieved by PCA. Fig. 8 shows the diagram of such
procedures.

The overall reconstruction performances are summa-
rized in Table VII, and the corresponding (selected) box-
plots are illustrated in Fig. 9. We randomly selected
20 000 �LSF vectors for evaluation and conducted 50 rounds
of such simulations. The mean values are reported in this
article.

It can be observed that, during transmission, decorrelation
of the �LSF vector can significantly remove the correlation
among elements, and therefore, the effect of packet loss (i.e.,
subvector/element loss in our case) is also reduced. With mse
and LSD as the measurements for error, applying PNT to
the �LSF vector achieves smaller error than PCA for a wide
range of missing dimensions (i.e., �1–�10 and �12). For the
other dimension indices, PNT performs slightly worse than
PCA although these dimensions are corresponding to relatively
smaller variances (the dimensions are sorted according to their

variances in descending order). This is due to the nonlinear
transformation procedure of PNT. As demonstrated in Fig. 2,
the elements with larger indices in the transformed vector
u have relatively smaller variances (the distribution range is
relatively compact). When taking the inverse PNT, the error
caused by estimating these elements will be propagated in
the following operations.8 Hence, estimation errors in the
dimensions with larger indices will have more influence
than those occurring in the dimensions with smaller indices.
Although PNT has the error propagation effect for the
dimensions with larger indices, it still performs well for the
decorrelation of the �LSF vectors in most cases. How to
efficiently decrease the error propagation effect is an open
problem for our future studies.

In order to demonstrate the statistical significance, we con-
ducted the student’s t-test for the null hypothesis that the
two decorrelation methods are similar. This null hypothesis
is rejected, and the p-values are listed in Table VII as
well. Fig. 10 illustrates the comparisons of the original LPC
spectrum, the reconstructed LPC spectrum via PNT, and the
reconstructed LPC spectrum via PCA.

8With the example in Fig. 2, x1,1 = u1 · u4 · u6, x3,1 = u2 · (1 − u4) · u6,
and x5,1 = u3 · u5 · (1 − u6). Therefore, the estimation error occurred in u6
will have “global” effect, while the error in u1 or u2 only has “local” effect.
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From the abovementioned analysis, we can conclude that
when packet loss occurred and there is no estimation available,
PNT outperforms PCA in the LPC model transmission.

V. CONCLUSION

A neutral vector variable is a typical non-Gaussian vec-
tor variable. By explicitly exploring the neutral properties,
the so-called PNT has already been proposed for the purpose
of efficient and effective decorrelation of the neutral vector
variable. In this article, we studied and compared the PNT
method with the conventionally applied PCA and ICA meth-
ods. Theoretical analysis and comparisons showed that PNT
has the lowest computational complexity among all the three
methods. It can also transform a highly negatively correlated
neutral vector variable into a set of mutually independent
scalar variables, as well as preserve the bounded support
property. With real-life data evaluation, the advantages of the
PNT method in EEG signal feature selection and speech model
reconstruction were demonstrated with extensive experiments.

There remain several open problems for future work: 1) pro-
pose a strategy to find the optimal permuted version for neutral
vector variables; 2) study the error propagation control strategy
for the PNT method such that the reconstruction performance
can be further improved; 3) similar to the improved version
of PCA or ICA, an improved PNT is expected to be proposed
such that the overall performance can also be improved; and
4) investigate more real-applications with the proposed PNT
and its variants.
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