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Chapter 1

Introduction

One ought, everyday, to hear a song,
read a fine poem, and, if possible,
to speak a few reasonable words.

Johann Wolfgang von Goethe

Words and language are at the very heart of human life and intelligence.
They are not all there is to humanity, but a great part of it. Specifically,
speech is the primary mode of communication that uses words and the accou-
trements of language. It is a way of sharing facts, thoughts and emotions, of
transferring human intelligence, of information, from one person to another
via sound [103, 41, 146].

This thesis goes to the core of speech, to the properties of the sound signal
that we perceive as speech. Specifically, we will study spectral models of
the speech sound signal. Before going to the main topic, we will, however,
present some necessary preliminaries of speech production (Section 1.1) and
matrix algebra for speech modelling (Chapter 2). Together, these two topics
form the theoretical basis for the spectral models to be discussed in Chap-
ter 3. Finally, in Chapter 4, we will study the Line Spectrum Pair Decom-
position frequently used in the representation of linear predictive models.

17



18 1. INTRODUCTION

1.1 Speech Production

Figure 1.1 illustrates the speech organs. Speech production is initiated by
the lungs, which generate air pressure that flows through the trachea, vocal
folds, pharynx, oral and nasal cavities. Cavities above the vocal folds are
collectively called the vocal tract. The actual speech sound can be, roughly
speaking, created by two different strategies. Firstly, for voiced speech (e.g.
vowels /a/, /o/ and /i/, and nasals /m/ and /n/), the flow of air sets the
vocal folds in an oscillating motion, periodically inhibiting the airflow for a
short interval. The excitation of voiced speech, the glottal volume velocity
waveform, is named after the orifice between the vocal folds, the glottis.
Consequently, voiced speech sounds consist of a strong periodic component
rich in harmonics. Secondly, for unvoiced speech, airflow is constricted (e.g.
fricatives /f/, /s/ and /h/) or completely stopped for a short interval (e.g.
stops /t/, /p/ and /k/). Therefore, unvoiced speech is of either noise-like or
impulsive-like characteristics, without harmonic structure [103, 41].

Figure 1.1: Illustration of speech organs.

The smallest unit of distinctive speech sounds is called a phoneme. Of the
phonemes in standard English prose, vowels and diphthongs form approxi-
mately 38%, voiced consonants 40% and unvoiced consonants 22% [41]. It
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is therefore obvious that voiced phonemes form the main part of average
English (and most Western languages) and modelling voiced phonemes is,
as a result, of primary importance. Consequently, it is understandable that
the focus in the development of spectral models of speech, is in material rep-
resented by voiced phonemes. For this purpose, this thesis will concentrate
on voiced phonemes and in particular, vowels only.

A typical waveform generated in the vocal folds (voiced phoneme) is depicted
in Figure 1.2a. It resembles a sinusoidal wave cut off at the bottom and
the spectrum will contain a great deal of energy in the harmonics of the
fundamental frequency (see Figure 1.2b).

Like any acoustic cavity, the vocal tract has resonances that attenuate and
amplify different frequency regions. These resonances are called the formants
and can be modified by movements of the vocal organs such as tongue,
lips and pharynx [121]. The frequency domain locations of formants are
important with respect to recognition of vowels and, consequently, accurate
modelling of formants is of primary interest in the spectral modelling of
speech. Especially important are the two first formants, which lie mainly in
the 200 to 1400 Hz range (F1), and 500 to 2500 Hz range (F2), respectively
[41]. A typical formant structure of a vowel is illustrated in Figure 1.2e.

The emitted speech sound is then the combination of the excitation process
(the glottal volume velocity waveform) and the filtering process (vocal tract
effect) as described above. A typical vowel is depicted in Figure 1.2c-d, such
that the harmonic structure generated by the vocal folds and the formant
structure, imposed by the vocal tract, are clearly visible in Figure 1.2d.

1.2 Source-Filter Modelling

The theoretical basis widely used for speech modelling is the source-filter
model [40]. This model is based on the assumption that speech can be mod-
elled in independent parts, namely, the source and the filter. This approach
is schematised in Figure 1.3. The above assumption has two main flaws;
namely, it assumes that there are no sub-glottal resonances and worse, it
assumes that vocal tract resonances and vocal fold oscillations have no in-
teraction. In practise, however, because the error introduced by these as-
sumptions is small, source-filter modelling yields good results. Furthermore,
in this work, source-filter modelling will serve as a general speech acoustical
motivation for models presented.

In the digital implementations of source-filter models, the prevalent tech-
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Figure 1.2: Signals in the source-filter model: (a) Glottal flow, (b) magnitude
spectrum of the glottal flow, (c) speech signal, (d) spectrum of the speech
signal and (e) filtering function (transfer function) of the vocal tract. Signals
were generated by concatenating a single period of a real speech signal and
the corresponding glottal flow period obtained by inverse filtering.
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Figure 1.3: Source-filter model of speech production (adapted from Fant
[40]).

nique is all-pole modelling or linear predictive modelling [91, 119]. With
this method, we aim to model the filtering effects of the speech production
mechanisms, with a parametric model, obtained by linear prediction that
takes the source signal as input. The all-pole model is theoretically valid,
since it can be derived from a tube model of the vocal tract [40, 146, 103].
The tube model is discussed in more detail in Section 1.2.1. While we aim
to model only the filtering function, in practise, we end up modelling prop-
erties of the glottal source and the radiation effect as well [41, 119]. Thus,
when we model a speech signal, the residual will become an impulse train
with additive noise, instead of a train of glottal pulses. Yet, since the model
performs well in many applications, especially speech coding applications,
this difference is not an impediment [118]. The linear predictive model is
considered in more detail in Chapter 3.

1.2.1 Acoustic Tube Model

The vocal tract is basically a bent tube of varying diameter, making it a
rather complex acoustical system [121]. However, if we ignore the bend, we
can make a simple model that explains the formants and resonances quite
well. The tube model attempts to model the filter part of the source-filter
model described in Section 1.2.

First attempts to directly compute an acoustic tube model of the vocal tract
from the speech waveform were presented by Atal [8]. He demonstrated that
the formant frequencies and bandwidths are sufficient to uniquely determine
the tube model parameters and that this model is always realisable as a
transfer function with M poles when the number of cylindrical tubes is M
[10].

When using the tube model, we make the following assumptions [95]:

1. The vocal tract consists of M tube sections of equal length but varying
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diameter.

2. The length of each section is small enough that sound propagation can
be treated as a plane wave.

3. The sections are rigid and internal losses due to wall vibrations etc.
can be ignored.

4. The model is linear and uncoupled from the glottis.

5. Interaction with the nasal tract is ignored.

In addition, we make the normal assumptions of wave propagation [95]. In
other words, we model the vocal tract by a set of short cylindrical tube
segments (see Fig. 1.4).

As the wave travels through the tubes, a portion of it will reflect in the
opposite direction at each junction. The proportion of the volume velocity
ui(t) reflected at the junction between segments i and i + 1 is defined as the
reflection coefficient Γi. Consequently, from the wave travelling to the right
u+

i (t), the portion reflected to the left at then junction between sections
i and i + 1, is Γiu

+
i (t). The portion reflected to the right from the wave

travelling to the left u−i (t) is correspondingly Γiu
−
i+1(t + 1) [103, 95]. The

signal flow is illustrated in Figure 1.5.

The reflection coefficients depend on the cross-sectional area of the adjacent
tubes. If we define the cross-sectional area of the i’th tube as Ai, we obtain
the reflection coefficient as [95]

Γi =
Ai−1 −Ai

Ai−1 + Ai
. (1.1)

By choosing a suitable tube section length and cross section areas, we ob-
tain surprisingly accurate estimates for formant locations of different vowels.
Consequently, the tube model is a well-warranted model of the vocal tract
and we can expect that further models based on the tube model will perform
as dependably.

1.3 Vocal Tract Estimation and Modelling

The Source-Filter model and the acoustic tube model for speech are used
overwhelmingly frequently, due to their ease of use and their reliable results.
However, there exist other models for the speech production system as well.
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LIPS

GLOTTIS

Figure 1.4: Illustration of the tube model (adapted from Markel and Gray,
1980).

Figure 1.5: Signal flow of the tube model for the vocal tract at the junction
of tube sections i and i + 1. The volume velocities in the right and the left
direction are denoted by u+

i (t) and u−i (t), respectively, the reflection coeffi-
cient is denoted by Γi and unit delay by z−1. (Adapted from O’Shaughnessy,
1987)



24 1. INTRODUCTION

Unfortunately, these suffer quite consistently from high computational com-
plexity or requirements of specific a priori knowledge of the voice, and are
therefore not useful in engineering applications. More suitable application
would arise in, for example, medical applications, where the speech produc-
tion system is studied from a clinical viewpoint.

An analysis of the effect of losses in the tube model is presented in [126].
This model takes into account the internal losses due to, for example, wall
vibrations in the walls of the vocal tract, thus providing a slightly more
accurate model. It is, however, intended for an analysis of formants and
speech transitions, in contrast to telecommunications applications.

In [22], a vocal tract modelling approach employing neural networks was pre-
sented. It uses the true glottal pulse as input and estimates the vocal tract
transfer function by learning from the output sound. Obviously, in telecom-
munications and similar applications, the glottal pulse is not available and
this model can be used for analysis applications only.

For medical applications, several estimation and modelling approaches are
proposed, such as, [140, 147].



Chapter 2

Matrix Algebra for Linear
Prediction

Before proceeding to the main topic of this thesis, it is necessary to present
some mathematical formulae that may not be familiar to most readers.
Namely, we will present matrix algebra of some classes of matrices; i.e. the
Toeplitz, Vandermonde and convolution matrices, as well as the solution
of related systems by the Levinson recursion and matrix decompositional
techniques.

2.1 Toeplitz Matrices

On class of matrices which appears frequently in digital signal processing
is the Toeplitz matrices. The characteristic property of these matrices is
that each of their diagonals have common entries. In other words, an n× k
Toeplitz matrix T is defined by Tij = tj−i or in matrix form

T =



t0 t1 t2 . . . tk−1

t−1 t0 t1
. . . tk−2

t−2 t−1 t0
. . . tk−3

...
. . . . . . . . .

...
t−n+1 t−n+2 t−n+3 . . . tk−n−2


. (2.1)

The Toeplitz matrices also belong to the more general class of persymmetric
matrices, which are symmetric about their northeast-southwest diagonals
[46, 60].

25
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While the definition of Toeplitz matrices is straightforward, they have, as
mathematical operators, proved to be rich in fruitful properties and to have a
wide range of applications. Within the Toeplitz theory, much of the current
theoretical interest lies in the special case of circulant (Toeplitz) matrices,
since general Toeplitz matrices are in many ways equivalent to circulant
matrices [50, 60]. Each row of a circulant matrix is obtained by cyclically
shifting the previous row to the right.

In this work however, we shall, concentrate on symmetric Toeplitz matrices
which are prevalent in digital signal processing. A symmetric matrix A has
Aij = Aji and therefore, a symmetric Toeplitz matrix will have Tij = t|j−i|.
Furthermore, we shall limit ourselves to real and positive definite matrices,
since these are, in practise, perhaps the most common kind of matrices
in speech processing. Positive definite matrices A are, by definition, such
that xTAx ≥ 0 for all x ∈ Rn and xTAx = 0 implies ||x|| = 0. The
positive definite property is, in many signal processing applications, highly
important, and therefore, tests for positive definiteness have been devised,
such as [93].

2.1.1 Eigenvalues and Eigenvectors

The eigenvalues and eigenvectors of a matrix A are defined as the pair of
scalar λi and vector vi, for which Avi = λivi [46, 60]. Let superscript #

denote the reversal of rows operator. If vi is an eigenvector of an m × m
symmetric Toeplitz matrix T corresponding to eigenvalue λi; i.e. Tvi =
λivi, then it also holds that Tv#

i = λiv
#
i . If the eigenvalues λi are distinct,

then vi and v#
i must be equal in direction, that is, vi = ±v#

i . Consequently,
all eigenvalues are either symmetric or antisymmetric, that is, their elements
have v

(i)
j = v

(i)
m−j . Furthermore, it can be shown that a symmetric Toeplitz

matrix of size m × m has m/2 symmetric and antisymmetric eigenvectors
for m even, and (m + 1)/2 and (m − 1)/2 symmetric and antisymmetric
eigenvectors, respectively, for m odd [23, 92].

The eigenvalues of a Hermitian (and thus also the eigenvalues of a real sym-
metric) matrix are real [78]. Furthermore, the eigenvalues of a positive
definite matrix are positive [46]. Since we will be discussing mostly posi-
tive definite, real and symmetric Toeplitz matrices, their eigenvalues will be
positive and real.

Finding the eigenvalues of a given system is usually expensive and many
algorithms have been presented for this task [65, 56, 66]. In our context,
however, we will not need the explicit formulae or algorithms for eigenvectors
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or eigenvalues.

2.2 Levinson-Durbin Recursion

In most applications where Toeplitz matrices appear, we are dealing with a
problem such as

Ta = b (2.2)

where T is an n× n Toeplitz matrix and a and b are vectors. The problem
is to solve a when T and b are known. For the solution, straightforward
application of Gaussian elimination is rather inefficient, with complexity
O(n3), since it does not employ the strong structures present in the Toeplitz
system.

A first improvement to Gaussian elimination is the Levinson recursion which
can be applied to symmetric Toeplitz systems [89, 55, 46]. To illustrate the
basics of the Levinson algorithm, first define the p× p principal sub-matrix
Tp as the upper left block of T. Further, assume that we have the order p
solution ap to equation

t0 t1 t2 . . . tp

t1 t0 t1
. . . tp−1

t2 t1 t0
. . . tp−2

...
. . . . . . . . .

...
tp tp−1 tp−2 . . . t0




1

a
(p)
1
...

a
(p)
p

 =


εp

0
...
0

 . (2.3)

Extension of ap with a zero yields

t0 t1 t2 . . . tp+1

t1 t0 t1
. . . tp

t2 t1 t0
. . . tp−1

...
. . . . . . . . .

...
tp+1 tp tp−1 . . . t0




1

a
(p)
1
...

a
(p)
p

0

 =


εp

0
...
0
ηp

 (2.4)

where ηp =
∑p

i=0 a
(p)
i tp−i+1 and a

(p)
0 = 1. The salient step comes through

the realisation that since Tpap = up where up = [εp 0 . . . 0]T and Tp is
symmetric, we have Tpa

#
p = u#

p , where superscript # denotes reversal of
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rows. By defining a reflection coefficient Γp, we obtain

Tp+1




1

a
(p)
1
...

a
(p)
p

0

 + Γp


0

a
(p)
p

a
(p)
p−1
...
1



 =




εp

0
...
0
ηp

 + Γp


ηp

0
...
0
εp



 . (2.5)

Obviously, choosing Γp so that ηp + Γpεp = 0 yields the order p + 1 solution
to Eq. 2.3 as

ap+1 =
[

ap

0

]
+ Γp

[
0
a#

p

]
. (2.6)

Consequently, with a suitable choice of initial values (a0 = 1), this procedure
can be used to recursively solve equations of type Eq. 2.3. Furthermore,
using the intermediate values ap, it is straightforward to solve arbitrary
problems of type Eq. 2.2. The former algorithm, the solution of Eq. 2.3,
is often called the Levinson-Durbin recursion and the latter, the solution of
arbitrary equations of type Eq. 2.2, the Levinson recursion [89, 34, 55].

While the Levinson-Durbin recursion has the complexity of O(n2), it is pos-
sible to further improve the algorithm to reduce complexity by half. The
algorithm, called the split Levinson-Durbin algorithm, uses a three term
recursion instead of the two term recursion in Eq. 2.5. Then either the sym-
metric or antisymmetric part of two consecutive order solutions, ap−1 and
ap are used to obtain the next order solution ap+1 [33, 55].

Several other possibilities exist for the solution of Eq. 2.2, such as the Schur
or Cholesky decomposition (see Section 2.4), but the split Levinson-Durbin is
the most efficient [46, 33]. The others are sometimes preferred when decimal
truncations cause numerical instability. Further improvements have been
proposed (e.g. [79]), but since they suffer from stability problems [160], they
are rarely used.

2.3 Vandermonde and Convolution Matrices

A class of matrices appearing in problems related to polynomial interpola-
tion, control theory and digital signal processing, is the Vandermonde matrix
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[46, 60, 73, 61]. The Vandermonde matrix is defined as

V =


1 1 1 . . . 1
α1 α2 α3 . . . αm

α2
1 α2

2 α2
3 . . . α2

m
...

...
...

...
αn

1 αn
2 αn

3 . . . αn
m

 . (2.7)

In other words, each column of the Vandermonde matrix V is a geometric
progression of αi. Sometimes the Vandermonde matrix is also defined in the
transposed form of Eq. 2.7, that is, Vandermonde matrices are sometimes
defined so that each row contains a geometric progression of αi [74, 60].

If the αi’s are distinct (αi 6= αj for i 6= j), then matrix V in Eq. 2.7 is of full
rank [46]. However, if αi → αj then the matrix becomes rank deficient. The
standard solution is the usage of confluent Vandermonde matrices, whereby
we replace columns of overlapping αi with the confluent Vandermonde matrix

[Vc(αi)]jk =


(

j − 1
k − 1

)
αj−k

i , for j ≥ k

0, otherwise.
(2.8)

The formula of confluent Vandermonde matrix can readily be acquired by
taking the limit of series αk

i − αk
j scaled to unity when αi → αj . In other

words, the confluent Vandermonde matrix has derivatives d · /dαi of the
overlapping geometric progression αk

i [20]. For example, if we construct a
confluent Vandermonde matrix with distinct geometric progression for α2

and α4, and overlapping progressions for α1 and α3 with multiplicity 2 and
3, respectively, we have

V =



1 0 1 1 0 0 1
α1 1 α2 α3 1 0 α4

α2
1 2α1 α2

2 α2
3 2α3 2 α2

4

α3
1 3α2

1 α3
2 α3

3 3α2
3 6α3 α3

4

α4
1 4α3

1 α4
2 α4

3 4α3
3 12α2

3 α4
4

α5
1 5α4

1 α5
2 α5

3 5α4
3 20α3

3 α5
4

α6
1 6α5

1 α6
2 α6

3 6α5
3 30α4

3 α6
4


. (2.9)

The importance of Vandermonde matrices for digital signal processing be-
comes evident when we study their relation to convolution matrices. A
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convolution matrix A for polynomial A(z) =
∑m−1

i=0 aiz
−i is defined as [98]

AT =


a0 a1 . . . am−1 0 0 . . . 0
0 a0 a1 . . . am−1 0 . . . 0
...

. . . . . . . . . . . . . . . . . .
...

0 . . . 0 a0 a1 . . . am−1 0
0 0 . . . 0 a0 a1 . . . am−1

 . (2.10)

The name, convolution matrix, springs from the fact that multiplication of
a vector b = [b0 b1 . . . bn]T with A, i.e. ATb corresponds to convolution of
sequences bn and an. This is, stated by means of polynomials, equivalent to
multiplication of polynomial B(z) =

∑m
i=0 biz

−i with A(z), i.e. A(z)B(z).

The intriguing connection to Vandermonde matrices can now be readily
shown. If polynomial A(z) has zeros α−1

i , then from Eqs. 2.7 and 2.10
we obtain [98]

ATV = 0. (2.11)

Consequently, the (possibly confluent) Vandermonde matrix V is in the null-
space of the convolution matrix A. If matrix A is of size m× (m− n) and
V of size m× n then matrix V is the complete null-space of A.

2.4 Matrix Decompositions

Operations called matrix decompositions are factorisations of matrices that
express them in some canonical form. For example, the singular value de-
composition of a matrix A is

UTAV = D (2.12)

where matrix D is diagonal with eigenvalues λi of A as elements and matrices
U and V are orthogonal [46, 60]. This kind of decomposition could be
intuitively described as a rotation of A by U and V, such that only the
essential information, the eigenvalues, are extracted.

Two matrix decompositions often used in digital signal processing are the
Schur and Cholesky decompositions [95, 46, 55]. For example, the Schur
decomposition is used in the first GSM standards [1].

The Schur decomposition for matrix A is such that

QHAQ = T = D + N (2.13)
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where Q is unitary, D diagonal with eigenvalues of A on the diagonal, and
N is strictly upper triangular [46].

Similarly, the Cholesky decomposition for a real, symmetric and positive
definite matrix A is

A = GGT (2.14)

where G is a unique lower triangular matrix [46].

Since inversion of a triangular matrix is easy, and efficient algorithms for
finding the Schur and Cholesky decompositions exist, these decompositions
can be used for the solution of problems of type Eq. 2.2 [55].



32 2. MATRIX ALGEBRA FOR LINEAR PREDICTION



Chapter 3

Predictive Models of Speech

In this chapter, we will discuss the linear predictive (LP) method for spectral
modelling of speech. It must be emphasised that while our motivation for
using linear prediction lies within spectral modelling of speech, the possible
fields of application are vast. For example, classic applications of linear
predictive models outside speech processing include fields such as economy
and geology [91, 116].

3.1 Linear Prediction

Let us assume that we have m past samples of a signal xn in an interval
[n − m,n − 1] and our task is to estimate a sample xn. Moreover, let us
restrict ourselves to the case where we construct our estimate as a linear
combination of m past samples. The estimate x̂n can then always be stated
as [55, 95, 91]

x̂n = −
m∑

i=1

aixn−i (3.1)

where the minus sign has been added for convenience and ai (1 ≤ i ≤ m)
are the model parameters. The error en between the estimated sample x̂n

and the true sample xn is then

en = xn − x̂n = xn +
m∑

i=1

aixn−i =
m∑

i=0

aixn−i = aTx (3.2)

with constraint a0 = 1 and where aT = [a0 . . . am] and xT = [xn . . . xn−m].

33
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Our objective is to find the best possible estimate, that is, the set of param-
eters ai such that the error en is minimised. Historically, the optimisation
criterion has been minimisation of the sum of squares of some specified num-
ber of error samples with respect to the coefficients. The main reason for
this choice of a minimisation criterion is simply that the solution is linear,
tractable and produces results, which, in most applications, are satisfactory
for the analysis of speech [95].

The total squared error is

α =
n1∑

n=n0

e2
n =

n1∑
n=n0

m∑
i=0

m∑
j=0

aixn−ixn−jaj

= aTXTXa = aTCxa, (3.3)

where X is the (n1 − n0 + 1)×m convolution matrix of xn (see Section 2.3)
and the covariance matrix Cx is defined as

Cx = XTX. (3.4)

To be able to minimise α, we need to set a constraint a0 = 1, which can be
obtained using Lagrange multiplier λ with objective function

η(a, λ) = aTCxa− 2λaTu (3.5)

where u = [1 0 0 . . . 0]T .

The minimum is found by setting the partial derivatives ∂/∂ak to zero, and
we obtain

0 =
∂η(a, λ)

∂a
= 2Cxa− 2λu (3.6)

which yields the solution as
Cxa = λu. (3.7)

The prediction error e = [en0 en0+1 . . . en1 ]
T is found by

e = Xa. (3.8)

This method is generally known as the covariance method.

In mathematical terms, a more securely warranted minimisation criterion
is to minimise the expected value E[·] of the squared error e2

n. Thus, from
Eq. 3.2 we obtain

E
[
e2
n

]
= E

[
aTxTxa

]
= aT E

[
xTx

]
a = aTRa (3.9)
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where R is the autocorrelation matrix, which is real, symmetric and Toeplitz.
As in the covariance method, we have the objective function

η(a, λ) = aTRa− 2λaTu (3.10)

solution which yields the normal equations

Ra = σ2


1
0
...
0

 (3.11)

where σ2 = λ is the error energy, since

E[e2
n] = aTRa = σ2aTu = σ2a0 = σ2. (3.12)

This method is generally known as the autocorrelation method.

A crucial property of this method is that, if we assume that the autocorre-
lation matrix R is a positive definite Toeplitz matrix, then the model yields
a predictor a whose Z-transform A(z) =

∑m
i=0 aiz

−i has all its roots inside
the unit circle. This property, also known as the minimum-phase property
or the stability of the inverse model A−1(z), ensures that when it is used as
a autoregressive filter, the impulse response converges [91, 55]. Root loci of
linear predictors is demonstrated in Figure 3.1.
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Figure 3.1: Illustration of root loci of linear predictors: (a) minimum-phase
predictor and (b) non-minimum-phase predictor.

The root loci of the LP model is so important, that it has been extensively
studied and a large number of equivalent proofs of the minimum-phase prop-
erty have been presented [150, 82, 45, 104, 138, 55]. While the linear pre-
dictor is undoubtedly minimum-phase if the above assumption holds, that
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is, the model is minimum-phase if the autocorrelation matrix R is positive
definite, in practical applications this assumption is not always true. There-
fore, and due to its importance to other applications, zero location of general
polynomials has been thoroughly studied [14, 15, 16, 17].

3.1.1 Relation to the Acoustic Tube Model

In Section 1.2.1, we discussed the acoustic tube model of the vocal tract. We
concluded, that the vocal tract can be accurately modelled with the tube
model, which, in turn, can be described by a set of reflection coefficients Γi.
Furthermore, there is a unique mapping from the reflection coefficients to
the transfer function of the vocal tract model. Specifically, if we let Ai(z)
denote the transfer function on iteration i, we can recursively construct the
transfer function with [95, 103, 119]

Ai+1 = Ai(z) + Γiz
−i−1Ai(z). (3.13)

When comparing with Eq. 2.6, we note that the the reflection coefficients Γi

of the Levinson recursion and the acoustics tube model are, in fact, equal.
Each iteration of the Levinson recursion can, therefore, in the tube model,
be interpreted as the attachment of an additional tube segment.

In conclusion, since LP models are presented by means of a transfer function
A(z), which is generally a solution to a Toeplitz system, the model can be
interpreted as the acoustic tube model of the vocal tract. Hence, the LP
model is a justified model for modelling of the spectral of speech.

3.2 Symmetric Predictors

Symmetric and antisymmetric predictors A±(z) =
∑m

i=0 a±i z−i are such that
their coefficients have

a+
i = +a+

m−i (3.14)
a−i = −a−m−i

In other words, in vector form we have a± = ±a#
± , where superscript #

denotes reversal of rows. A trivial property of such real polynomials is that
their roots may appear in any of the following constellations:
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• Root pairs either on the unit circle as conjugate root pairs z = a and
z = a∗ with |a| = 1 (see Fig. 3.2(a)), a ∈ C or on the real axis z = a
and z = a−1 with a ∈ R (see Fig. 3.2(b)).

• Root quadruples at z = a, z = a∗, z = a−1 and z = a∗−1 with a ∈ C
(see Fig. 3.2(c)).

• Single root at z = −1 for both symmetric and antisymmetric polyno-
mials. In addition, antisymmetric polynomials always have a root at
z = +1 (see Fig. 3.2(d)).

Observe that, consequently, symmetric and antisymmetric predictors are
never minimum-phase.

Furthermore, since predictors are usually calculated as solutions to Toeplitz
systems of type Ra± = c±, we note that also vector c± has to be symmetric
or antisymmetric because R is symmetric Toeplitz. Another formulation of
the same property is that if Ra = c then Ra# = c#.

It has been claimed [137], that the roots of symmetric linear prediction
models lie on the unit circle. While this claim is valid in certain cases, it is
certainly not universally true. For example, in Section 3.4.2 we find a linear
predictive model that can have roots in all the symmetric constellations
presented above.

3.3 Spectral Distortion Measures

In many applications it is important to measure how much distortion an
operation exerts on the spectrum, that is, to measure how much the spectrum
changes, for example, in quantisation of parameters.

Define the spectral error or difference V (ω) as

V (ω) = 10 log10[A(ω)]− 10 log10[Â(ω)]. (3.15)

The simplest and most used of spectral distortion measures, log spectral
distortion (SD), is defined as

d2 =
1
π

∫ π

0
|V (ω)|2 dω, (3.16)

where A(ω) is the original spectrum and Â(ω) the distorted spectrum [49].
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Figure 3.2: Illustration of root constellations of real symmetric and antisym-
metric polynomials in the complex plain C: (a) unit circle root pair (b) real
root pair (c) root quadruple (d) trivial root at z = −1 (circle ’o’) and for
antisymmetric polynomials only at z = +1 (diamond ’♦’).
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However, log spectral distortion does not take into account any perceptual
features of the sound. Different areas of the spectrum are perceptually of dif-
ferent importance and should therefore be weighted differently in the distor-
tion measure. One formulation of the weighted distance measure is [30, 29]:

d2
W =

1
πW0

∫ π

0
WB(ω)2 |V (ω)|2 dω, (3.17)

where WB(ω) is the weighting function on frequency range ω ∈ [0, π] and
W0 a scaling coefficient defined as the integral of (or in the discrete case,
the sum of) WB(ω) over the frequency range. The weighting function can
be defined to adjust to the Bark scale by setting

WB(ω) =
1

25 + 75
[
1 + 1.4

(
ω

1000

)2
]0.69 . (3.18)

Another approach is to evaluate the maximum likelihood distortion mea-
sure, usually denoted as the Itakura-Saito distortion measure [95, 49], first
presented in [70]. The distortion measure then becomes [95, 49]

I =
1
π

∫ π

0

[
eV (ω) − V (ω)− 1

]
dω. (3.19)

Similar to Eq. 3.17, we can introduce a spectral weighting factor WB(ω) to
facilitate perceptual weighting and we obtain

IW =
1

πW0

∫ π

0
WB(ω)2

[
eV (ω) − V (ω)− 1

]
dω. (3.20)

3.4 Modified Linear Predictive Models

The idea of improving LP models, as presented in this thesis for example,
by perceptual criteria, is not at all new. In this section, we present some
preceding work on the same problem. The motivation is as follows: Con-
ventional LP models the input signal with constant weighting for the whole
frequency range [11]. However, human perception does not have constant
frequency perception in the whole frequency range. For example, in general,
low frequencies are perceived with higher accuracy than high frequencies
[41, 121]. Therefore, since LP treats all frequencies equally, effort is wasted
on high frequencies while important information in the low frequencies is
discarded.
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Researchers in the field seem to have a peculiar but entertaining predilection
for acronyms. Hence, we will in this section present, among others, linear
predictive models known as WLP, FWLP, DAP, PLP, LPES, LPLE and
SLP.

3.4.1 Warped Linear Prediction

Warping is a technique that enhances the frequency resolution of a model
by transformation to a “warped” frequency scale, where the model is con-
structed. An inverse transform maps the model to the original frequency
domain. The motivation is, that if the warped frequency domain has a
frequency resolution which resembles that of the perception, then a model
generated in the warped domain will seize those characteristics of the signal
that are perceptually important. An early attempt toward frequency warp-
ing can be found in [94], but the current formulation has its roots in [141].

The warped linear predictive model is acquired by first Z-transforming
Eq. 3.1 to obtain

X̂(z) = −
m∑

i=1

aiz
−iX(z). (3.21)

We then replace the delay z−i by a linear all-pass filter D(z) and we have
[63, 62]

X̂(z) = −
m∑

i=1

aiD
i(z)X(z). (3.22)

A common warping method is to use the all-pass model

D(z) =
z−1 − λ

1− λz−1
. (3.23)

We can then generate an LP model for the warped signal as we did in
Section 3.1, to obtain a warped model Aw(z). The model Aw(z) can, in
turn, be readily inverse transformed to the original domain.

3.4.2 Two-sided Linear Prediction

A reformulation of the linear predictive problem that has been frequently
reinvented, is the two-sided linear predictive model [5, 85, 32, 64, 88]. Due
to the different perspectives of the many authors, two-sided LP has been
presented in a variety forms. We will use the current notation to minimise
confusion. Instead of Eq. 3.1, this model is based on an estimate x̂n of signal
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xn that is a linear combination of both past and future samples xn. The
model is then, by design, non-causal. The estimate is defined as

x̂n = −

 −1∑
i=−m/2

aixn−i +
m/2∑
i=1

aixn−i

 . (3.24)

By a derivation similar to Section 3.1, we can readily find the solution as
the minimum of the expected value of the squared residual as

Ra = σ2 [0 0 . . . 0 0 1 0 0 . . . 0 0]T (3.25)

where a = [a−m/2 a−m/2+1 . . . a0 . . . am/2−1 am/2]T and a0 = 1.

The advantage of two-sided LP is that its roots often lie in the quadruple
constellation of Fig. 3.2(c). If the roots outside the unit circle are reflected
symmetrically to the inside, we obtain an optimal “quadratic” model, that
is, a model where all the roots are double and the match to the spectrum
is optimal. This kind of model has enhanced spectral dynamics, which is
beneficial in some cases. Similar algorithms have been presented in [7, 59].

3.4.3 Frequency Weighted Linear Prediction

A straightforward approach to perceptual weighting of the LP problem,
called Frequency Weighted Linear Prediction (FWLP), is presented in [28,
27]. It is based on the creation of an optimal LP model with respect to the
Itakura-Saito spectral distortion measure presented in Section 3.3, Eq. 3.19.

It is shown that if the spectral weighting function W (z) is a one-pole poly-
nomial, then the resulting model is minimum-phase. However, for more
complex functions W (z), the authors were unable to find criteria for the
minimum-phase property.

The one-pole FWLP model was shown to be solvable by Cholesky decom-
position. The multiple-pole case is more complex, but was shown to be
iteratively solvable by the Newton-Raphson method.

3.4.4 Discrete All-Pole Modelling

Another modelling method based on the Itakura-Saito distortion criterion
is the Discrete All-Pole (DAP) modelling method, originally presented in
[35, 36]. This method is based on a discretisation of the spectral distortion
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criterion in Eq. 3.19 as

IDAP =
1
N

∑
k=1

N
[
eV (ωk) − V (ωk)− 1

]
. (3.26)

In the conventional discretisation of Itakura-Saito, the points ωk would be
equally spaced points of the spectrum, but in DAP, the ωk may be chosen
otherwise. Consequently, the system designer can choose the parts of the
spectrum to be modelled accurately. The proposed approach is, however, to
choose ωk so that they fit the harmonic peaks of the input signal. It is then
assumed that the input signal spectrum has harmonic structure.

Straightforward minimisation of the spectral distortion criterion results in
non-linear equations, which cannot be easily solved. Fortunately, we can
readily obtain criteria for optimality and, by a recursive algorithm, find
estimates for the model [35, 36].

It should be noted that the basic DAP algorithm does not involve any per-
ceptual weighting. There exists, however, some recent work that includes
perceptual weighting with a discrete mean square all-pole model [113].

3.4.5 Perceptual Linear Prediction

An approach for linear prediction completely based on perceptual criteria
is the Perceptual Linear Prediction (PLP) [58]. This model includes the
following perceptually motivated analyses:

1. Critical-band spectral resolution. The spectrum of the original signal
is warped (see Section 3.4.1) into the Bark frequency scale, where a
critical-band masking curve is convolved to the signal.

2. Equal-loudness pre-emphasis. The signal is pre-emphasised by a simu-
lated equal-loudness curve to match the frequency magnitude response
of the ear.

3. Intensity-loudness power law. The signal amplitude is compressed by
the cubic-root to match the nonlinear relation between intensity of
sound and perceived loudness.

After these operations, all signal components are perceptually equally weigh-
ted and we can, from the modified signal, make a regular LP model.

In [58], the author continues to analyse the PLP model in view of speech
recognition and vowel perception, and argues, that due to the perceptual
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motivation of PLP and due to the experiments presented, PLP behaves well
even with low-order LP models (such as m = 5).

3.4.6 Linear Prediction by Sample Grouping

The LP problem can also be reformulated in the time domain by sample
grouping [154, 6, 152]. Similar work related to warped LP models (see
Section 3.4.1) can be found in [62]. In contrast to the earlier studies and
with pedagogical intentions, we will derive the reformulations in matrix form.
We will start by a modification of Eq. 3.1 to obtain

x̂n = −
m∑

i=1

aiF (xn, xn−1, . . . , xn−N ) (3.27)

where F (·) is a linear function of its parameters and N is a scalar N > m.
The motivation for this formulation is, that if F (·) is chosen to emphasise
certain components of the input signal and to attenuate others; when opti-
mising, the optimal predictor will then give more attention to the emphasised
components and less attention to the attenuated components. Consequently,
the designer of the model can choose which components of the input signal
are given more attention in the optimisation process.

This approach is well known in systems identification and often denoted
as rank-reduction [128, 162]. The name emerges from the fact that F (·)
takes as input N parameters when the model order is m with N > m. The
model therefore uses fewer parameters ai than it uses input signal values xn.
Consequently, the degrees of freedom or rank of the model is reduced.

Similarly to Section 3.1, the prediction error becomes

en = xn − x̂n = xn +
m∑

i=1

aiF (xn, xn−1, . . . , xn−N )

= uTx + aTFTx (3.28)

where F is an N × m matrix corresponding to the linear combination of
F (·), u = [1 0 . . . 0]T and with constraint a0 = 1. As in the autocorrelation
method, we minimise the expected value of the squared residual

E
[
e2
n

]
= E

[
aTFTxxTFa + 2uTxxTFa + uTxxTu

]
= aTFT E

[
xxT

]
Fa + 2uT E

[
xxT

]
Fa + uT E

[
xxT

]
u (3.29)

= aTFTRFa + 2uTRFa + uTRu.
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The zero of the partial derivative ∂/∂a yields the minimum at

FTRFa = 2FTRu. (3.30)

This solution is derived in scalar form in, among others, [154, 6, 5, 152]. It
is instructive to note, however, that Eq. 3.30 does not, per se, say anything
about the stability of the corresponding all-pole model.

Interestingly, there is another equivalent solution method. By defining â =
Fa + u, we obtain from Eq. 3.28

en = âTx. (3.31)

To accommodate this change, the constraints have to be modified accord-
ingly. Since Fa = â− u, then a− u must be in the column space of F and
FT

0 (a− u) = 0 where matrix F0 is the null-space of F; that is, FTF0 = 0.
We can then write the objective function as

η(â,g) = âTRâ− 2gTFT
0 (â− u) (3.32)

where g is a vector of Lagrange coefficients.

Again, the minimum is found by setting the partial derivative to zero, and
we have the set of equations [128]

Râ = F0g
(3.33)

FT
0 R−1F0g = F0u

While Eq. 3.30 provides a solution by inversion of an m×m matrix FTRF,
whereas Eq. 3.33 provides a solution through inversion of an N ×N matrix
R and an (N − m) × (N − m) matrix FT

0 R−1F0. The latter can still be
more efficient since we can use efficient algorithms such as Levinson-Durbin
recursion for solution of Eq. 3.33 (see Section 2.2). Moreover, the form in
Eq. 3.33 can present additional information of the model not readily seen in
Eq. 3.30. For educational purposes, let us study three algorithms presented
in [153, 154, 6] and collectedly in [152], in more detail, with the above matrix
notation.

In the current notation, from [153, 154, 6, Eqs. 2] and Eq. 3.1 we obtain

x̂LPES
n =

m∑
i=1

ai {(i + 1) [xn−i − xn−i−1] + xn−i−1} (3.34)

x̂SLP
n =

m∑
i=1

ai

{
i + 1

i
[xn−1 − xn−i−1] + xn−i−1

}
(3.35)

x̂LPLE
n =

m∑
i=1

ai {2i [xn−2i+1 − xn−2i] + xn−2i} . (3.36)
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Immediately we observe, that Eqs. 3.34 and 3.35 use m + 1 samples of the
input signal xn to estimate a model of order m, while Eq. 3.36 uses 2m + 1
samples for a model of order m. The models LPES and SLP thus provide a
rank reduction of order one, while LPLE provides a rank reduction of order
m + 1.

The linear combination matrices F (see Eq. 3.2) of Eqs. 3.34–3.36 can be
written as

FLPES =


0 2 −1 0 0 0 . . .
0 0 3 −2 0 0 . . .
0 0 0 4 −3 0 . . .
...

...
...

. . . . . . . . . . . .

 (3.37)

FSLP =


0 2

1 −1
1 0 0 0 . . .

0 3
2 0 −1

2 0 0 . . .
0 4

3 0 0 −1
3 0 . . .

...
...

...
. . . . . . . . . . . .

 (3.38)

FLPLE =


0 2 −1 0 0 0 . . .
0 0 0 4 −3 0 0 . . .
0 0 0 0 0 8 −7 . . .
...

...
...

...
...
. . . . . . . . .

 . (3.39)

The corresponding null spaces are

FT
LPES,0 =

[
1 0 0 0 0 0 . . .
0 1 2 3 4 5 . . .

]
(3.40)

FT
SLP,0 =

[
1 0 0 0 0 0 . . .
0 1 2 3 4 5 . . .

]
(3.41)

FT
LPLE,0 =


1 0 0 0 0 0 . . .
0 1 2 0 0 0 . . .
0 0 0 3 4 0 . . .
...

...
...

. . .

 . (3.42)

Looking at Eqs. 3.40–3.42 we recognise the similarity between the null-
spaces. Specifically, the null spaces of LPES and SLP are exactly equal
while LPLE is very similar. We can conclude that the LPES and SLP will
yield equal result, even though the Eqs. 3.34–3.36 gives no hint of this to
the casual reader.

In conclusion, sample grouping is an engineering approach to linear pre-
diction with a perceptual goal in mind. However, no thorough analysis of
perceptual properties of presented algorithms exists as yet.
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3.5 Non-linear Prediction

Even though the linear predictive model, based on the acoustic tube model
(see Section 1.2.1), is a good approximation of the vocal tract, in real life, the
speech production process is non-linear. Therefore, performance of linear
models will always remain limited. In order to improve accuracy, we can
study non-linear models. While this is outside the main scope of this thesis, a
few notes may be helpful. Some of the presented models have been developed
specifically for speech, others for any prediction problem, but we will consider
them all since distinguishing between them is sometimes difficult.

Studies in spoken speech have shown that most of the points in the state
space lie very close to a manifold of surprisingly low dimensionality, fewer
than three. This result indicates that one should be able to construct non-
linear models of speech of low dimensionality that significantly outperform
linear models [149].

A simple approach to non-linear prediction is to assign a code-book for the
vector quantised past of the input signal. Both the analysis and synthesis
stages are then merely table look-ups, which can be performed very effi-
ciently. However, construction of the code-book might prove costly [159,
131].

Neural networks (NN) for speech processing have been studied extensively
[57, 76] and it is only natural to attempt to apply those methods to the speech
spectral modelling task as well. The methods have developed along the
current trends in NN research, ranging from Radial Basis Function methods
[100, 101], and Hidden Markov Models [42], through Time Delay NN [145]
to Real-Time Recurrent Learning NN [164].

Non-linear prediction methods are usually computationally complex, since
solution of model parameters is generally non-linear. However, some non-
linear autoregressive models, which are linear to their parameters, have
been developed [44]. A final non-linear prediction method is application
of Volterra filters, which has been used with some success in, among others,
[145, 101, 130].



Chapter 4

Line Spectrum Pair
Decomposition

In speech transmission, it is often essential to find a representation of the
model parameters which tolerates small quantisation errors. One such tech-
nique is the Line Spectrum Pair (LSP) polynomials [69, 132]. This rep-
resentation includes the decomposition of a polynomial, such as the linear
predictor, into another domain, the Line Spectrum Frequency (LSF) domain,
where the parameters can be represented as angles of polynomial zeros on
the unit circle.

The prevalent method for speech transmission is code excited linear predic-
tion (CELP) with LSP polynomials. This combination appears in all major
coding standards [1, 3, 4, 2, 31]. CELP is based on modelling the speech
spectrum with a linear predictive model and using a code-book model for
the residual [119]. The LP parameters are transferred in terms of line spec-
trum frequencies (LSFs); that is, as the zero locations of the LSP polynomi-
als. This approach has several advantages. Firstly, LSFs are robust against
quantisation errors as long as they are kept interlaced [132]. Secondly, inter-
frame interpolation is well-behaved [108]. Finally, the computational load
associated with root-finding of LSFs is reasonable compared to other coding
schemes [123].

Prior to LSP, the most suitable representations of LP coefficients was log
area ratios (LAR) and inverse sine quantisation. In terms of spectral de-
viation due to quantisation errors, either of these representations can be
optimal, depending on the deviation measure [71]. However, a dissenting ar-
ticle from the same time period claims that the reflections coefficients would

47
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be superior to other coding schemes [156]. Either way, the LSP decompo-
sition was soon found to be insurmountable to all of the above mentioned
coding schemes. Quality-wise, coding with a 31-bit representation of the
LSP polynomials is equivalent to, or better than, a 41-bit representation
with reflection coefficients [75].

In this present chapter, we will present the most important properties and
applications of LSP decomposition.

4.1 Basics

The LSP polynomials are defined, for an order m predictor A(z), with [69,
132]

P (z) = A(z) + z−m−1A(z−1)
Q(z) = A(z)− z−m−1A(z−1).

(4.1)

We can readily see that, using P (z) and Q(z), polynomial A(z) can be
reconstructed as

A(z) =
1
2

[P (z) + Q(z)] . (4.2)

The roots αi and βi of P (z) and Q(z), respectively, have a number of useful
properties, namely, it holds that [127, 132, 137]

1. αi and βi are on the unit circle |αi| = |βi| = 1 and can be presented as
αi = eiπλi and βi = eiπγi .

2. λi and γi are simple and distinct λi 6= λj and γi 6= γj for i 6= j, and
λi 6= γi for all i.

3. λi and γi are interlaced, that is, γi < λi < γi+1 for all i.

Polynomials P (z) and Q(z) can be reconstructed from λi and γi, and since
we can reconstruct A(z) from P (z) and Q(z), we can use the angles λi and
γi to uniquely describe A(z). This description is bounded since λi, γi ∈ [0, 1]
(the complex conjugate λ∗i and γ∗i are redundant and can be ignored).

Conversely, if two polynomials have zeros interlaced on the unit circle, their
sum is minimum-phase [132]. Therefore, if we make sure that we retain the
interlacing property, then the description is robust in terms of stability of
the all-pole model.
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Figure 4.1: Illustration of root loci of LSP polynomials P (z) and Q(z) cal-
culated from polynomial A(z).
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Figure 4.2: Illustration of the Line Spectrum Frequencies in the spectra of
polynomials P (z) and Q(z).

Properties 1 and 3 are called the unit circle property and the intra-model
interlacing property of LSP polynomials. These properties are illustrated in
Figure 4.1.

Since the roots lie on the unit circle, the all-pole models P−1(z) and Q−1(z)
will have infinite values at these locations. In terms of the spectrum, these
roots can be seen as vertical lines at frequencies corresponding to the angle of
each root. These lines are known as the Line Spectrum Frequencies (LSFs)
of the corresponding model.

Depending on the model order m, the LSP polynomials have trivial zeros at
z = ±1 as follows [122]:

m P (z) Q(z)
odd z = −1 z = +1
even none

{
z = +1
z = −1
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Cancelling the trivial zeros of mth order LSP polynomials Pm(z) and Qm(z),
yields symmetric polynomials RPm(z) and RQm(z) of even order as [122]

RPm(z) =
Pm(z)
1 + z−1

, RQm(z) =
Qm(z)
1− z−1

, m odd

RPm(z) =Pm(z), RQm(z) =
Qm(z)
1− z−2

, m even.

(4.3)

Note that RPm(z) and RQm(z) are generally no longer of order m, but since
they are generated from mth order equations, we retain the subscript.

Consecutive order LSP polynomials have another intriguing interlacing prop-
erty called the inter-model interlacing property. Namely, the roots of an
order m LSP polynomial Pm(z) are interlaced with that of Pm+1(z) and
similarly for the roots of Qm(z) and Qm+1(z) [97, 77]. In other words, if
λ

(m)
i are the angles of the roots of the order m polynomial Pm(z), and λ

(m+1)
i

are the angles of the roots of the order (m + 1) polynomial Pm+1(z), then

λ
(m+1)
i < λ

(m)
i < λ

(m+1)
i+1 , for all i. (4.4)

The same holds for roots of Qm(z) and Qm+1(z).

Further elaboration on the bounds of LSFs through recursive evaluation
at subsequent model orders is presented in [77]. The article also shows
another proof for the inter-model interlacing property. Furthermore, the
article proposes a method for determining a proper model order in a view of
representing formant frequencies.

The root loci of Am(z) for Γm ∈ R in Eq. 2.6 are studied in [87]. This
article also presents an alternative and somewhat more intuitive proof for
the unit circle property than [132]. The root loci concept is a classical
method in polynomial analysis and can be studied further in some basic
signal processing tutorials, e.g. [102].

A physical motivation for the LSF frequencies based on the glottal driving-
point impedance of a discrete matched-impedance vocal tract model is given
in [54]. This model also provides yet another alternative proof for the inter-
lacing property and stability of the model.

As an extension to LSP noted in [97], it is possible to prove that unit cir-
cle and intra-model interlacing properties hold also for the polynomial pair
P l

m+1(z) = Am(z) + z−lAm(z−1) and Ql
m+1(z) = Am(z)− z−lAm(z−1) with

l ≥ 0 [127, 45]. It is, in fact, sufficient to prove the properties for l = 0 since
we can always insert zeros at the end of the coefficient vector. The number
of added zeros then corresponds to the value of l.
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At first sight, it would be tempting to use LSFs as a basis for sinusoidal
modelling, similarly to the way eigenvectors are used in Pisarenko’s harmonic
decomposition [117, 55]. Unfortunately, LSFs are biased estimators which
makes them unsuitable for sinusoidal modelling [139].

It can be concluded that it is possible to describe the spectral envelope of
a signal through the angles of the zeros of LSP polynomials Pm+1(z) and
Qm+1(z) calculated from an LP polynomial Am(z). This yields a convenient
representation of the LP coefficients, since the range of the angles is limited
to [0, π], and the stability of the all-pole model corresponding to Am(z) is
guaranteed if the interlacing property is retained.

4.1.1 Relation to Levinson-Durbin Recursion

The Levinson recursion is an iterative solution method for matrix equa-
tions. The problem is formulated as Ax = b, where A is a known symmetric
Toeplitz n × n matrix, b a known n × 1 vector and x the unknown n × 1
vector. The recursion algorithm computes the solution vector x iteratively
for i × i sub-matrices using the solution of the (i − 1) × (i − 1) sub-matrix
[89].

The Levinson-Durbin recursion is a special case of the Levinson recursion,
where the problem is defined as Ra = r, where [R]i,j = R(i − j), [r]j =
R(j) and a is the unknown vector [34]. In the Levinson-Durbin recursion,
consecutive order solutions are calculated using the following relation

Am(z) = Am−1(z) + Γmz−m−1Am−1(z−1), (4.5)

where Γm is called the reflection coefficient.

Setting Γm = ±1 in the above equation yields the LSP polynomials Pm(z)
and Qm(z) as can be seen from Eq. 4.1 [33]. Using equation 4.5 it is also pos-
sible to form recursive relations between consecutive order LSP polynomials
as [97]

2Pm(z) = (1 + km−1)
(
1 + z−1

)
Pm−1 + (1− km−1)

(
1− z−1

)
Qm−1 (4.6)

2Qm(z) = (1 + km−1)
(
1− z−1

)
Pm−1 + (1− km−1)

(
1 + z−1

)
Qm−1. (4.7)

The inter-model interlacing property (in Section 4.1) follows from the above
equations.
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4.2 Finding the Roots of LSP Polynomials

When using LSP in speech coding, it is not enough to calculate the LSP
polynomials P (z) and Q(z) through Eqs. 4.1, and transmit their coefficients.
The LSP coefficients suffer from the same problems as the LP coefficients;
that is, they are sensitive to quantisation errors. The motivation of using
the LSP decomposition in speech coding, is to transmit the angles of the
zeros of P (z) and Q(z) (which lie on the unit circle), since they are robust
and tolerate small errors. In order to transmit the LP information using
LSFs, the root locations of the LSP polynomials have to be determined. In
this section, we will discuss some of the proposed methods for finding these
roots.

It is well known that the zeros of a polynomial up to order four can be solved
analytically through its radicals [161]. However, in the coding of telephone-
band speech, the order of LP is typically m = 8 or m = 10, in order to
represent the relevant formants in speech. The root finding methods must
therefore be numerical.

Before a discussion of the different root finding algorithms, the reader should
note that there are several facts known in advance about the roots of the LSP
polynomials as described in in Section 4.1. Namely, the zeros are interlaced
on the unit circle, and therefore, when the zeros of P (z) are known, the
required search area for the zeros of Q(z) is roughly halved, and vice versa
if the zeros of Q(z) are located first. In addition, because P (z) and Q(z)
are real, their zeros come in complex conjugate pairs, so that only half the
number of zeros of the model order has to be located [132]. Furthermore, as
mentioned before, [87] presents some properties of root loci.

The very first LSP polynomial root-finding algorithm was proposed in [132].
This algorithm basically utilises most of the properties described above. In
short, the algorithm can be described as follows:

1. Calculate LP polynomial Am(z), and the corresponding LSP polyno-
mials Pm+1(z) and Qm+1(z) (Eq. 4.1).

2. Remove trivial zeros using Eq. 4.3 (polynomials are now denoted RP (z)
and RQ(z)).

3. Evaluate polynomials on unit circle using z = ejω which yields poly-
nomials RP (ω) and RQ(ω).

4. Calculate the cosine transform of polynomials RP (ω) and RQ(ω),
which yields polynomials R̂P (x) and R̂P (x) where x = cos ω, and thus
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x ∈ [−1, 1]. The polynomials R̂P (x) and R̂P (x) are of order m/2 (for
even m) and are thus much easier to evaluate than RP (z) and RQ(z).

5. Divide the range of x into an adequately fine grid and look for changes
of sign.

6. Search for the zeros in the intervals with sign changes.

This algorithm is a rather brute-force method in the final stages and is
therefore computationally fairly expensive.

A computationally more efficient approach using Chebyshev polynomials was
proposed in [72]. Differing from antecedent methods, the proposed method
does not include any calculations of trigonometric functions. The algorithm
has two stages. Firstly, the polynomials RP (x) and RQ(x) are represented
by Chebyshev polynomials. Secondly, the roots of this new representation
are calculated with an efficient numerical algorithm. The precision of LSFs
given by this method should be adequate, but if a higher accuracy is desired
methods exist for more exact localisation of zeros, e.g. [21].

Further improvement to the Chebyshev polynomial approach is presented in
[163], where a decimation in degree (DID) algorithm is used to simplify the
equations. The DID algorithm closely resembles that of Chebyshev poly-
nomials but is slightly simpler. In addition, it obviates prior storage or
the large calculation of transcendental functions and complex computation
and, of special importance, it provides more selections of rapid numerical
methods. However, for model orders larger than m = 8, this algorithm
still requires searching of zero crossings in an adequately fine grid. Some
improvements to the DID algorithm are found in [122].

The zero finding algorithms (step 6 in above algorithm) are further developed
in [123]. It introduces an accelerated variation of the classical Newton’s
method. The method is based on a double-step idea, where the gradient
search is accelerated by taking double-length steps in the direction of the
gradient. A zero crossing is indicated by changes in the sign of polynomial
or gradient, and it is therefore possible to slow down to the classical Newton’s
method when the immediate vicinity of the zero is reached. The rationale in
the double-step idea is similar to many convex optimisation algorithms, and
further improvements could be achieved by studies in classical optimisation,
e.g. [12].

By using a property similar to the inter-model interlacing property (see Sec-
tion 4) the zero crossings search can be avoided for model order m = 10
[48]. The zeros of the lower order polynomial offer an ordered list of in-
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tervals where the zeros of the full order polynomial can be found. (The
actual full order polynomials used are of order m/2 = 5, and the lower order
polynomial is m/2 − 1 = 4, and the roots can thus be solved analytically.)
This approach presents a substantial improvement to the number of multi-
plications required for the zero finding problem, since it is possible to use
gradient search algorithms directly, without an adequately fine grid. This
method was later improved in [96].

A rather different approach to the root finding problem based on a quotient-
difference algorithm is presented in [112]. This iterative approach calculates
an estimate for all zeros on each iteration. It thus offers the possibility for
a trade-off between accuracy and complexity.

4.2.1 Tracking Roots

Speech coding is usually performed by dividing long speech signals into win-
dows and processing these windows separately. Assuming the windowing
interval compared to phoneme length is short, the consecutive windows will
be similar, and thus, consecutive LP models (and the corresponding LSP
polynomials) will be similar in spectral structure. It should be obvious that
usage of such information could improve the efficiency of the coding algo-
rithm.

Several root tracking methods for general high-order polynomials have been
proposed [165, 136], but the first tracking algorithm developed specifically
for LSP was proposed in [115]. This approach defines continuous paths from
known roots of the LSP polynomials of a prior speech frame to the unknown
roots of the next frame in the sequence. A gradient search based numerical
predictor-corrector procedure is used for tracking these paths in order to
compute the unknown roots.

4.3 Immittance Spectrum Pair

Another representation of the LP coefficients is the Immittance Spectrum
Pair (ISP), which is also closely related to LSP. The immittance model is
defined using polynomials Fm(z) and Gm(z), which are defined as [19]

Fm(z) = Am(z) + z−mAm(z), Gm(z) = Am(z)− z−mAm(z). (4.8)

Note the similarity between Fm(z) and Gm(z) to the LSP polynomials Pm(z)
and Qm(z) in Eq. 4.1. The immittance polynomials Fm(z) and Gm(z) may
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represent the wave field variables sound pressure and volume velocity, whose
ratios are impedance or admittance at the glottis [19].

The immittance model is then defined as

Ip(z) =
Am(z)− z−mAm(z)
Am(z) + z−mAm(z)

. (4.9)

This model has properties similar to the LSP polynomials; namely, if polyno-
mial Am(z) is minimum-phase, then the zeros and poles of Ip(z) are simple,
on the unit circle and interlaced [127]. Additionally, it has trivial zeros and
poles similar to the LSP polynomials. When polynomial Am(z) is stable,
the immittance model can therefore be written for m even as as

Im(z) =
K(1− z−2)

∏(m/2)−1
i=1

(
1− 2z−1x2i + z−2

)∏m/2
i=1 (1− 2z−1x2i−1 + z−2)

. (4.10)

A similar equation for m odd exists with different trivial zeros and poles.
The coefficients xi are the ISP coefficients and it holds that

− 1 < xm−1 < . . . < x2 < x1 < 1. (4.11)

Apart from speech coding, immittance polynomial forms can also be used in
efficient inversion of Toeplitz and quasi-Toeplitz matrices in manner similar
to the Levinson-Durbin recursion [18].

4.4 Line and Immittance Spectrum Statistics

The significance of LSP polynomials can be appreciated when it is noted that
the LSFs and ISP coefficients are statistically uncorrelated when estimated
from stationary autoregressive processes, in contrast to other representations
[39]. Simplifying, this means that a small error in one LSF or ISP coefficient
distorts the spectrum only in a local region.

In [148], an extensive study of theoretical statistical properties of the LSP
polynomial roots is presented. The results presents estimates of the LSF
probability distribution functions (PDF) in terms of the corresponding au-
toregressive (AR) model. Furthermore, it states that both the LSFs and
AR-parameters cannot follow the Gaussian distribution, but that this theo-
retical result does not inhibit almost-Gaussian PDF’s for both.
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4.5 Quantisation of LSFs

As mentioned before, the primary usage of LSP polynomials is in speech
coding, where LSFs are used as a representation of the LP information.
However, the LSFs cannot be transmitted with arbitrary accuracy, that is,
the LSF locations have to be quantised to a fixed number of bits, before they
can be transmitted. This section will present some of the methods developed
for quantisation of LSFs.

4.5.1 Uniform Quantisation

The first choice for quantisation of LSFs is simply to quantise the value of
the LSF directly. The properties of such a quantisation is presented in [132].
The LSFs are limited in range to the open interval (0, 1) and should thus be
suitable for quantisation. However, direct uniform quantisation of the LSFs
does not use any a priori information. As described in Section 4.1, the LSFs
are interlaced on the unit circle, and they are thus correlated (in the sense
that knowing zeros of P (z) gives us the intervals of the zero locations of Q(z)
and vice versa). To utilise this property, [132] proposes an LSF difference
quantisation scheme. In this approach, the difference of subsequent LSFs
is quantised instead of the value of each LSF. The histograms of the LSF
differences are concentrated close to zero and usually have a smaller range
of values, and thus requiring fewer bits for quantisation. The LSF difference
methods yields a 30% efficiency improvement over LAR [132].

In LSF difference quantisation, only a partial range of the theoretically com-
plete LSF difference is used, since large LSF differences are rare. However,
these large LSF differences can sometimes occur and when present, the quan-
tiser will produce a large spectral error. Additionally, since quantisers are
designed using only single parameter spectral sensitivity measures, a moder-
ate weighted Euclidean distance between two given sets of LSP parameters
can produce an unexpected, large spectral error. To overcome these prob-
lems, [134] presents a coding scheme that finds an optimal combination of
quantised values in the sense of spectral distortion, using delayed decision
coding.

Another solution to the problem is presented in [142]. This approach utilises
the fact that after quantising one LSF, the range of possible values for the
next LSF is smaller. The proposed method, Forward Sequential Adaptive
Quantisation, applies uniform quantisation for each LSF ωi and uses (ωi, π)
as the range for the next LSF ωi+1, thus making it possible to reduce the
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number of bits required for later LSFs. This algorithm can be further im-
proved by recognising two things. Firstly, we note that the lower frequencies
are perceptually more important than the higher frequencies. Secondly, we
note that as the quantisation range decreases, the accuracy improves (pro-
vided that the number of bits used does not decrease substantially). The
Backward Sequential Adaptive Quantisation utilises this property by quan-
tising LSFs starting from the last.

4.5.2 Non-Uniform Quantisation

An alternative to uniform quantisation is non-uniform quantisation, where
probable LSF values are given better accuracy than rare values. It is well
known that non-uniform quantisation is superior to uniform quantisation in
the sense that it results in a smaller average quantisation error, except in
the situation where the source has a uniform distribution [142]. Non-uniform
quantisation can be applied either directly to the LSFs, the LSF differences,
or the Forward/Backward Sequential Adaptive Quantisation algorithms. Ac-
cording to [142], the Backward Sequential Adaptive Quantisation algorithm
seems to be the most prolific of these.

Further improvements are presented in [125], which proposes a non-uniform
adaptive quantisation forward method. It is based on an improved LSF prob-
ability distribution (PDF) estimate using a non-parametric method. The
optimum bit allocation is obtained by the Fox-Makhoul procedure.

A simpler algorithm with an optimal quantisation scheme has been presented
in [133, 135]. The optimal bit allocation is calculated by iterative subdivi-
sions of the LSF distribution. At 32 bits/frame, this approach reaches a 1 dB
average log spectral distortion, a commonly accepted level for reproducing
perceptually transparent spectral information.

4.5.3 Vector Quantisation

In vector quantisation, the LSFs denoted by xi, are presented in vector form
as

x = [x1, x2, . . . , xp]T , (4.12)

where p is the number of LSFs and x belongs to the set x ∈ G = {x ∈ Rp :
0 < x1 < . . . < xp < π} [114].

The fundamental idea in vector quantisation (VQ) is the fact that the set G
is considerably smaller than Rp, and the set of probable values of G is still
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smaller. That is, the distributions of individual LSFs are not independent
and the use of this information can improve the quantisation. However, the
cost of vector quantisation methods is a prohibitively increased complexity
in the algorithms [107].

For reducing the complexity of VQ algorithms, several different approaches
have been proposed [107, 114]. These algorithms are sub-optimal and there-
fore they provide a trade-off between complexity and accuracy. For example,
split vector quantisation divides the vector space into two smaller subspaces
and quantises these spaces separately. The two spaces are slightly correlated
and information is thus lost resulting in reduced accuracy. The trade-off is
that the complexity is considerably reduced. This approach has been shown
to yield better quality than other antecedent LP quantisers at 24 bits/frame
[107].

Another approach is the multistage vector quantisation method which uses
two (or more) consecutive quantisers. The first stage quantiser yields a rough
quantisation of the vector and the second stage quantises the error of the
first stage [107, 109]. Basically, it would be possible to use more consecu-
tive quantisers but such constructions have not appeared in any pertinent
literature.

Other versions of vector quantisation are, for example, structured VQ [83],
segmented VQ-methods [53], multiple scale lattice VQ [155] and safety-net
pyramid VQ [25].

Further improvement can be achieved through usage of inter-frame correla-
tion. In other words, sounds often change slowly and consecutive frames are
therefore often similar. Different approaches to usage of this information ap-
pears in [114, 37]. A comparison of intra- and inter-frame LSF quantisation
is presented in [158].

Vector values are usually not transmitted as such, nor in some non-uniform
quantisation, but with different code-book methods. The different vector
values are given a code which is transmitted and the transmitter translates
the code back to the vector form using a code-book. Such methods are
described in, among others, [114, 52, 53], a two code-book approach in [120],
and a more general approach (applied to a general case VQ instead of LSF
specific VQ) is presented in [51].

Vector quantisation methods are usually optimised using some spectral dis-
tortion measure (see Section 3.3) to yield the best quantisation. A theoretical
analysis of vector quantisation methods and corresponding spectral distor-
tion measures is given in [43]. It also presents an extension to scalar spectral
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sensitivity measures through a sensitivity matrix.

4.5.4 Perceptual Sensitivity

From the viewpoint of perception, the upper frequency range is not as im-
portant as the middle range. The relative hearing sensitivity at 4 kHz is
approximately half that at 0.5 kHz [75]. LSFs in the upper range could
therefore be represented with lesser accuracy, as in the Backward Sequential
Adaptive Quantisation presented in Section 4.5.1. A cruder approach would
be to omit the upper LSFs completely and replace them with either equally
spaced LSFs or according to the statistical distribution of LSFs [75].

A quantisation is said to be transparent if the errors introduced by quan-
tisation are inaudible. In terms of spectral distortion (see Section 3.3) the
generally accepted limits for transparent quantisation are [107]:

• The average distortion is SD ≤ 1 dB.

• There are no outliers having SD > 4 dB.

• The number of outliers having 2 ≤ SD ≤ 4 dB is less than 2%.

Quantiser performance with a weighed spectral distortion measure is anal-
ysed in [29].

4.5.5 Source and Channel Coding

Mobile communication applications usually require not only source coding
(i.e., quantisation of the LP), but also a separate coding for the commu-
nication channel. The channel coder makes the application more tolerant
to transmission errors. Some attempts to combine these stages, source and
channel coding, using Trellis coding has been presented in [129, 110, 81].

Another solution for increasing error tolerance is index assignment [67, 124],
which refers to the indexing of the code-books used in vector quantisation.
The purpose is to ensure that a small error in the code-book index produces
a small error in the LSF-domain and thus a small spectral distortion.
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4.6 Adaptive LSP Filters

Speech processing is most often done in a window-by-window fashion, and
the LSP polynomials are thus calculated for each window separately. How-
ever, sometimes it is beneficial, or even required, to have a continuous esti-
mate of the LSFs. An adaptive algorithm would provide such estimate. It is
well known that the reflection coefficients of Levinson-Durbin recursion can
be implemented by a lattice filter. The lattice filter structure can be used
to create an adaptive LSP filter that yields continuous estimates of LSP pa-
rameters [24]. Better convergence can be achieved with a least mean square
(LMS) type algorithm for end-point error [143].

The reader should note that adaptive LSP filters should not be confused
with, for example, Forward Sequential Adaptive Quantisation (described in
Section 4.5.1), which uses an adaptive method for quantisation accuracy, not
for the LSP filter parameters.

4.7 Interpolation Properties of LSFs

In speech coding, LP parameters are usually calculated and transfered frame-
wise. The frames are typically 20 ms in length, which is relatively long and
can lead to large differences in the LP parameters of consecutive frames.
The large differences can result in audible clicks or distortion on the frame
borders. It is therefore often useful to interpolate parameters in such a way
that the border frames are inaudible, e.g. in 5 ms sub-frames [151, 106, 68,
111]. Such interpolation properties of LSFs were first studied in [9].

To reiterate, LSFs are more suitable for interpolation than reflection coeffi-
cients, log area ratios and other representations [106, 108, 38]. It has also
been shown that using interpolation weighting of frame energy can improve
the interpolation process [38].

4.8 Spectral Distortion Measures Using LSP

Vector quantisation requires a distance measure between the original and
quantised spectra. Such measures were presented in Section 3.3, but these
formulae did not use any information gained from the LSP polynomial prop-
erties. A rigorous derivation using LSP polynomials explicitly is found in
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[84] which yields the following distortion measure

d2 =
m∑

i=1

∏
i+2j≥1,i+2j≤m,j 6=0

|ci − ci+2j |∏
i+2j+1≥0,i+2j+1≤m+1

|ci − ci+2j+1|
dc2

i (4.13)

where d2 is the spectral distortion, m is model order, we have dci = ci−ci,opt,
where ci,opt is the correct value of the coefficient and the ci’s are given by

P (z) =
(
1 + z−1

) m/2∏
i=1

(
1− 2c2i−1z

−1 + z−2
)

Q(z) =
(
1− z−1

) m/2∏
i=1

(
1− 2c2iz

−1 + z−2
)

(4.14)

for m even, where P (z) and Q(z) are as defined in Eq. 4.1.

Equation 4.13 is valid only for small quantisation errors, but is still rather
complicated to use. A convenient approximation is

d2 ≈
m∑

i=1

W (i)
dc2

i

(ci−1 − ci)(ci − ci+1)
(4.15)

where W (i) is a weighting function, similar to that in Section 3.3.

A heuristically designed alternative is the Euclidean distance between an
m’th order LSF vector ω = [ω1, . . . , ωm] and the quantised ω̂ = [ω̂1, . . . , ω̂m]
which is defined as [39]

d2 =
m∑

i=1

wi(ωi − ω̂i)2 (4.16)

where wi is a weight vector reflecting the perceptual weight of each LSF.
This weight function can be improved by applying a formulation of the LSF
spectral sensitivity [157] or by using the intra-model interlacing property
[86].

4.9 Applications and Interpretations of LSP

The primary application of LSP polynomials is speech coding, discussed in
Section 4.5. There are, however, other usages of LSP, which will be discussed
in this section together with some interpretations of LSP.
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4.9.1 Speech and Speaker Recognition and Enhancement

The LSP polynomials and the LSFs contain all information of the spectral
envelope found in the corresponding LP polynomial. The LSFs could there-
fore also be used in speech and speaker recognition applications. In speech
recognition, the LSFs have been found to perform better than other LP
representations [105, 90]. Furthermore, if speech is already coded, e.g., for
transmission, speaker-independent speech recognition directly from the LSFs
is more efficient than recognition by any other known methods from the re-
constructed signal [26]. Moreover, LSFs can be used in speech enhancement
(e.g. [99]) and speech analysis (e.g. [54]).

4.9.2 Time-Frequency Duality

The duality of time and frequency representations is well-known. In the case
of LSP polynomials this can be appreciated by noting the correspondence
between the zeros of the LSP generated from the frequency domain signal
and zero crossings of the original signal [80]. That is, if we generate a LP
model on the spectrum of a signal, the LP model (which we will call the
dual LP model) will then describe the time domain envelope of the original
signal. Furthermore, the zeros of LSP polynomials computed from the dual
LP model will be located at the zero crossings of the original signal.

4.9.3 Filter Design

The stability properties provided by the LSP polynomials yield efficient tools
for filter design applications. Article [144] presents one such application
involving post-filter design.

Post-filters are used in speech decoders to weigh quantisation noise that
arises from low bit-rate speech coding, such that it is perceptually less dis-
turbing. The conventional LP-based ARMA-type spectral post-filter is, with
constant scalars η and ν, described by

H(z) = A(z/η)/A(z/ν), (4.17)

which is a transformation that guarantees the stability of H(z). The post-
filter proposed by [144] is defined as

ω′n(i) = cn(i)ωT (i) + [1− cn(i)]ω(i), (i = 0, . . . ,m− 1), (4.18)

where ω is an input LSF, ω′n an LSF after transformation, ωT is a target
LSF, cn division ratio, m is model order and n the LSP transformation
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block number. This transformation yields a continuous mapping that shifts
modelled LSFs toward desired LSFs, and thus provides means for enhancing
the spectral properties.

A filter design method that takes the effect of noise into account has been
presented in [166].
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P5 Bäckström, T., and Alku, P., “A Constrained Linear Predictive Model
with the Minimum-Phase Property,” Signal Processing, vol. 83, no. 10,
pp. 2259–2264, October 2003.
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Summary of Articles and
Author’s Contribution

This chapter provides a summary of the contents of articles included in this
thesis as well as a description of the present author’s contribution to those
articles. Firstly, we will list each author’s contribution to the articles and
secondly, we will present an overview of the results in the two following
sections. Finally, the last section attempts to give a forecast of possible
further directions.

Authors’ Contributions

The starting point for the current work was a connection between Line Spec-
trum Pair (LSP) polynomials and time domain constraints to the linear pre-
dictive (LP) problem that Prof. Paavo Alku had discovered. This connection
was found in experiments with different formulations of the linear predictive
problem. The present author managed to prove that connection mathemat-
ically in Publication P1. Prof. Kleijn and Tuomas Paatero assisted with
corrections and clarifications.

The aforementioned connection between LSP and the time domain refor-
mulation of LP was better formalised in Publication P2. The basic matrix
form concept was provided by Prof. Kleijn, whereas the present author
completed the new proof and extended the formulation to all types of time
domain formulations of LP.

On a parallel track with the theoretical results, Prof. Paavo Alku applied
the results to practical uses. In Publication P3, the new-found insight into
the theory of linear prediction allowed a new type of optimisation criteria
for the linear predictive model for speech envelope modelling. Prof. Paavo
Alku implemented the model and made some experiments, while both the
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idea behind the model and the supporting theory were contributed by the
current author.

A similar approach was used in Publication P4, where again, Prof. Paavo
Alku implemented the model and made some experiments, while both the
idea behind the model and the supporting theory was contributed by the cur-
rent author. However, the theoretical importance of Publication P3 is greater
than that of Publication P4 since the latter is in a sense, an improvement
on, or enhancement of, the ideas presented in the former. Consequently,
the weight of Prof. Paavo Alku’s contribution to Publication P4 was more
significant than that of the present author’s, whereas for Publication P3 the
roles were reversed.

These theoretical insights leaped forward in Publication P5 which provides
a complete review of the time domain constraints in matrix form based
on the original idea of Prof. Kleijn. However, the most important results
of Publication P5 are the stability criteria of the constrained LP models
presented. These results were entirely contributions of the current author.
Notably, however, a colleague and student in mathematics, Carlo Magi, had
an important part in the verification of the results even though his name
was regrettably not included in the author list.

Analysis of the framework presented in Publication P5 was continued in
Publication P6 which relates the root location of the constraints to the pre-
dictor roots with a root-exchange rule. In addition, the root-exchange rule
was applied to yield a new matrix decomposition for Toeplitz and Hankel
matrices. These results of Publication P6 were entirely contributions of the
current author.

Theoretical Results

The theoretical results of this work can be divided into three partly over-
lapping categories. Firstly, the connection between LSP and reformulations
of LP provide insight into the rationale of LSP [P1]. While LSP had for-
merly been a rather ad hoc method, used in speech coding since it works,
but without consideration as to why it works, the current results give a
better rationale for its usage. Briefly, we have found that an LP predictor,
when separated into its symmetric and antisymmetric parts, i.e. the LSP
polynomials, corresponds to predictors which use, respectively, low-pass and
high-pass data only. This could give us, for example, better information on
the distribution of line spectral frequencies (cf. [39, 148]) and consequently
aid in the design of speech coding applications.
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Secondly, a significant part of this work is the formalisation of reformulations
of the linear predictive problem. While many authors have worked with
reformulations of linear prediction [154, 6, 5], the mathematical formulations
have been rather complex. This work provides a simple and generic basis
for analysis of such systems in matrix form and thus enables us to use the
whole power of matrix analysis.

In addition, together with the third part of the theoretical results, this work
provides basic tools for stability, i.e. minimum-phase property, analysis of
linear predictive models [P3, P4, P5, P6]. Earlier works have considered only
the theoretical stability of unconstrained linear predictive models [150, 91,
82, 104] and root loci of symmetric predictor polynomials [127, 7, 47, 132,
137, 139, 97, 77]. In contrast, we have studied the stability of more general
models, using either known interlacing properties [P3, P4] or whole classes
of models with the minimum-phase property [P5]. Furthermore, Publication
[P6] present completely new theory in an analysis of Toeplitz matrices. These
results employ the Toeplitz structure in a completely novel manner in order
to make a connection to Vandermonde matrices [20, 46, 60]. This approach
owes much to [55], where a similar but simplified idea was used to proof
stability of the conventional linear predictive model.

Applications

While the most significant results of this work are, without doubt, in its the-
oretical parts, some preliminary experiments have been made [P3, P4]. The
models have been applied to the speech spectral envelope modelling task,
which is crucial for speech coding applications. The conventional linear pre-
dictive model gives equal weight to all spectral regions, but it is in our inter-
est to emphasise those spectral features that are important for perception of
speech. In this aim, both WLSP and LPLE models in Publications P3 and
P4, respectively, perform better than conventional LP models. Specifically,
both models separate the two first formants better than LP. This improve-
ment comes, however, with some trade-offs since the formant band-width
tends to decrease and sometimes the centre frequency of formants moves
slightly. Nevertheless, since the format band-width problem can be solved
by windowing and formant movement is in practise negligible, our view is
that both models are well warranted.
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Future Directions

It is a considerable understatement that there is a lot of work remaining.
Perhaps the most obvious task is a systematic evaluation of constrained
and other linear predictive models. These should be done both for isolated
phonemes with objective measurements, as well as in a setting mimicking
the real-life speech coding problem with the new models applied to existing
speech codecs. However, the magintude of such a process would require at
least another dissertation and cannot possibly be included in the current
work.

Furthermore, while our theoretical results have been considered only from
the speech modelling perspective, they are applicable to any area of problems
where linear predictive models are used. Such areas include, but are not
restricted to, economic and geological models, systems identification and
control theory. The special requirements and possibilities of any such field
are beyond the scope of our current theory. In fact, a bibliographical study
of all applications of linear prediction would be a huge task in itself, let alone
trying to apply our constrained models to more general problems.

A specific direction of work would be a more detailed analysis of the relation
of root loci and constraints in linear predictive models. Some results in this
direction, not included in this thesis, have already been published [13].

While it might, at first hand, seem far fetched, one possible practical appli-
cation of the theory of Toeplitz and Vandermonde functionals in Publication
P6, is the generation of new root-finding algorithms. By relating the roots
and constraints of linear predictive models by using a mapping through
Toeplitz matrices, we could obtain a new domain for the root-finding prob-
lem. In the mathematical world, the solution of polynomial roots can be
considered, one of the most formidable problems, and any improvements to
existing algorithms would surely grant eternal fame and ensure a place in
heaven. Therefore, any novel attempts in that aim are surely worthwhile.
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