54 research outputs found

    Advanced Approaches Applied to Materials Development and Design Predictions

    Get PDF
    This thematic issue on advanced simulation tools applied to materials development and design predictions gathers selected extended papers related to power generation systems, presented at the XIX International Colloquium on Mechanical Fatigue of Metals (ICMFM XIX), organized at University of Porto, Portugal, in 2018. In this issue, the limits of the current generation of materials are explored, which are continuously being reached according to the frontier of hostile environments, whether in the aerospace, nuclear, or petrochemistry industry, or in the design of gas turbines where efficiency of energy production and transformation demands increased temperatures and pressures. Thus, advanced methods and applications for theoretical, numerical, and experimental contributions that address these issues on failure mechanism modeling and simulation of materials are covered. As the Guest Editors, we would like to thank all the authors who submitted papers to this Special Issue. All the papers published were peer-reviewed by experts in the field whose comments helped to improve the quality of the edition. We also would like to thank the Editorial Board of Materials for their assistance in managing this Special Issue

    Application of AI in Modeling of Real System in Chemistry

    Get PDF
    In recent years, discharge of synthetic dye waste from different industries leading to aquatic and environmental pollution is a serious global problem of great concern. Hence, the removal of dye prediction plays an important role in wastewater management and conservation of nature. Artificial intelligence methods are popular owing due to its ease of use and high level of accuracy. This chapter proposes a detailed review of artificial intelligence-based removal dye prediction methods particularly multiple linear regression (MLR), artificial neural networks (ANNs), and least squares-support vector machine (LS-SVM). Furthermore, this chapter will focus on ensemble prediction models (EPMs) used for removal dye prediction. EPMs improve the prediction accuracy by integrating several prediction models. The principles, advantages, disadvantages, and applications of these artificial intelligence-based methods are explained in this chapter. Furthermore, future directions of the research on artificial intelligence-based removal dye prediction methods are discussed

    SoC estimation for lithium-ion batteries : review and future challenges

    Get PDF
    ABSTRACT: Energy storage emerged as a top concern for the modern cities, and the choice of the lithium-ion chemistry battery technology as an effective solution for storage applications proved to be a highly efficient option. State of charge (SoC) represents the available battery capacity and is one of the most important states that need to be monitored to optimize the performance and extend the lifetime of batteries. This review summarizes the methods for SoC estimation for lithium-ion batteries (LiBs). The SoC estimation methods are presented focusing on the description of the techniques and the elaboration of their weaknesses for the use in on-line battery management systems (BMS) applications. SoC estimation is a challenging task hindered by considerable changes in battery characteristics over its lifetime due to aging and to the distinct nonlinear behavior. This has led scholars to propose different methods that clearly raised the challenge of establishing a relationship between the accuracy and robustness of the methods, and their low complexity to be implemented. This paper publishes an exhaustive review of the works presented during the last five years, where the tendency of the estimation techniques has been oriented toward a mixture of probabilistic techniques and some artificial intelligence

    A Deep Learning Framework for Hydrogen-fueled Turbulent Combustion Simulation

    Get PDF
    The high cost of high-resolution computational fluid/flame dynamics (CFD) has hindered its application in combustion related design, research and optimization. In this study, we propose a new framework for turbulent combustion simulation based on the deep learning approach. An optimized deep convolutional neural network (CNN) inspired from a U-Net architecture and inception module is designed for constructing the framework of the deep learning solver, named CFDNN. CFDNN is then trained on the simulation results of hydrogen combustion in a cavity with different inlet velocities. After training, CFDNN can not only accurately predict the flow and combustion fields within the range of the training set, but also shows an extrapolation ability for prediction outside the training set. The results from CFDNN solver show excellent consistency with the conventional CFD results in terms of both predicted spatial distributions and temporal dynamics. Meanwhile, two orders of magnitude of acceleration is achieved by using CFDNN solver compared to the conventional CFD solver. The successful development of such a deep learning-based solver opens up new possibilities of low-cost, high-accuracy simulations, fast prototyping, design optimization and real-time control of combustion systems such as gas turbines and scramjets

    Experimental and Numerical Analysis of Ethanol Fueled HCCI Engine

    Get PDF
    Presently, the research on the homogeneous charge compression ignition (HCCI) engines has gained importance in the field of automotive power applications due to its superior efficiency and low emissions compared to the conventional internal combustion (IC) engines. In principle, the HCCI uses premixed lean homogeneous charge that auto-ignites volumetrically throughout the cylinder. The homogeneous mixture preparation is the main key to achieve high fuel economy and low exhaust emissions from the HCCI engines. In the recent past, different techniques to prepare homogeneous mixture have been explored. The major problem associated with the HCCI is to control the auto-ignition over wide range of engine operating conditions. The control strategies for the HCCI engines were also explored. This dissertation investigates the utilization of ethanol, a potential major contributor to the fuel economy of the future. Port fuel injection (PFI) strategy was used to prepare the homogeneous mixture external to the engine cylinder in a constant speed, single cylinder, four stroke air cooled engine which was operated on HCCI mode. Seven modules of work have been proposed and carried out in this research work to establish the results of using ethanol as a potential fuel in the HCCI engine. Ethanol has a low Cetane number and thus it cannot be auto-ignited easily. Therefore, intake air preheating was used to achieve auto-ignition temperatures. In the first module of work, the ethanol fueled HCCI engine was thermodynamically analysed to determine the operating domain. The minimum intake air temperature requirement to achieve auto-ignition and stable HCCI combustion was found to be 130 °C. Whereas, the knock limit of the engine limited the maximum intake air temperature of 170 °C. Therefore, the intake air temperature range was fixed between 130-170 °C for the ethanol fueled HCCI operation. In the second module of work, experiments were conducted with the variation of intake air temperature from 130-170 °C at a regular interval of 10 °C. It was found that, the increase in the intake air temperature advanced the combustion phase and decreased the exhaust gas temperature. At 170 °C, the maximum combustion efficiency and thermal efficiency were found to be 98.2% and 43% respectively. The NO emission and smoke emissionswere found to be below 11 ppm and 0.1% respectively throughout this study. From these results of high efficiency and low emissions from the HCCI engine, the following were determined using TOPSIS method. They are (i) choosing the best operating condition, and (ii) which input parameter has the greater influence on the HCCI output. In the third module of work, TOPSIS - a multi-criteria decision making technique was used to evaluate the optimum operating conditions. The optimal HCCI operating condition was found at 70% load and 170 °C charge temperature. The analysis of variance (ANOVA) test results revealed that, the charge temperature would be the most significant parameter followed by the engine load. The percentage contribution of charge temperature and load were63.04% and 27.89% respectively. In the fourth module of work, the GRNN algorithm was used to predict the output parameters of the HCCI engine. The network was trained, validated, and tested with the experimental data sets. Initially, the network was trained with the 60% of the experimental data sets. Further, the validation and testing of the network was done with each 20% data sets. The validation results predicted that, the output parameters those lie within 2% error. The results also showed that, the GRNN models would be advantageous for network simplicity and require less sparse data. The developed new tool efficiently predicted the relation between the input and output parameters. In the fifth module of work, the EGR was used to control the HCCI combustion. An optimum of 5% EGR was found to be optimum, further increase in the EGR caused increase in the hydrocarbon (HC) emissions. The maximum brake thermal efficiency of 45% was found for 170 °C charge temperature at 80% engine load. The NO emission and smoke emission were found to be below 10 ppm and 0.61% respectively. In the sixth module of work, a hybrid GRNN-PSO model was developed to optimize the ethanol-fueled HCCI engine based on the output performance and emission parameters. The GRNN network interpretive of the probability estimate such that it can predict the performance and emission parameters of HCCI engine within the range of input parameters. Since GRNN cannot optimize the solution, and hence swarm based adaptive mechanism was hybridized. A new fitness function was developed by considering the six engine output parameters. For the developed fitness function, constrained optimization criteria were implemented in four cases. The optimum HCCI engine operating conditions for the general criteria were found to be 170 °C charge temperature, 72% engine load, and 4% EGR. This model consumed about 60-75 ms for the HCCI engine optimization. In the last module of work, an external fuel vaporizer was used to prepare the ethanol fuel vapour and admitted into the HCCI engine. The maximum brake thermal efficiency of 46% was found for 170 °C charge temperature at 80% engine load. The NO emission and smoke emission were found to be below 5 ppm and 0.45% respectively. Overall, it is concluded that, the HCCI combustion of sole ethanol fuel is possible with the charge heating only. The high load limit of HCCI can be extended with ethanol fuel. High thermal efficiency and low emissions were possible with ethanol fueled HCCI to meet the current demand

    Utilization Of Artificial Intelligence (AI) And Machine Learning (ML) in the Field of Energy Research

    Get PDF
    Many governments have committed to becoming carbon neutral by 2050. The main argument is that renewable resources are more eco-friendly than fossil fuels. However, the unpredictable nature of solar and wind power results in either excess or lack of energy generation. This article will evaluate the current machine-learning-based solutions for forecasting renewable energy demand and capacity. Many researchers have used machine learning (ML) to anticipate the amount of generated wind or solar energy. SVM, RNN, NN, and ELM are the most utilized algorithms. Prediction accuracy is improved through optimization (metaheuristics and evolution). These methods can forecast renewable energy for periods ranging from seconds to months. This article compares several ML methodologies and metaheuristic strategies and reviews the current state of research. The hybrid MLS outperforms the standalone optimizers. A more extensive data set for ANN, the introduction of NWP, and a shorter prediction timeframe are suggested as alternatives to Bayesian and random grid tuning. Further research on probabilistic predictions and mathematical relationships between inputs and outputs is needed to close the research gap

    Modelling of hydrogen production bioprocess using Artificial Neural Networks (ANN).

    Get PDF
    Master of Science in Microbiology. University of KwaZulu-Natal, Pietermaritzburg 2016.Abstract available in PDF file

    Experimental investigation and modelling of the heating value and elemental composition of biomass through artificial intelligence

    Get PDF
    Abstract: Knowledge advancement in artificial intelligence and blockchain technologies provides new potential predictive reliability for biomass energy value chain. However, for the prediction approach against experimental methodology, the prediction accuracy is expected to be high in order to develop a high fidelity and robust software which can serve as a tool in the decision making process. The global standards related to classification methods and energetic properties of biomass are still evolving given different observation and results which have been reported in the literature. Apart from these, there is a need for a holistic understanding of the effect of particle sizes and geospatial factors on the physicochemical properties of biomass to increase the uptake of bioenergy. Therefore, this research carried out an experimental investigation of some selected bioresources and also develops high-fidelity models built on artificial intelligence capability to accurately classify the biomass feedstocks, predict the main elemental composition (Carbon, Hydrogen, and Oxygen) on dry basis and the Heating value in (MJ/kg) of biomass...Ph.D. (Mechanical Engineering Science

    Modeling and Optimal Operation of Hydraulic, Wind and Photovoltaic Power Generation Systems

    Get PDF
    The transition to 100% renewable energy in the future is one of the most important ways of achieving "carbon peaking and carbon neutrality" and of reducing the adverse effects of climate change. In this process, the safe, stable and economical operation of renewable energy generation systems, represented by hydro-, wind and solar power, is particularly important, and has naturally become a key concern for researchers and engineers. Therefore, this book focuses on the fundamental and applied research on the modeling, control, monitoring and diagnosis of renewable energy generation systems, especially hydropower energy systems, and aims to provide some theoretical reference for researchers, power generation departments or government agencies
    corecore