19,164 research outputs found

    FogGIS: Fog Computing for Geospatial Big Data Analytics

    Full text link
    Cloud Geographic Information Systems (GIS) has emerged as a tool for analysis, processing and transmission of geospatial data. The Fog computing is a paradigm where Fog devices help to increase throughput and reduce latency at the edge of the client. This paper developed a Fog-based framework named Fog GIS for mining analytics from geospatial data. We built a prototype using Intel Edison, an embedded microprocessor. We validated the FogGIS by doing preliminary analysis. including compression, and overlay analysis. Results showed that Fog computing hold a great promise for analysis of geospatial data. We used several open source compression techniques for reducing the transmission to the cloud.Comment: 6 pages, 4 figures, 1 table, 3rd IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (09-11 December, 2016) Indian Institute of Technology (Banaras Hindu University) Varanasi, Indi

    Mobile Computing in Physics Analysis - An Indicator for eScience

    Full text link
    This paper presents the design and implementation of a Grid-enabled physics analysis environment for handheld and other resource-limited computing devices as one example of the use of mobile devices in eScience. Handheld devices offer great potential because they provide ubiquitous access to data and round-the-clock connectivity over wireless links. Our solution aims to provide users of handheld devices the capability to launch heavy computational tasks on computational and data Grids, monitor the jobs status during execution, and retrieve results after job completion. Users carry their jobs on their handheld devices in the form of executables (and associated libraries). Users can transparently view the status of their jobs and get back their outputs without having to know where they are being executed. In this way, our system is able to act as a high-throughput computing environment where devices ranging from powerful desktop machines to small handhelds can employ the power of the Grid. The results shown in this paper are readily applicable to the wider eScience community.Comment: 8 pages, 7 figures. Presented at the 3rd Int Conf on Mobile Computing & Ubiquitous Networking (ICMU06. London October 200

    Uniform: The Form Validation Language

    Get PDF
    Digital forms are becoming increasingly more prevalent but the ease of creation is not. Web Forms are difficult to produce and validate. This design project seeks to simplify this process. This project is comprised of two parts: a logical programming language (Uniform) and a web application. Uniform is a language that allows its users to define logical relationships between web elements and apply simple rules to individual inputs to both validate the form and manipulate its components depending on user input. Uniform provides an extra layer of abstraction to complex coding. The web app implements Uniform to provide business-level programmers with an interface to build and manage forms. Users will create form templates, manage form instances, and cooperatively complete forms through the web app. Uniform’s development is ongoing, it will receive continued support and is available as open-source. The web application is software owned and maintained by HP Inc. which will be developed further before going to market

    Online Collaborative Editor

    Get PDF
    “Online collaborative editor” is a node.js based browser application that provides real time collaborative editing of files and improves pair programming. Current real time editors fail to provide simultaneous viewing and editing of files within the server and results in a complex version controlling system. Such systems are also vulnerable to deadlocks and race conditions. This project provides a platform for real time collaborative editors, which can support simultaneous editing and viewing of files and handle concurrency problems by using locking mechanism. The experiment results showed that node.js platform provides good performance for collaborative editing

    DIAMOnDS - DIstributed Agents for MObile & Dynamic Services

    Full text link
    Distributed Services Architecture with support for mobile agents between services, offer significantly improved communication and computational flexibility. The uses of agents allow execution of complex operations that involve large amounts of data to be processed effectively using distributed resources. The prototype system Distributed Agents for Mobile and Dynamic Services (DIAMOnDS), allows a service to send agents on its behalf, to other services, to perform data manipulation and processing. Agents have been implemented as mobile services that are discovered using the Jini Lookup mechanism and used by other services for task management and communication. Agents provide proxies for interaction with other services as well as specific GUI to monitor and control the agent activity. Thus agents acting on behalf of one service cooperate with other services to carry out a job, providing inter-operation of loosely coupled services in a semi-autonomous way. Remote file system access functionality has been incorporated by the agent framework and allows services to dynamically share and browse the file system resources of hosts, running the services. Generic database access functionality has been implemented in the mobile agent framework that allows performing complex data mining and processing operations efficiently in distributed system. A basic data searching agent is also implemented that performs a query based search in a file system. The testing of the framework was carried out on WAN by moving Connectivity Test agents between AgentStations in CERN, Switzerland and NUST, Pakistan.Comment: 7 pages, 4 figures, CHEP03, La Jolla, California, March 24-28, 200

    A high-performance data structure for mobile information systems

    Get PDF
    Mobile information systems can now be provided on small form-factor computers. Dictionary-based data compression extends the capabilities of systems with limited processing and memory to enable data intensive applications to be supported in such environments. The nature of judicial sentencing decisions requires that a support system provides accurate and up-to-date data and is compatible with the professional working experience of a judge. The difficulties caused by mobility and the data dependence of the decision-making process are addressed by an Internet-based architecture for collecting and distributing system data.We describe an approach to dictionary-based data compression and the structure of an information system that makes use of this technology
    corecore