
Santa Clara University
Scholar Commons

Computer Engineering Senior Theses Engineering Senior Theses

6-9-2016

Uniform: The Form Validation Language
Sawyer Novak
Santa Clara University

Reid Palmquist
Santa Clara University

Douglas Parker
Santa Clara University

Follow this and additional works at: https://scholarcommons.scu.edu/cseng_senior

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Engineering Senior Theses at Scholar Commons. It has been accepted for inclusion in
Computer Engineering Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

Recommended Citation
Novak, Sawyer; Palmquist, Reid; and Parker, Douglas, "Uniform: The Form Validation Language" (2016). Computer Engineering Senior
Theses. 72.
https://scholarcommons.scu.edu/cseng_senior/72

https://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_senior_theses?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior/72?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

Thesis

Senior Design

Santa Clara University

Santa Clara, California

Uniform: The Form Validation
Language

Submitted in partial fulfillment of the requirements for the degree of
Bachelor of Science in Computer Science and Engineering

Santa Clara University
School of Engineering

Authors:
Sawyer Novak
Reid Palmquist
Douglas Parker

June 9, 2016

Abstract

Digital forms are becoming increasingly more prevalent but the ease
of creation is not. Web Forms are difficult to produce and validate.
This design project seeks to simplify this process. This project is
comprised of two parts: a logical programming language (Uniform)
and a web application.

Uniform is a language that allows its users to define logical rela-
tionships between web elements and apply simple rules to individual
inputs to both validate the form and manipulate its components de-
pending on user input. Uniform provides an extra layer of abstraction
to complex coding.

The web app implements Uniform to provide business-level pro-
grammers with an interface to build and manage forms. Users will
create form templates, manage form instances, and cooperatively com-
plete forms through the web app.

Uniform’s development is ongoing, it will receive continued support
and is available as open-source. The web application is software owned
and maintained by HP Inc. which will be developed further before
going to market.

ii

Contents
1 Introduction 1

1.1 Digital Forms . 1
1.1.1 Digital Forms Require Programming Skills 1
1.1.2 Logically Simple but Hard to Implement 1
1.1.3 We Need a Solution . 2

1.2 Emerging Solutions . 2
1.2.1 Problem 1: Limited Functionality 3
1.2.2 Problem 2: Inadequate Interactive Help 3
1.2.3 Problem 3: Lack of Mobile Support 4

1.3 Uniform Validation Language 4
1.3.1 Why Uniform? . 4
1.3.2 Uniform’s Capabilities 4
1.3.3 Powerful, Yet Easy to Learn 5

1.4 Web Application . 5
1.4.1 Web Application’s Capabilities 5
1.4.2 Mobility Addressed . 5

2 Document Layout 6

I Logical Language 6

3 The Logical Solution 6

4 Design Philosophy 6

5 Requirements 7
5.1 Functional Requirements . 7
5.2 Non-Functional Requirements 7
5.3 Design Constraints . 8

6 Why Uniform? 8
6.1 The Problem: Car Form . 8

6.1.1 Intended Form Logic 9
6.1.2 Problems . 10

6.2 The Solution: The Uniform Language 10
6.2.1 The Car Problem Revisited 10

iii

6.2.2 index.html . 11
6.2.3 carForm.ufm . 11

7 Uniform Code Structure 12
7.1 Blocks . 12
7.2 Selectors . 12
7.3 Tags . 13
7.4 Statements . 13
7.5 Advanced Features . 13

7.5.1 Regular Expressions 13
7.5.2 Variables . 14
7.5.3 Applying Rules to Multiple Elements 15

8 Examples in the Real World 15

9 Architectural Design 16
9.1 Lexer and Parser . 16

9.1.1 Lexical Components 17
9.1.2 Expression Priority . 17
9.1.3 Grammar . 19

9.2 Ruleset . 19
9.3 Evaluator . 20
9.4 jQuery Plugin . 23
9.5 Server-Side Validation . 24
9.6 Install and Usage Guide . 25

9.6.1 Client-Side . 25
9.6.2 Server-Side . 27

9.7 Security . 29
9.7.1 Uniform Ambiguity . 29
9.7.2 Server Data Format . 30
9.7.3 Extraneous Client Information 33
9.7.4 Server-Side HTML . 33
9.7.5 Language Redesign . 34
9.7.6 Cross-Script Validation 37
9.7.7 Main Misdirection . 38

iv

10 Design Rationale 40
10.1 Usability . 40

10.1.1 Logical Design . 40
10.1.2 CSS Format . 41

10.2 Efficiency . 41
10.2.1 Nested Form Evaluation 41

10.3 Design Patterns . 42
10.3.1 Shared Logic . 44

11 Technologies Used 47

12 Testing 48
12.1 Unit Testing . 48
12.2 User Testing . 48

12.2.1 Quiz Results . 49
12.2.2 Improvements Suggested 49

12.3 Browser Testing . 51
12.4 jQuery Support Testing . 51

13 Development Problems and Solutions 51
13.1 Detecting Circular Dependencies 51

13.1.1 What is a dependency? 51
13.1.2 What is a circular dependency? 52
13.1.3 Can we detect at compile time? 52
13.1.4 Why it needs to be this way 52
13.1.5 The seemingly easy solution 52
13.1.6 The surprisingly hard solution (still doesn’t work) . . . 53
13.1.7 Decision: Ignore the problem 53

13.2 Server-Side HTML Knowledge 53

II Web Application 54

14 Solving the Human Element and Mobile Use Cases 54

15 System Components 54
15.1 Actors . 54
15.2 Form Terminology . 55

v

16 Requirements 55
16.1 Functional Requirements . 56

16.1.1 Critical . 56
16.1.2 Suggested . 56

16.2 Non-Functional Requirements 56
16.2.1 Critical . 56
16.2.2 Recommended . 57

16.3 Design Constraints . 57
16.4 Post Implementation Evaluation 57

16.4.1 Functional Requirements 58
16.4.2 Non-Functional Requirements 58
16.4.3 Recommended Features and Design Constraints 58

17 Use Cases 58
17.1 Create a Form Template . 60
17.2 Issue a Form Instance . 60
17.3 Provide Access to a Form Instance 61
17.4 View a Form Instance . 61
17.5 Fill out a Form . 62
17.6 Communicate through Web App 62

18 Activity Diagrams 63
18.1 Client Workflow . 63
18.2 Associate Workflow . 65
18.3 Admin Workflow . 66

19 Conceptual Model 67
19.1 Landing Page . 67
19.2 Template Creation . 68
19.3 Instance Creation . 69
19.4 Mobile Implementation . 70

20 Architectural Design 72
20.1 Data Flow Architecture . 72
20.2 System Architecture . 73
20.3 Validation . 73
20.4 Database Schema . 74

vi

21 Technologies Used 78
21.1 Server . 78
21.2 Client . 78
21.3 Database . 78

22 Design Rationale 78
22.1 Comet . 78
22.2 Single Page Application . 80
22.3 Technologies . 81

22.3.1 Server . 81
22.3.2 Client . 81
22.3.3 Database . 82
22.3.4 Testing . 83

23 Testing Plan 83
23.1 Test-Driven Development . 83
23.2 Unit Testing . 84
23.3 Acceptance Testing . 84
23.4 Security Testing . 84

23.4.1 URL Manipulation . 85
23.4.2 Cross-Site Scripting . 85
23.4.3 Database Injection . 86
23.4.4 API Misuse . 86

23.5 User Testing . 88
23.6 Browser Testing . 88

24 Test Results 88
24.1 User Testing . 88

24.1.1 Client . 89
24.1.2 Associate . 89
24.1.3 Admin . 89
24.1.4 Browser Testing . 90

25 Install Guide 90
25.1 Installing system dependencies 91

25.1.1 NodeJS . 91
25.1.2 MongoDB . 91

25.2 Installing application dependencies 91

vii

25.3 Testing the server . 92
25.4 Run server . 92
25.5 Common errors . 93

25.5.1 Address in use . 93
25.5.2 Database connection error 94
25.5.3 Home page perpetually loads 94

26 User Guide 94
26.1 Accessing the Application . 95
26.2 Navigating the Landing Page 96

26.2.1 Form Instances . 96
26.2.2 Form Templates . 96
26.2.3 Creating a Form Template 97
26.2.4 Issuing a Form Instance 97

26.3 Using the Template Editor . 99
26.3.1 The HTML Editor . 99
26.3.2 The Uniform Editor 100
26.3.3 The Instance Preview 101

26.4 Viewing a Form Instance . 102
26.4.1 Editing a Form Instance 102

III Development 102

27 Tools 103
27.1 Git . 103
27.2 JetBrains WebStorm . 103
27.3 Atlassian JIRA . 103
27.4 Source Code Hosting . 103

28 Development Problems and Solutions 104
28.1 Interface Redesign . 104
28.2 Development on Local-Host Masked Latency 104

28.2.1 Value Update Race Conditions 105

29 Development Timeline 105

viii

30 Ethics 109
30.1 Information Security . 109

30.1.1 Design Decisions to Ensure Privacy 109
30.2 Team and Organizational Ethics 109
30.3 Social and Cultural Issues . 110

30.3.1 Product expectations 110
30.3.2 Sponsor expectations 110
30.3.3 Malicious use . 110

30.4 Documentation . 110
30.4.1 Open source library . 110
30.4.2 API documentation . 111

31 Aesthetic Analysis 111
31.1 Uniform Validation Language 111
31.2 Web Application . 114

31.2.1 Mobile Accessibility . 114
31.2.2 Error Handling . 114
31.2.3 Collaboration . 114

IV Appendix 114

A Design Philosophy of Paper Forms 115

B Santa Clara Graduate Program of Studies Form 120

C Santa Clara Financial Aid Office Verification Worksheet 125

D Uniform Server Validator Example 129

E API Documentation 130

List of Figures
1 HTML Example . 8
2 Language Architecture . 16
3 Uniform Grammar . 18
4 Dependency Code Example 19

ix

5 Expression Tree . 22
6 Use Case Diagram . 59
7 Client Workflow . 64
8 Associate Workflow . 65
9 Admin Workflow . 66
10 Landing Page . 67
11 Template Creation . 68
12 Instance Creation . 69
13 Mobile Implementation . 70
14 Form Data Flow Diagram . 72
15 System Architecture . 73
16 Database Schema (Relations) 75
17 Database Schema (Forms) . 76
18 Database Schema (Controls) 77
19 Single-Page Architecture Diagram 80
20 Accessing the Application . 95
21 Form Instances . 96
22 Building a Template . 97
23 Issuing a Form Instance . 98
24 The HTML Editor . 99
25 The Uniform Editor . 100
26 The Instance Preview . 101
27 Viewing a Form Instance . 102
28 Development Timeline (Fall) 106
29 Development Timeline (Winter) 107
30 Development Timeline (Spring) 108
31 Form 1040 “U.S. Individual Income Tax Return" 116
32 Form 1040 “U.S. Individual Income Tax Return" (Back) 117
33 SCU Graduate Program of Studies Form 121
34 SCU Financial Aid Verification Form 126

List of Tables
1 Lexical Components . 17
2 Uniform Expression Priority and Associativity 17
3 Design decisions and their aesthetic impact on the Uniform

Validation Language . 113

x

1 Introduction

1.1 Digital Forms

Forms are a vital component of data transactions. Modern businesses and
organizations rely on quick and efficient data flow and forms have long been
the primary means by which data is acquired. As data has increasingly
shifted to a digital format, growing exponentially in volume, the need for
consistent, accurate, and accessible forms has become critical, to the point
that there are jobs dedicated entirely to the creation and management of
forms. Increasing reliance on automation means that incomplete or incorrect
forms, which require manual effort to correct, significantly impact timeframes
and quality.

1.1.1 Digital Forms Require Programming Skills

Prior to the digital revolution, forms were, universally, a physical medium,
but the advent of the Internet has increasingly pushed forms into a digital
medium in order to accommodate for the growing scope and volume of the
data businesses and organizations seek to capture. At the same time, how-
ever, businesses have struggled to adjust and adapt to the unique problems
posed by digital forms. Core amongst these issues is that a physical form
would typically be produced by a group of businessmen and women who
had a clear understanding of that form‘s purpose and the business needs
it would serve. Unfortunately, these same men and women do not, by and
large, possess the necessary skills and knowledge to develop digital forms.
The insertion of a skilled programmer into the form development process has
led to increased cost, lengthened timelines, and an even greater disconnect
between the designers of a form and the resulting product.

1.1.2 Logically Simple but Hard to Implement

Moreover, although logically simple, online forms can be surprisingly hard
to implement effectively. This is because the tools that support web devel-
opment are not particularly suited to form development. Currently, most
digital forms have their functionality implemented two or three times. There
is one implementation on the server, validating request data. A second im-
plementation exists on the client, validating the form when the user presses
the “submit” button. Often there is yet one more implementation on the

1

client using an event system to update the form dynamically for the user.
These three components can end up using drastically different architectures
and languages, but still perform the same logical operation, creating a large
amount of duplicate code that cannot be easily maintained. The problem is
that forms are logical entities which can better be defined by the states of
- and relationships between - their underlying components, something that
current web-technologies can only address obliquely. Thus, form development
has become a messy, inefficient process that forces developers into utilizing
toolsets that were designed and developed to solve different problems.

1.1.3 We Need a Solution

Increasingly, the underlying issues of digital form development are being
acknowledged, but it is difficult to say what can be done to answer them
directly. The structure of the web necessitates that digital forms continue
to be implemented using existing technologies and so long as this is true
there will still be a need for skilled developers. But this does not mean that
a solution is impossible. Recognizing the constraints placed on the form
development process, the answer is not to directly attack the source of the
problems, but rather to build around it. Form development can be brought
back into the hands of business users by providing an abstraction of current
web based technologies that eliminates the need for in-depth programming
knowledge and experience with web development.

1.2 Emerging Solutions

Currently, a number of platforms have already been established in an attempt
to return form development to the hands of business users. These solutions
have attempted to solve this problem in a number of different ways and
range in their success. This includes Form.com, DocuSign, SurveyMonkey
and Google Forms. However, there are three distinct areas where current
solutions are still lacking to varying degrees:

• Form logic does not have the depth which many forms require

• Forms lack effective help for confused users

• Forms under-serve mobile use cases

2

1.2.1 Problem 1: Limited Functionality

The first major problem is that these services are not flexible enough for users
to create the forms their businesses need. One of the biggest advantages of
digital forms is that they can modify and check themselves automatically.
If someone checks a box saying he/she is a U.S. citizen, then any questions
for foreigners should be automatically hidden. This simple logic means the
form can automatically restructure itself to only ask the questions that are
necessary. This minimizes the amount of work done by the user, reduces the
chances for an error, and improves the overall experience.

Logic like this is somewhat supported in existing solutions; however, all
of them favor accessibility over functionality, reducing features provided to
make the interface simpler. DocuSign avoids logic support altogether. Google
Forms and SurveyMonkey only allow forms to redirect to different pages
depending on the selection of a radio group. Form.com is the only site which
has any meaningful logic support, but it has a complicated interface as a
result and still does not provide the freedom business users need.

1.2.2 Problem 2: Inadequate Interactive Help

The second issue is that forms do not have any way to effectively help con-
fused users. Forms can become quite complicated, and often the user filling
them out is not completely sure how to answer. On physical forms, there is
usually someone there who can help. There is a person across the desk who
understands the form and can cut through the nonsense and filler to direct
the customer to the parts that matter. This person is usually experienced
with the form and knows how to handle any edge cases. In a digital environ-
ment, this person is not present and it is up to the user to simply “figure it
out."

No existing solution has addressed this problem in particular. At most,
these solutions can offer technical support if their service malfunctions. The
company that built the form may host a support email address or call center
if they are large enough, but these are no more helpful. This support has no
knowledge of the forms they are supporting. They can help a user who is
unable to check a box, but they are useless to someone who needs to know
whether they should check a box.

3

1.2.3 Problem 3: Lack of Mobile Support

The third difficulty with digital forms is that they often lack or under-serve
mobile use cases. In the modern era, mobile devices are becoming more and
more prevalent and these devices need to be supported for businesses to keep
up.

Most of these solutions will work in a mobile solution, but only Form.com
has prioritized mobile devices in any meaningful way. Form.com directly
supports mobile inspections as well as offline mobile submission, but the
other solutions simply render the desktop version in a smaller and more
minimalist form. This is hardly sufficient, and does not provide the user
experience that is expected of these sites.

These three problems are not new, but existing solutions have failed to
address them and users are demanding better than what they currently pro-
vide.

Our proposed solution has two components, the first being the Uniform
Validation Language.

1.3 Uniform Validation Language

1.3.1 Why Uniform?

As stated previously, part of the reason forms are so difficult to implement
is due to using programming tools to solve a logical problem. Since no
current tool exists, Uniform is being created as the logical tool for this logical
problem. It is not difficult to create a basic form; however, if one were to add
just a few simple logical rules, the complexity quickly becomes overwhelming.
The amount of work does not correlate with the simplicity of the intended
action. In a Uniform program, however, statements are written in a one-to-
one relationship between the programmer’s thoughts and the code they write.
Uniform is the medium between logical statements and computer code.

1.3.2 Uniform’s Capabilities

The Uniform language allows users to easily set validation rules for forms
and validate them. Additionally, the language will allow a means to define
relationships between form controls and allow the form to change dynamically
based on both user input and the status of other controls. The language will
also be executable server-side to allow the same piece of Uniform code to

4

validate both the client-side HTML form and the server-side request data
without requiring a customized solution for either.

1.3.3 Powerful, Yet Easy to Learn

Previous solutions give business users an easy to understand interface, but
at the expense of logical complexity. Uniform is powerful, yet easy to under-
stand and learn. Ideally, Uniform allows a business level user to control their
forms at the skill level of an advanced programmer. Compared to current
implementations, Uniform is an elegant and clean solution that abstracts
complicated code into a familiar language.

1.4 Web Application

The second component of our solution is a Web Application which utilizes
the Uniform language to create and issue forms. The Web Application is
the interface and the driver that fully showcases the variety and complexity
of forms. In conjunction with the Uniform language, the Web Application
makes it easy to create, administrate, and view web forms.

1.4.1 Web Application’s Capabilities

This system allows business-level administrators to create digital form tem-
plates with a simple drag-and-drop interface and set validation rules written
in the Uniform language. Associates, company representatives, can then cre-
ate new instances of forms from the templates provided by the administrators
and distribute them to clients. Clients are then presented with an interface
that allows them to easily fill out their form, with the interactive guidance of
an associate. This application provides a means of communication between
company associates and the customers in real time as they fill out the form
together.

1.4.2 Mobility Addressed

Mobility and accessibility are two key features of this software, addressing
the concern regarding the lack of mobile support. Uniform works cross-
platform on desktop and mobile devices. Forms are relevant and frequent in
our lives, and so being able to access form content even from mobile devices
is invaluable in todayâĂŹs day and age.

5

With these three problems addressed, form development can be put back
in the hands of business users and enable them to create the forms their
clients deserve.

2 Document Layout
This project involved, first, the creation of a logical language, and second, a
practical implementation of this language in the form of a web application
addressing these issues. Because these are distinct components, this docu-
ment will be split into two major parts: the “Logical Language” followed by
the “Web Application”.

Part I

Logical Language
3 The Logical Solution
The goal of the Uniform logic language is accurate, efficient, and accessible
digital form validation. This solves “Problem 1: Limited Functionality” in
section 1.2.1.

The Uniform language addresses this problem by providing a simple
framework which allows forms logic to be built quickly and easily.

4 Design Philosophy
Uniform was built on the following principles:

• Uniform code should follow natural spoken language

– Think it, don’t program it

• Uniform should be accessible

– Easy to learn and understand, even for non-programmers

• Allow for smarter forms

6

– Simple in design, but powerful and versatile

5 Requirements
The Uniform language design can be broken down into functional require-
ments which state what the system is capable of while the non-functional
requirements state the manner in which the functional requirements will
achieve their goals. (In order of the first being the most important)

5.1 Functional Requirements

The language will...

• allow form creators to set validation rules for individual form controls.

• allow form creators to define relationships between multiple controls.

• provide a mechanism to validate forms.

• be executable on the server to aid in server-side validation.

• identify the causes of validation failure to the user.

5.2 Non-Functional Requirements

The language will...

• apply validation rules on an HTML DOM page (when executed on the
client).

• operate at a logical level of abstraction, rather than a programmatic
level.

• be easy to use.

• be well-documented.

• be easy to learn, even for non-programmers.

• run efficiently.

• be scalable and reusable.

7

5.3 Design Constraints

The language will...

• be compatible with most modern browsers.

• be compatible with modern NodeJS engines.

6 Why Uniform?

6.1 The Problem: Car Form

To better illustrate how the Uniform language is utilized a basic example is
below. The following Form asks the user to answer two questions:

1. Do you have a car?

2. If so, what is the make, model, and year?

The following HTML markup constructs a web form for the user to fill
out their answers, producing the form seen in fig. 1.

1 <form id="myForm">
2 <input id="chkCar" type="checkbox">I have a car</input>
3 <div id="frmCar">
4 Make: <input id="make" type="text" />

5 Model: <input id="model" type="text" />

6 Year: <input id="year" type="text" />

7 </div>
8 <button type="submit">Submit </button >
9 </form>

Figure 1: HTML Example

8

This form can be built quickly and with only a basic understanding of
web technologies. The difficult part is the form logic.

6.1.1 Intended Form Logic

If the user does not have a car, then the following question, asking the make,
model, and year, are irrelevant. As the form builder, I would like the form to
adjust depending on the user’s input, hiding or disabling the following three
fields. So I would think to myself to add this rule:

• If the check box is not checked, disable the make, model, and year
textboxes.

As this rule is spoken aloud, it sounds very simple, but even something
as fundamental as this is surprisingly difficult to do with current solutions.
Below is the code necessary to enforce this behavior using an existing solu-
tion: JavaScript (including validation for each individual field):

1 $("#chkCar").on("click", function (evt) {
2 if (evt.target.checked) {
3 $("#frmCar").removeClass("ui -disabled");
4 } else {
5 $("#frmCar").addClass("ui -disabled");
6 }
7 }
8
9 $("#frmCar").on("submit", function (evt) {

10 var success = true;
11 if ($("#chkCar").checked) {
12 try {
13 if ($("#make").value === ""
14 || $("#model").value === ""
15 || $("#year").value === "") {
16 success = false;
17 }
18 if (parseInt($("#year").value) <= 0) {
19 success = false;
20 }
21 } catch (err) {
22 // Handle parseInt failure
23 success = false;
24 }

9

25 }
26
27 if (! success) {
28 // Something failed , don’t submit form
29 evt.preventDefault ();
30 }
31 });

While this code does provide the desired functionality, it is surprisingly
bulky for a relatively simple piece of logic.

6.1.2 Problems

Evident from this example are several problems with the current means of
applying logic to forms.

• JavaScript can be difficult for non-programmers to understand; even
this example requires two lambda functions, two event listeners, a try-
catch, and five if-statements. It is much too complicated to even de-
scribe.

• The simplicity of the rule is not reflected in the relative complexity of
the code.

• The logic is separated: part of it is in the form’s submit event and part
is in the checkbox’s change event.

• It is necessary to implement the same logic on both the client-side and
the server-side. There is likely another set of code probably written in
a different language which must be maintained separately.

These problems stem from using the wrong tool. Developers are trying
to use a programming language to solve a logical problem.

6.2 The Solution: The Uniform Language

6.2.1 The Car Problem Revisited

The Uniform code below provides identical functionality as the JavaScript
code written in section 6.1.1 but in contrast to the former, it provides addi-
tional benefits.

10

6.2.2 index.html

<script src="/lib/uniform.js"></script >
<script >uniform.options.href("/carForm.ufm");</script >

6.2.3 carForm.ufm

1 $("#carForm") {
2 valid:
3 $("#subForm") is valid or
4 $("#checkBox") equals false;
5 }
6
7 $("#subForm") {
8 valid:
9 $("#make") is valid and

10 $("#model") is valid and
11 $("#year") is valid;
12 enabled:
13 $("#checkBox") equals true;
14 }

Using Uniform, it quickly becomes apparent that applying the desired
logical functionality to the form is significantly simpler, both in terms of
readability and the amount of code required.

The Uniform code above:

• Is easy to read

• Is easy to learn

• Is self-documenting

• Allows the user to create logical statements that directly translate into
executable code

• Allows the form to easily adjust dynamically to user input

• Minimizes code overhead

• Eliminates the need to understand complex JavaScript

11

The code can be included in an HTML document with a simple script tag,
much like jQuery or any other JavaScript library. Often requiring less than
half the lines of code to solve the same problem, it is easy for any entry level
programmer to understand what the Uniform language is doing. Even if you
are not a programmer, read the code above aloud, and its meaning should be
straightforward.

7 Uniform Code Structure

7.1 Blocks

The most fundamental Uniform file is as structured:
1 <selector > {
2 <tag >: <statement >;
3 }

This piece of code is called a “block.” A block determines the attributes
of a particular Document Object Model element.

Below is a non-abstracted example using the code structure above:

1 $("#myElement") {
2 valid: 1+3 equals 4;
3 }

This code states the following:

• myElement is valid if the following condition is true: 1+3 equals 4

Since 1+3 does indeed equal 4, the condition is evaluated to true, and
so the valid tag of myElement is set to true.

7.2 Selectors

Selectors are a jQuery notation for selecting a particular Document Object
Model element. Uniform borrows the same notation eliminating any language
specific convention confusion. For more information on selectors, visit the
jQuery documentation at:

https://api.jquery.com/category/selectors/

12

https://api.jquery.com/category/selectors/

7.3 Tags

The Uniform language uses tags to define logic for each form element. As
shown in the example above, the valid tag determines if a sub-form is valid.
The list below enumerates each keyword and how it affects the form element
depending on the conditions inside. Uniform supports the following tags:

• Valid

– Will determine the sub-form as valid if the valid conditions are
true

• Enabled

– Will disable a sub-form if the enabled conditions are false

• Visible

– Will hide the sub-form if the visible conditions are false

7.4 Statements

A statement in Uniform must be a boolean expression. This is to say an
expression that evaluates to either true or false. These statements are used to
validate or invalidate a particular tag which is attached to the block selector.
More information on how a statement is constructed will be explained in a
later section.

7.5 Advanced Features

7.5.1 Regular Expressions

Regular expressions are used to select a specific set of characters. In a web
based environment, they can be used to verify a particular format that infor-
mation is entered. For example one could use a regular expression to verify
that the user’s email is valid based on the placement of the @ symbol and the
suffix (.com).

Uniform regular expression notation is identical to the normal convention.
To learn more about regular expressions, visit this link:

http://www.regular-expressions.info/refquick.html.

13

http://www.regular-expressions.info/refquick.html

The code below shows an example of how regular expressions can be used
to verify that a textbox field is not empty.
1 $("#carForm") {
2 valid: all $("input") matches /"."/;
3 }

The Uniform notation requires the use of the keyword matches to com-
pare a string with a regular expression. A regular expression is defined by
wrapping the regular expression in /" "/. This syntax was chosen because of
a desire to match JavaScript conventions where appropriate. In JavaScript,
regular expressions are denoted with / /, which was the intended syntax for
Uniform. However this can lead to ambiguity since the slash character can
already be used to denote a line comment //, block comment /* */, and
division (a / b). As such, the /" "/ syntax was chosen to more clearly dif-
ferentiate it from other tokens beginning with the slash character and make
development easier and reduce time spent on minor issues. It is very likely
that sometime in the future this syntax will be updated to align with the
JavaScript syntax.

7.5.2 Variables

The Uniform language supports the use of variables. Variables allow coders
to create a label for a complex expression or a piece of code that is written
frequently.

The code below shows an example of how variables can be effectively used.

1 $("#carForm") {
2 valid:
3 $("#subForm") is valid or
4 $("#checkBox") equals false;
5 }
6
7 $("#subForm") {
8 valid:
9 $("#make") is valid and

10 $("#model") is valid and
11 $("#year") is valid;
12 enabled:
13 $("#checkCar") equals true;
14 }
15

14

16 // Variable declarations
17 @filled: /"."/;
18 @integer: /"^[0 -9]+$"/;
19 @fourDigitInteger: /"[0 -9]{4}"/;
20
21 $("#make") {
22 valid: $("#make") matches @filled;
23 }
24
25 $("#model") {
26 valid: $("#model") matches @integer;
27 }
28
29 $("#year") {
30 valid:
31 $("#year") matches @fourDigitInteger and
32 value > 1900;
33 }

Regular expressions are used frequently and thus can be time consuming
and irritating to repeat. Putting them in a variable increases the readability
of the code.

7.5.3 Applying Rules to Multiple Elements

The Uniform language uses Document Object Model (DOM) Manipulation
to access and define the relationships between elements. Rules and relations
can be applied across tags, classes, and nodes through nesting. For example,
make, model, and year are all "input" tags within the sub form. A user could
create a rule which applies to these forms with minimal trouble using the any
or all keywords preceding the selector.
1 // Applies to #make , #model , and #year
2 @16CharLimit: /.{1 ,16}/;
3 $("#carForm") {
4 valid:
5 all $(".field") matches @16CharLimit;
6 }

8 Examples in the Real World
To see full implementations of the Uniform language see Appendices B and
C located at the end of the Thesis.

15

9 Architectural Design
From a high-level perspective, the Uniform language will perform two func-
tions to accomplish its task.

1. Parse the plain text uniform rules file (.ufm) into event listeners that
update the state of the selectors of the HTML web markup.

2. Validate the HTML form based on the values of the HTML that Uni-
form embeds in the document.

Figure 2 shows the overall architecture of the language processing flow.
A plain text rules file (.ufm) is fed into the parser which interprets it and
produces a set of events and handlers capable of enforcing the rules given
dynamically based on user input. A jQuery plugin was written to allow direct
access to this logic and allows users to check the validity of any element on
the page.

Rules File (.ufm) Lexer Parser

Evaluator

Form Data

$ Plugin Valid?

Figure 2: Language Architecture

9.1 Lexer and Parser

The parser is given the URL or content of a rules file written in the Uniform
logic language. It reads and parses this file by analyzing the lexical compo-
nents to determine a ruleset, which is a set of event listeners and handlers
capable of enforcing the rules given in the parsed script.

16

9.1.1 Lexical Components

The lexer will break apart the Uniform file by determining what kind of
lexical component each token is. The types of tokens are listed in table 1.

Type Example Meaning
Number 4912.30 A JavaScript Number type
String "Hello \"World\"" A text string
Regex /"[0-9]*"/ Regular expression
Selector $("#myId.myClass") A DOM element of the HTML page
Keyword valid Language keywords
Variable @var: expression; Stores the expression into a label
Comment /*Comment*/ //Comment Ignored Code

Table 1: Lexical Components

9.1.2 Expression Priority

Order of operations is complicated to express in grammar notation and as
such the implementation does not need to be discussed here. Table 2 lists
the order of operations that one can expect while writing Uniform code.

Priority Name Symbols Associativity Arity
Highest Parentheses (expression) L U

Negation - R U
Mul Div Mod * / % L B

Add Sub + - L B

Comparators equals matches is
< > <= >=

L B

Not not R U
Lowest And Or and or L B

Table 2: Uniform Expression Priority and Associativity

17

U
n

ifo
r
m

 D
o

c
u

m
e
n

t
(.u

fm
)

<
b
lo

c
k
s
>

<
b
lo

c
k
>

<
v
a
ria

b
le

D
e
c
la

ra
tio

n
>

<
s
e
le

c
to

r>
<

s
ta

te
m

e
n
ts

>

<
s
ta

te
m

e
n
t>

<
ta

g
>

<
e
x
p
re

s
s
io

n
>

{

:

O
R

A
n
y
 n

u
m

b
e
r o

f <
b
lo

c
k
>

 o
r

<
v
a
ria

b
le

D
e
c
la

ra
tio

n
>

A
n
y
 n

u
m

b
e
r o

f <
s
ta

te
m

e
n
t>

;

}
<

v
a
ria

b
le

>
:

<
e
x
p
re

s
s
io

n
>

;

L
e
x
ic

a
l C

o
m

p
o
n
e
n
t

L
ite

ra
l O

p
e
ra

to
r

F
u
rth

e
r D

e
fin

e
d

U
n

ifo
r
m

 L
a
n

g
u

a
g

e
 G

r
a
m

m
a
r

v
is

ib
le

e
n
a
b
le

d

v
a
lid

O
n
e
 o

f th
e
 fo

llo
w

in
g

<
k
e
y
w

o
rd

>
:

Figure 3: Uniform Grammar

18

9.1.3 Grammar

The parser determines if a file is syntactically correct using the grammar
illustrated in fig. 3.

9.2 Ruleset

The ruleset is the set of events and handlers created by the Uniform library
when it parses a file. These handlers listen for the user to edit data on the
form and then automatically update the page based on the rules specified
in the .ufm file. When the user modifies a form control, the necessary event
listeners will be triggered to update the page as necessary with the new data.
From the car form example earlier, checking and unchecking the “I have a
car” box instantly enables and disables the three text fields which provide
the car’s information. This ensures that the page is always in sync with any
actions performed by the user by dynamically modifying itself and providing
instant feedback to the user’s actions.

When the user submits a form, Uniform is automatically queried to check
if the submitted form is valid and sends the data to the server. In the event
that the form is not valid, the data is not sent to the server and user is
displayed a message telling him/her of the error. The user can then correct
the problem and attempt to submit again.

Figure 4: Dependency Code Example

19

The ruleset is implemented by setting up a dependency graph for the page.
As the Uniform file is parsed, it identifies dependencies between various selec-
tors and sets up the listeners to notify each other as appropriate. In the exam-
ple from fig. 4, $("#rootForm") is dependent on $("#subForm") which can
be read as “If $("#subForm") ever changes, it will notify $("#rootForm")”.
There is a similar relationship between $("#subForm") and $("#make").
This means that if the user edits $("#make") and fills in a value, then
$("#make") will become valid, so it will notify $("#subForm") to update
itself. $("#subForm") then changes from invalid to valid, and so notifies
$("#rootForm") to update itself and become valid. This allows the entire
form to become valid instantly from only one minor change.

This dependency architecture allows any change to update only the va-
lidity of selectors that may have actually be affected by it. No time is wasted
checking unrelated elements. This dependency graph is built from the Uni-
form file without utilizing the pages HTML, which means that it will not fall
out-of-date as the DOM tree is updated over the page’s life-cycle.

9.3 Evaluator

The evaluator module is responsible for performing the actual computations
within each expression. This has a unique problem due to a separation of
inputs. The evaluator needs to know two inputs:

• How the data should be evaluated

– How should it add, subtract, compare, etc.?

– Comes from Uniform script when parsed

• The data itself

– What should it add, subtract, compare, etc.?

– Comes from DOM tree as user enters it

These two inputs come from very different places at very different times.
Consider the Uniform script:

$("#rootForm") {
valid: 2 + 2 equals $("#myNumber");

}

20

After parsing this script, Uniform knows that it needs to determine if 2 +
2 is equal to $("#myNumber"), but doesn’t yet know the value of $("#myNumber").
Due to the nature of web development, the HTML page may not be fully
loaded, or $("#myNumber")may be dynamically generated by some JavaScript
code at a later time. As such, Uniform has no guaranteed knowledge of the
DOM structure at parse-time. This expression needs to be parsed in some
meaningful way, but cannot yet be evaluated for a result. To address this,
Uniform utilizes currying.

Currying is a technique where a function is only partially evaluated and
rather than returning a result, it returns another function that can finish its
evaluation at a later time. Every evaluator function in Uniform generates a
new function that can evaluate its result once given the appropriate inputs.
A simplified example of this is shown below for addition and equality.
1 function add(leftExpr , rightExpr) {
2 // Code here is executed at parse -time
3 return function () {
4 // Code here is executed at run -time
5 var leftVal = leftExpr (); // Evaluate left operand
6 var rightVal = rightExpr (); // Evaluate right operand
7
8 return leftVal + rightVal; // Return add result
9 };

10 }
11
12 function equals(leftExpr , rightExpr) {
13 // Code here is executed at parse -time
14 return function () {
15 // Code here is executed at run -time
16 var leftVal = leftExpr (); // Evaluate left operand
17 var rightVal = rightExpr (); // Evaluate right operand
18
19 return leftVal === rightVal; // Return equals result
20 }
21 }

add() and equals() are called at parse-time, but the functions they
return are evaluated at run-time. This creates an interesting distinction
where code in the actual add() and equals() functions is executed at parse-
time, when they are called. However code in the anonymous functions they
return is evaluated at run-time, thus deferring the actual evaluation until
Uniform has the data required to do so.

21

This also applies to the inputs leftExpr and rightExpr, which are func-
tions that return the evaluated results of the left and right operands. Instead
of directly putting the input of 2, Uniform passes a function which returns
2. This is a little strange for the data itself, but it makes it possible for
the various evaluator operations to be chained together at parse-time. This
chaining allows the parser to build the expression tree at parse-time and then
evaluate it at run-time as data is entered by the. The expression tree for 2
+ 2 equals $("#myNumber") is displayed in fig. 5.

equals

+

2 2

$("#myNumber")

Figure 5: Expression Tree

When the expression is parsed, Uniform would create a getter for both
of the constant 2 values, as well as a getter for $("#myNumber"). It would
then use add() to create a new function which will evaluate 2 + 2. Finally
it would call equals() with the addition function it just created and the
$("#myNumber") getter to make a function that can perform 2 + 2 equals
$("#myNumber"). A simplified example of this is below.

22

1 // Create getters for leaf nodes
2 var twoExpr = function () { return 2; };
3 var myNumberExpr = function () {
4 return $("#myNumber").val(); // Get $("# myNumber ")
5 };
6
7 // Generate expression for 2 + 2
8 var fourExpr = add(twoExpr , twoExpr);
9 console.log(fourExpr ()); // Prints 4

10
11 // Generate expression for 2 + 2 equals $("# myNumber ")
12 var equalsExpr = equals(fourExpr , myNumberExpr);
13
14 // Can call equalsExpr () to get current result
15 $("#myNumber").val(3); // Set $("# myNumber ") to 3
16 console.log(equalsExpr ()); // Prints false
17 $("#myNumber").val(4); // Set $("# myNumber ") to 4
18 console.log(equalsExpr ()); // Prints true

By using this architecture for evaluation, the parser is able to create the
tree for each expression at parse-time, utilizing all the information it has
from the Uniform file. Any time after that, as the user enters information
into the page, the evaluation functions automatically read the new input and
provide new results.

9.4 jQuery Plugin

In order to provide a usable and convenient interface, a plugin for jQuery
is included in the Uniform library which provides easy and direct access to
object state. This is used by the Uniform code internally and is also exposed
to user code as well. The plugin is defined as ufm, and is accessed by taking
any jQuery selector and executing the ufm() function.

$("#mySelector").ufm();

This ufm() plugin attaches several Uniform functions to the selector,
exposing useful information about it. Most of this information is useful only
to the Uniform library code, but the most notable and useful features of the
plugin are the state getters.

$("#mySelector").ufm().valid();
$("#mySelector").ufm().enabled ();
$("#mySelector").ufm().visible ();

23

These functions return whether or not a given selector is valid, enabled, or
visible based on the parsed Uniform script. This can be useful to some clients
which may want to check if a particular selector is valid before performing
an action. This would allow application developers to specify custom error
text and provide more complex user interfaces.

Applications can directly access the Uniform state information for any se-
lector, bypassing the need for validation code to be duplicated in JavaScript.
Without this capability, displaying a custom error message would require the
application developer to include additional JavaScript logic to identify the
error which should have been handled by Uniform. This interface servers
that need and allows JavaScript code to be added on top of Uniform where
it is appropriate.

if ($("#mySelector").ufm().valid()) {
alert("Looks good!");

} else {
alert("Something ’s wrong.");

}

Since Uniform uses custom jQuery events to notify selectors of changes on
the form, these events can also be used by user code to listen for updates to
selector validity. The “ufm:validate” event is triggered on a particular selector
when its validation state changes. This is used for internal purposes, but it
also allows application developers to listen in and build dynamic interfaces
on top of their Uniform codebase without having to recycle pieces of the
validation logic.

$("#mySelector").on("ufm:validate", function () {
console.log($("#mySelector").ufm().valid());

});

The “ufm:validate” event is triggered when the selector’s state updates,
meaning it may not necessarily have changed since the last time the event
was triggered. If an application developer needed such a system, then he/she
would need to track such state externally.

9.5 Server-Side Validation

A major requirement for the language was to allow Uniform to be executable
server-side to validate client data automatically. This allows developers to
use the same code on both the client and the server, saving developers from
creating inconsistencies between the two systems or forgetting to update one

24

over the other.
To allow Uniform to execute server-side, a few changes were made. Uni-

form utilizes Node’s V8 engine to emulate the JavaScript environment present
in a browser. The basic inputs and outputs have not changed, but the con-
text is completely different on the server. On the client, data is pulled from
the HTML DOM tree using the jQuery operator and output is displayed
there as well. On the server, no such tree exists. Input data comes from an
HTTP request sent by the client while the output is simply a true/false value
representing the validity of the submitted form.

The majority of the Uniform codebase is unchanged between the client
and server. All of the lexing, parsing, evaluation, and so on are all identical
on both systems. Since the only differences are the inputs and outputs, that
is where the changes were made.

To receive input from the request data easily without modifying the ex-
isting functionality and potentially creating bugs, the jQuery operator is
overridden with a completely different implementation. This new jQuery
function takes the same inputs, but instead of accessing the DOM tree, it
reads the data inside the HTTP request and returns a mock jQuery object
which is used by the same Uniform code as handles the real jQuery on the
client. The rest of the codebase runs exactly as it does on the client but
using these mock objects instead of real jQuery objects. This ensures that
only a minimal number of changes to the proper Uniform code were required,
with most of the work happening in the jQuery mock. This significantly re-
duces the chances of a bug which will cause the server-side and client-side
validators to disagree about the validity of a particular form.

9.6 Install and Usage Guide

9.6.1 Client-Side

The client-side validation can be used as a plug and play system. Simply
include the two lines

<script src="path/to/uniform.js"></script >
<script >uniform.options.href("path/to/script.ufm");</script >

25

Form Submission

Form submission is handled the same way it is in standard HTML. Uniform
will automatically check that the submitting <form> tag is valid, and if so,
it will submit the data in a format that the server validator expects. In the
example below, when the user clicks the “Submit” button, the system auto-
matically checks that $("#myForm") is valid, and if so, submits the checkbox
(and any other inputs) as a POST request to /submit.

1 <form id="myForm" method="POST" action="/submit">
2 <input name="chkBox" type="checkbox" />
3 ...
4
5 <button type="submit">Submit </button >
6 </form>

AJAX Submission

In single-page applications and often many other use cases, it becomes nec-
essary to build an HTTP request directly in JavaScript and send it asyn-
chronously without navigating the browser to a different page. To support
this requirement, Uniform can be submitted as an AJAX request. This can
be done using the uniform.submit.ajax() function.
1 var options = { method: "POST", url: "/submit" };
2
3 uniform.submit.ajax(options).then(function (res) {
4 // Handle success
5 }, function (err) {
6 // Handle error
7 });

The AJAX function is given an options object which should align to the
format of the options in jQuery’s $.ajax() call. Behind the scenes, all the
uniform.submit.ajax() function does is replace the options.data value
with Uniform data to submit, and then calls $.ajax() to send the request.

This does not check if a form is valid. This decision was made because
AJAX requests are often built ad hoc for a particular kind of action which was
probably hidden from the user and may not have any kind of <form> tag ex-
isting on the page to validate. Because of this, the uniform.submit.ajax()
function does not check if anything is valid on the client. If the developer

26

wanted such behavior, then he/she could simply check before sending the
request like so:
1 if ($("#rootForm").ufm().valid()) {
2 var options = { method: "POST", url: "/submit" };
3
4 // Send AJAX request
5 uniform.submit.ajax(options).then(function (res) {
6 // Handle success
7 }, function (err) {
8 // Handle error
9 });

10 } else {
11 // Handle invalid form
12 }

It is considered a best practice to check the form for validity before sub-
mitting it, as it provides a better user experience for the client and allows
them to fix the error more easily. However, in many scenarios it is not always
practical to do so, therefore the client will have to depend on the server to
notify it of any validation errors that have occurred.

9.6.2 Server-Side

The server-side validation module has been built to be used by a NodeJS
server running the Express framework. Eventually, other frameworks and
servers may be supported, but Node was chosen as the first because it is
the easiest environment to execute Uniform from since it can already run
native JavaScript code. Express was chosen because it is one of the most
popular Node frameworks and supports plug-and-play middleware, making
input parsing much easier. This platform was chosen for its simplicity and
ease of development. Other platforms are expected to be supported in the
future.

To install Uniform on the server and use it to validate client data, use
Node Package Manager (NPM). Install NodeJS (NPM should come with it)
and then open a terminal and navigate to the root directory of the server
code. Then simply run
$ npm install uniform -validation

This will install the server-side package in the current directory. It can
now be used by any Node server in the same directory. In order to run the
validator, it must be required and called. The following code sample shows

27

a simple blueprint for running the Uniform validator against a request.

1 var express = require("express");
2 var validate = require("uniform -validation");
3 var app = express ();
4
5 // Generate middleware for UFM script and main selector
6 var validator = validate ({
7 path: <ufm -script >,
8 main: <main -selector >
9 });

10
11 // On POST request
12 app.<verb >(
13 // To this url
14 <submit -url >,
15 // Use the file at <ufm -script > with <main -selector >
16 validator ,
17 // If <main -selector > was valid , run this code
18 function (req , res) {
19 res.end("Valid!"); // Successful
20 },
21 // If <main -selector > was NOT valid (or had an error),
22 // run this code. MUST define all four params for Express
23 // to run this correctly
24 function (err , req , res , next) {
25 res.end("Invalid!"); // Failed
26 }
27);

A filled-in example of this blueprint follows. When a POST request is
sent to /car/submit, it is validated against the Uniform script residing at
car/car.ufm to see if the $("#rootForm") selector is valid. If so, it will
respond with the text "Valid!", otherwise it will respond with "Invalid!"

1 var express = require("express");
2 var validate = require("uniform -validation");
3 var app = express ();
4
5 // Generate middleware for UFM script and main selector
6 var validator = validate ({
7 path: "car/car.ufm",
8 main: "#rootForm"
9 });

10

28

11 // On POST request
12 app.post(
13 // To this url
14 "/car/submit",
15 // Validate against "car/car.ufm" with "# rootForm"
16 validator ,
17 // If $("# rootForm ") was valid , run this code
18 function (req , res) {
19 res.end("Valid!"); // Successful
20 },
21 // If $("# rootForm ") was NOT valid (or had an error),
22 // run this code. MUST define all four params for Express
23 // to run this correctly
24 function (err , req , res , next) {
25 res.end("Invalid!"); // Failed
26 }
27);

A complete example, showing both server and client code is shown in
appendix D.

9.7 Security

Security is a top priority in this system. In a perfect world, the server would
be able to trust any and all information given from the client. Unfortunately,
in today’s world there are always malicious users who will break and steal
anything they can. Since any client could send a request, not necessarily a
browser which has run Uniform validation, it is possible and expected that
malicious users try to send invalid data to the server. Uniform must be able
to validate these requests and dismiss malformed ones while accepting valid
ones.

9.7.1 Uniform Ambiguity

The Uniform server-side validator checks the input data to the best of its
abilities. Unfortunately, due to the current design of the language, it is effec-
tively impossible to securely validate Uniform code on the server. Consider
the following script:

1 $("#myForm") {
2 valid: $("#foo") is valid;
3 }
4

29

5 $("input") {
6 valid: true;
7 }
8
9 $("div") {

10 valid: false;
11 }

When the server must validate data from a client, it is asked “is $("#myForm")
valid?” which is a trickier question than it may seem on the surface. The
server actually has no idea whether or not $("#myForm") is valid. This is
because that information is not present in the Uniform file, but was actually
in the HTML used by the client. Adding the following HTML to the previous
Uniform code should make the solution clear.

<form id="myForm">
<input id="foo" type="text" />

</form>

Considering this block on HTML as well, it is now clear that $("#foo") is
an <input /> tag and would therefore be considered valid due to the second
Uniform rule. Consider if the HTML had been the following:

<form id="myForm">
<div id="foo"></div>

</form>

Now it is clear that $("#foo") is a <div> tag and would therefore be
considered invalid due to the third Uniform rule. This means that a single
Uniform script can have multiple meanings based on the HTML which is
being used. This is not a problem on the client since there is a single DOM
tree to draw from. The server however does not have such a luxury and lacks
this critical information.

9.7.2 Server Data Format

When data is sent from a client to a server using Uniform, the library auto-
matically reformats the request to be more friendly to validation. The data is
encoded in JSON and passed under the “ufm” form parameter to the server.
This means that submitting the below car form looks like the following:

30

HTML Form

1 <form id="carForm">
2 <input type="checkbox" id="hasCar" name="ownsCar" />
3
4 <input type="text" id="make" name="carMake" />
5 <input type="text" id="model" name="carModel" />
6 <input type="text" id="year" name="carYear" />
7 </form>

Uniform Script

1 @filled: /"."/;
2 @integer: /"^[0 -9]{4}$"/;
3
4 $("#rootForm") {
5 valid: $("#make") matches @filled and
6 $("#model") matches @filled and
7 $("#year") matches @integer
8 ;
9 }

10
11 $("input") {
12 enabled: $("#hasCar") equals true;
13 }

POST Request Data

1 ufm={
2 "#hasCar": [{ "value": true , "type": "boolean" }],
3 "#make": [{ "value": "make", "type": "string" }],
4 "#model": [{ "value": "model", "type": "string" }],
5 "#year": [{ "value": "year", "type": "string" }],
6 "input": [
7 { "value": "make", "type": "string" },
8 { "value": "model", "type": "string" },
9 { "value": "year", "type": "string" }

10]
11 }

The JSON data sent over the network is formatted as a map of jQuery
selectors to the values they return. These jQuery selectors are all the ones
which appeared in the Uniform script which causes some interesting behavior.

31

The first thing to notice is that the make, model, and year information is ac-
tually sent twice. Once under $("#make"), $("#model"), and $("#year"),
and once more under $("input"). This can cause security issues as the client
could lie about part of the data, giving different values for data which should
be the same. Beyond this, there is a larger issue of lack of names.

In the HTML and HTTP world, a form is submitted according to the
name attribute, not its ID or selector. If Uniform were not present on this
system, the request would have looked like:

ownsCar=on&carMake=make&carModel=model&carYear=year

Note that the label for each parameter uses the name attribute from the
HTML. This is how data is submitted and it is how the server identifies each
input and uses them. On a Node server this format can easily be used to
echo back the make like so (some setup and middleware omitted for brevity):
1 app.post("/submit", function (req , res) {
2 res.end(req.body.carMake);
3 });

Trying to do the same task after the data has been formatted for Uniform
is significantly harder and less intuitive.
1 app.post("/submit", function (req , res) {
2 var data = JSON.parse(req.body.ufm);
3
4 res.end(data["#make"][0]. value);
5 });

This requires the server to parse the body, find the selector with the
relevant data, and take the value of the first item. There is actually a lot of
error checking that needs to happen here. The data may fail to parse into
JSON. $("#make") may not exist in the request or may not be an array.
The array could have zero elements or multiple, and it may not have a value
key. This is a significant amount of validation to manually check for and
results in specialized validation code being written on the server, something
this system was specifically designed to avoid.

Beyond the security and validation issues, it is also very counter intuitive.
These selectors come from the Uniform script, so only a selector which ap-
peared exactly in the Uniform file will work. Searching for $("input#make")
would come up empty, despite the fact that both $("input") and $("#make")
appear. It also doesn’t make sense to refer to elements by jQuery selectors
when the server has no concept of what they are. The client works at a level

32

of abstraction which lends itself to jQuery selectors, but the server works
at a completely different level of abstraction which lends itself to individual
argument names. Because of this, it is difficult, complicated, and unintuitive
and consume the request data on the server and process it.

These are significant problems which prevent server-side validation from
being a viable solution. However, there are two obvious ways of addressing
these problems, unfortunately neither of them are feasible.

9.7.3 Extraneous Client Information

The first thought likely to jump into anyone’s mind is to simply have the
client send more information. If the client is able to validate without issue,
then it clearly has all the information it needs, so just set the client up to
send what it knows to the server which can then validate the data similarly.

This would address the problem of server-side validation, and give the field
names that the server needs, however it would completely break the security
of the system. Since the client may be malicious and therefore cannot be
trusted, any extraneous information the client sends to help the server could
be a lie. From the above example, the client could send its request the extra
bit of information that $("#foo") happens to be an <input /> tag. There
is no easy way for the server to verify that statement and it must trust the
integrity of the client. The server would then have the information necessary
to validate the form and accept the user’s input. However, if it turns out
that the client lied and $("#foo") was actually a <div> tag, then the server
should have denied that request, and has therefore let an un-validated request
be executed. Such a situation is a total failure of the system and cannot be
allowed under any circumstances. Because of this security issue, the client
cannot send any more information than the actual data it is trying to submit.
The rest must be known to the server via secure channels.

9.7.4 Server-Side HTML

The other obvious solution to the missing information on the server is to
simply have it load up the same HTML that was given to the client and use
that for validation. Aside from the significant performance hit, this would
actually solve the problem and still be secure, but is technically infeasible on
modern web systems for two reasons.

The first reason is that HTML is no longer a static structure. A few

33

decades ago, most sites were built with plain static HTML, but this simply
isn’t the case anymore. Almost every modern server incorporates some kind
of HTML preprocessing, whether its ASP, JSP, PHP, Ruby on Rails, or any
number of Node preprocessors. Almost every web page involves some kind of
dynamically generated content, a simple user name in the corner, region and
analytics information, even advertisements. As such, every client receives
different content from the server in a very difficult-to-predict manner. To
avoid bugs from inconsistent HTML, the system would need to guarantee that
the server will receive the same content that was given to any particular client
with no meaningful differences. There is no way Uniform can help in this
regard, since the overall server architecture is completely outside the scope
and knowledge of this one small library, so it is up to application developers
to perform this task. The killer here is that it would take more time and
effort to build a system that can consistently return matching HTML to
the client and server than it would take to simply validate the form data on
both systems manually. Because of that, no developer would spend the effort
building such a system in order to use Uniform over their existing solution.

Even ignoring that problem, there is a second issue in dynamic clients.
Modern web sites use JavaScript to create and alter web content directly on
the client as the user navigates the site. As such, the HTML the client re-
ceived from the server and the page the user views and interacts with may be
completely different from each other. The form which was submitted by the
user may not even exist in the HTML visible to the server. That form may
have been dynamically created by client JavaScript based on user actions.
In order to validate data from such clients, the server would need to know
exactly what actions the client performed and then replicate them server-
side before validating the data. Unfortunately, this falls under the previous
problem of being unable to trust the client to provide any extraneous infor-
mation, since they could easily lie by saying that one action was performed
when in reality a different action was, causing a security vulnerability. Due to
these constraints, it is not feasible to validate data by using HTML content
accessible to the server.

9.7.5 Language Redesign

The problem of validating on the server is really the result of a language
design error. The current design of the language makes it impractical to
validate on the server, so the design will have to change. It is unclear exactly

34

how it will need to change to be viable on the server, but mostly likely
the jQuery functionality will need to be replaced. Any jQuery selector that
appears in a Uniform script is an ambiguity that can only be solved with
knowledge of the HTML structure. As such, a more consistent and stable
system of referring to data must be developed. One solution would be to
replace jQuery selectors with direct name references. A reworking of the
previous car form under this new system is below, with the original HTML
and Uniform code reproduced for convenience.

HTML Form

1 <form id="carForm">
2 <input type="checkbox" id="hasCar" name="ownsCar" />
3
4 <input type="text" id="make" name="carMake" />
5 <input type="text" id="model" name="carModel" />
6 <input type="text" id="year" name="carYear" />
7 </form>

Current Uniform Script

1 @filled: /"."/;
2 @integer: /"^[0 -9]{4}$"/;
3
4 $("#rootForm") {
5 valid: $("#make") matches @filled and
6 $("#model") matches @filled and
7 $("#year") matches @integer
8 ;
9 }

10
11 $("input") {
12 enabled: $("#hasCar") equals true;
13 }

35

Proposed Uniform Script

1 @filled: /"."/;
2 @integer: /"^[0 -9]{4}$"/;
3
4 // Page is valid when ...
5 valid: make matches @filled and
6 model matches @filled and
7 year matches @integer
8 ;
9

10 // Define inputs as make , model , and year
11 @inputs: [make , model , year];
12
13 // All inputs are enabled when checkbox is checked
14 @inputs {
15 enabled: hasCar equals true;
16 }

Under this new system, there is no way to refer to non-input fields (since
they do not have names). As such, it is impossible to actually define any logic
for a form since it is not an input. Lines 5-8 define the valid condition for
the entire script and is what the server would attempt to validate. Line 11
defines a new variable @inputs as the set of make, model, and year inputs.
It is then used on lines 14-17 to define a single enabled rule for all three
elements. This is a different way of approaching the same validation problem
which can be validated on the server.

There is no ambiguity in this script because the relationships between
elements are explicitly placed in the Uniform code rather than hidden in the
HTML. Previously, the fact that $("input") was the same as $("#make,
#model, #year") required knowledge of the HTML structure. In this new
format, it is explicitly defined defined in the Uniform script in the @inputs
variable.

This also solves server data usage issue because the data does not need
to be reformatted between the client and server, meaning it can remain it
its normal URL encoded state with input names preserved. After validation,
the server would be able to use these values in the format which makes sense
to it, independent of the client.

This does have downsides however. Uniform is not able to take advan-
tage of the structure already defined in the HTML and forces developers to
keep a strong consistency between the Uniform code and the HTML form it

36

validates. This is still far less effort than maintaining two or three form val-
idators on the client and server, so it is not a deal breaker, but an annoying
imperfection that can never be fixed. The larger downside is that Uniform
can no longer take advantage of the power, simplicity, and convenience of
jQuery’s selectors. The language is now much less versatile because it can
no longer work on arbitrary jQuery selectors, and is worse for it. This is
unfortunate, but it may be the price for security.

None of the syntax or features discussed in this section are finalized and
nothing here has been implemented yet. This was merely a possible solution
to the problems that were encountered in server-side validation. The rest of
the document will refer to the language as it exists today.

Uniform can do a lot for the security and maintainability of a system,
but it must be used correctly or vulnerabilities can occur. There are two
significant ways in which the system can be misused to create vulnerabilities.

9.7.6 Cross-Script Validation

Consider the following code:

1 var validate = require("uniform -validation");
2 ...
3 app.post("/submit", validate ({
4 path: req.query.script , // Uniform script path
5 main: "#rootForm" // Element to validate
6 }), function (req , res) {
7 ...
8 });

Note that the Uniform script path is req.query.script, meaning that it
is derived from the request and therefore provided by the client. The server
is probably expecting req.query.script to point to a file that looks like:

www/myStuff.ufm

1 // Validates /api/myStuff
2 // Form is valid if all inputs are valid
3 $("#rootForm") {
4 valid: $(".myStuff") is valid;
5 }

However, the client could provide a different URL to a script that reads:

37

www/otherStuff.ufm

1 // Validates /api/otherStuff
2 // Form is valid if all other inputs are valid
3 $("#rootForm") {
4 valid: $(".otherStuff") is valid;
5 }

The server would then validate data intended for /api/myStuff against
the Uniform script intended for /api/otherStuff. The client could easily
add attributes which satisfy the script for /api/otherStuff, while leaving
bad data in attributes that are used by /api/myStuff.

This has been dubbed “Cross-Script Validation,” as the client has tricked
the server into validating the data with a different Uniform script than it
should have. In order to avoid this problem, the server cannot trust the
client for the location of the validation script, so a specific API should con-
nect with a specific Uniform script which validates it known directly to the
server. A better implementation of this would be:

1 var validate = require("uniform -validation");
2 ...
3 app.post("/submit", validate ({
4 path: "www/submit.ufm", // Uniform script path
5 main: "#rootForm" // Element to validate
6 }), function (req , res) {
7 ...
8 });

Note that "www/submit.ufm" has now been directly written into the
server’s code, which means the server will always use the correct script,
regardless of what data the client sends.

9.7.7 Main Misdirection

A similar vulnerability involves the main selector. The validator must be
told which selector needs to be validated so it knows what must be valid to
proceed. Consider the following code:

38

1 var validate = require("uniform -validation");
2 ...
3 app.post("/submit", validate ({
4 path: "www/submit.ufm", // Uniform script path
5 main: req.query.main // Element to validate
6 }), function (req , res) {
7 ...
8 });

Notice that the element to validate is req.query.main. This value is de-
rived from the request object and is therefore provided by the client. Similar
to Cross-Script Validation, the client could easily lie about this particular
value with something more favorable to the attacker. Consider the script:

www/submit.ufm

1 @filled: /"^[0 -9]{4}$"/;
2
3 $("#rootForm") {
4 valid: $("#make") is valid
5 and $("#model") is valid
6 and $("#year") is valid;
7 }
8
9 $("#make") {

10 valid: this matches @filled;
11 }
12
13 $("#model") {
14 valid: this matches @filled;
15 }
16
17 $("#year") {
18 valid: this matches @filled;
19 }

The server was probably expecting the client to tell it the main selector
was $("#rootForm"). However, the client could easily say that the main se-
lector is actually $("#make"). The server would then check if $("#make") is
filled, and if so, the request would be considered valid. Meanwhile, the client
could have easily slipped invalid data into $("#model") and $("#year").

This has been labeled “Main Misdirection” as the client has tricked the

39

server into validating against the wrong main selector. To avoid this prob-
lem, the server should not trust the client to tell it what main selector to
check, but it should rather be specific to the API that is being called, as
shown below.

1 var validate = require("uniform -validation");
2 ...
3 app.post("/submit", validate ({
4 path: "www/submit.ufm", // Uniform script path
5 main: "#rootForm" // Element to validate
6 }), function (req , res) {
7 ...
8 });

Note that "#rootForm" has now been directly written into the server’s
code, this means that the server will always use the correct main selector,
regardless of what data the client sends.

10 Design Rationale

10.1 Usability

The more complex a system gets, the harder it becomes to use. If the cus-
tomer or staff cannot figure out how to operate the system, its design becomes
meaningless. This language will focus on ease of use, independent of exist-
ing programming skills. Business level users will be able to drive the form
creation process instead of relying on programmers. Of course there is still a
learning curve for non-programmers, but learning Uniform is a significantly
easier to learn over the alternatives. Several design decisions were made to
create the ideal user experience.

10.1.1 Logical Design

Uniform’s design is structured around the programmer’s intuition. While it
can be very easy to create logical statements, it is not always easy to write
them as code. Uniform abstracts the programming in a way that allows
the user to focus on the logic rather than how it will be implemented. The
language is structured such that, if code is read aloud, one would be able
to understand the logic through natural spoken language without having to

40

decrypt complicated syntax.

10.1.2 CSS Format

CSS is a styling language that is a staple in any web designer's arsenal.
The language’s syntax mirrors this style, taking advantage of the familiar-
ity of CSS to become easier to read and learn for business people and other
non-programmers. CSS follows the standard Document Object Model to ma-
nipulate elements in HTML. Uniform uses the same selectors, but instead of
changing the style, it changes the logic. This concept is intuitive to under-
stand and lowers the learning curve.

The language structure also takes inspiration from some features of the
LESS language. This includes variables and nesting, two features easy to
understand which provide a lot of power and scalability to the language.

10.2 Efficiency

As with all layered architectures, adding yet another layer of abstraction
results in a performance hit. The following measures were taken to ensure
an acceptable performance time.

10.2.1 Nested Form Evaluation

The validator evaluates forms recursively bottom up by determining if the
lowest level form is valid, and using that result to determine if the next
level is valid, until finally reaching the outer-most form to determine if it is
valid. Being tree-like in structure, if one sub-form is not valid, it can already
be determined that the whole form is not valid. This short circuit allows
validation to end early on incorrect forms and pinpoint the source of the
error.

This structure also allows us to save time when making changes to the
form. For example, if there are three main sub-forms, A, B, and C, the user
fills each of them out, and the validator determines that the form is valid.
If later, sub-form C is changed, the system would not necessarily need to
validate A and B again depending on their relationship with C.

41

10.3 Design Patterns

On the client, whenever a form is submitted, it is checked to see if it is valid.
This has a lot of power and a couple major benefits.

• Decentralized: Every element is responsible for its own validity. Indi-
vidual complexity does not build as forms get bigger, each element only
cares about itself.

• Multiple forms: A single page can have multiple forms, a user could
fill out one form to do one action and fill out another form to perform
another action. These two forms may or may not be related and may
or may not share logic.

On the server, every exposed API has a set of data it will accept in a
particular format that must be verified. This means it has a single set of rules
to determine if a request is valid. Some APIs may accept multiple formats,
but that is rare and usually has the same logical structure but a different
physical one (such as JSON vs XML, same data, different format). This
view contradicts the decentralized nature that the client sees the Uniform
architecture as.

To address the discrepancy, the server has the concept of a “main selector.”
This is the “entry point” for the validation and is the one selector which
must be valid for the request to be considered valid. All other selectors are
irrelevant to the server, and only present to help determine the validity of
the one main selector.

It is of course possible for two APIs to use the same script with different
mains, and to use the same main for different scripts. A suggested best prac-
tice would be to equate one script and main to one API. If a particular web
page could access multiple APIs, then it would download multiple Uniform
scripts which are both present for the client. When they invoke a particular
API, then that API can be validated against the one script that it depends
on while staying separate from the other script. An example of this is below:

/index.html

1 <html>
2 <head>
3 <script src="/jquery.js"></script >

42

4 <script src="/uniform.js"></script >
5 <script >
6 // One script dedicated to sending
7 uniform.options.href("/send.ufm");
8 // One script dedicated to receiving
9 uniform.options.href("/receive.ufm");

10 </script >
11 </head>
12 <body>
13 <!-- One form for sending -->
14 <form id="send" method="POST" action="/send">
15 <input id="sAmount" name="amount" type="text" />
16 ...
17
18 <button type="submit">Submit </button >
19 </form>
20
21 <!-- One form for receiving -->
22 <form id="receive" method="POST" action="/receive">
23 <input id="rAmount" name="amount" type="text" />
24 ...
25
26 <button type="submit">Submit </button >
27 </form>
28 </body>
29 </html>

/send.ufm

1 // One script for sending
2 @filled: /"."/;
3
4 $("#send") {
5 valid: $("#sAmount") matches @filled;
6 }

/receive.ufm

1 // One script for receiving
2 @filled: /"."/;
3
4 $("#receive") {
5 valid: $("#rAmount") matches @filled;
6 }

43

server.js

1 var validate = require("uniform -validation");
2 ...
3 // One API for sending
4 app.post("/send", validate ({
5 path: "www/send.ufm", // Uniform path (sending)
6 main: "#send" // Element to validate (sending)
7 }), function (req , res) {
8 ...
9 });

10 ...
11 // One API for receiving
12 app.post("/receive", validate ({
13 path: "www/receive.ufm", // Uniform path (receiving)
14 main: "#receive" // Element to validate (receiving)
15 }), function (req , res) {
16 ...
17 });

10.3.1 Shared Logic

This design pattern reduces general complexity and divides the Uniform logic
where it is appropriate while still allowing the components to be combined
onto a single web page. This is likely to be applicable in a majority of
situations, but the pattern does begin to break down when multiple forms
share logic between them. At that point, separating the Uniform files can
start to cause difficulties. There are two obvious options in that particular
scenario.

One option is to combine the two scripts into one .ufm file containing
both sets of logic. The client could then use the one script rather than the
original two files, while the server could have two APIs that both reference
the same Uniform file, but use different main selectors to ensure that the
right values are valid. This option would intrinsically mix the two together
and make it much harder to maintain and reason about, but it is a valid
option. This would likely be preferable if the two scripts are relatively small
and strongly related to each other. In such a case, combining the two scripts
would have a minimal increase in complexity while maximizing the benefit
of the integration between them. Below, the previous example has been
modified to illustrate this.

44

/index.html

1 <html>
2 <head>
3 <script src="/jquery.js"></script >
4 <script src="/uniform.js"></script >
5 <script >
6 // One script for sending and receiving
7 uniform.options.href("/sendAndReceive.ufm");
8 </script >
9 </head>

10 <body>
11 <!-- Body is unchanged and omitted for brevity -->
12 </body>
13 </html>

/sendAndReceive.ufm

1 // One script for sending and receiving
2 @filled: /"."/;
3
4 $("#send") {
5 valid: $("#sAmount") matches @filled;
6 }
7
8 $("#receive") {
9 valid: $("#rAmount") matches @filled;

10 }

server.js

1 var validate = require("uniform -validation");
2 ...
3 // One API for sending
4 app.post("/send", validate ({
5 path: "www/sendAndReceive.ufm", // Same script path
6 main: "#send" // Main selector (sending)
7 }), function (req , res) {
8 ...
9 });

10 ...
11 // One API for receiving
12 app.post("/receive", validate ({
13 path: "www/sendAndReceive.ufm", // Same script path

45

14 main: "#receive" // Main selector (receiving)
15 }), function (req , res) {
16 ...
17 });

The other option is to factor out the shared logic between them into a
third .ufm file. The original two scripts would then be dependent on the
new one. A client would need to reference all three, while the server would
then have each API reference the script it needs along with its new depen-
dency. This would likely be preferable if the two scripts are modular and
large enough to justify adding another script explicitly for logic shared be-
tween them. In such a case, the new script would have its own internal logic
and consistency which others could utilize for their own purposes. This is
the more scalable and maintainable solution of the two. Below, the previous
example has been modified to illustrate this. It may seem trivial and wasteful
in such a small example, but in larger pieces of code this can easily be the
better option.

/index.html

1 <html>
2 <head>
3 <script src="/jquery.js"></script >
4 <script src="/uniform.js"></script >
5 <script >
6 // One script for shared logic
7 uniform.options.href("/shared.ufm");
8 // One script for sending logic
9 uniform.options.href("/send.ufm");

10 // One script for receiving logic
11 uniform.options.href("/receive.ufm");
12 </script >
13 </head>
14 <body>
15 <!-- Body is unchanged and omitted for brevity -->
16 </body>
17 </html>

/shared.ufm

1 // One script for shared logic
2 @filled: /"."/;

46

/send.ufm

1 // One script for sending logic
2 $("#send") {
3 valid: $("#sAmount") matches @filled;
4 }

/receive.ufm

1 // One script for receiving logic
2 $("#receive") {
3 valid: $("#rAmount") matches @filled;
4 }

server.js

1 var validate = require("uniform -validation");
2 ...
3 // One API for sending
4 app.post("/send", validate ({
5 // Uniform script paths (sending)
6 path: ["www/shared.ufm", "www/send.ufm"],
7 main: "#send" // Main selector (sending)
8 }), function (req , res) {
9 ...

10 });
11 ...
12 // One API for receiving
13 app.post("/receive", validate ({
14 // Uniform script paths (receiving)
15 path: ["www/shared.ufm", "www/receive.ufm"],
16 main: "#receive" // Main selector (receiving)
17 }), function (req , res) {
18 ...
19 });

11 Technologies Used
To implement the Uniform language as it has been described, the following
technologies were utilized:

• HTML: Markup language used for displaying content in a standardized
way across web browsers.

47

• JavaScript: Client-side scripting language.

– jQuery: JavaScript library which allows easier access to HTML
DOM elements.

– Jasmine: JavaScript test framework and assertion library.

– Node JS: JavaScript runtime

∗ Express: Node framework for building easy and scalable web
APIs

12 Testing
A testing procedure for a language verifies that there is no ambiguity and
that each case can be resolved consistently. The grammar and syntax for a
language must be accurate in a way where the programmer knows exactly
how his/her code will be executed. As such, exceptions, error handling, and
correct parsing must be considered in the procedure.

12.1 Unit Testing

Unit testing has be performed throughout the development process as part
of utilizing a test-driven development mentality. These unit tests were the
majority of tests written during the implementation phase and have be useful
to track down bugs that surfaced during development. Full test case imple-
mentations can be found in the Uniform source code in the “tests” folder.

12.2 User Testing

The system has been shown to multiple users and their feedback has been
used to improve it. The primary concern for user testing was learnability
and ease of use. A group of seven students, three of which were beginner
programmers, one was an intermediate programmer, and the final three were
advanced programmers.

Each tester attended a one hour workshop which the language was taught
through several lessons and exercises. At the end of the workshop a quiz and
usability survey was given to the testers. The primary goals for testing was
to determine:

48

• The correlation between programming skill level and correct Uniform
code.

• How quickly Uniform can be learned.

• How difficult it was for users to be engaged in learning Uniform.

• If any bugs were present in the code.

• What improvements could be made to further benefit the user.

12.2.1 Quiz Results

Out of all the testers, everyone was able to generate the correct response
for the quiz questions given various amounts of time to complete it. After
the quiz, talking individually with the testers has shown that beginner and
intermediate programmers had a very difficult time learning the basics of
programming, syntax, and how the code affected the web form on the screen.
Though each beginner tester stated that given enough time to learn the
language, they would be confident in using it. Advanced programmers on
the other hand were almost instantly able to use the language as intended.
This shows that the syntax follows general convention and is quickly learned
on the higher skill brackets.

12.2.2 Improvements Suggested

What would make Uniform easier to understand?

Here are some of the responses given when asked the question:

• “If you know CSS to begin with”

• “More time to study the language”

• “Nothing that I can see. The language enables power users, I like it!”

• “Would be understandable if classes are taken or I had more time to
study it”

• “Easier syntax”

• “jQuery notation and such”

49

• “I thought it was fairly easy to understand but if someone is not used
to jQuery then it might be difficult.”

These responses highlight the learnability gap between beginners and ad-
vanced users. Adept users generally enjoyed the simplicity of the language
whereas novices struggled with fundamentals such as if the dollar sign or the
parenthesis goes first.

Would you be interested in using Uniform in the future?

100% said yes. Here are some of the responses given when asked why:

• “Very straight forward and intuitive. Especially since I have program-
ming knowledge”

• “Easy and cost-efficient ”

• “Better cause I can actually do things programmatically instead of using
the wiziwigg stuff with other forms.”

• “makes [form validating] simpler”

• “It was very similar to jQuery so it made it easier for me.”

• “It was straightforward once it was explained to me”

• “Simple”

It is important to highlight here that everyone including beginners saw
the potential and power of using Uniform regardless of their personal ability
to use it. Skilled programmers generally enjoyed the freedom and ease of use,
which non-skilled programmers appreciated its simplicity.

Further Testing Analysis

Besides the various bugs that were discovered during the testing event, test-
ing has raised some very interesting arguments that were not considered
before. This testing session was the first time anyone other than the devel-
opers were able to use and provide feedback on the language. Therefore it
was eye-opening to be given an outside perspective. Given that the three
developers were indeed skilled senior computer engineers, we had forgotten

50

the experience of learning to program for the first time and the challenges it
brings.

To truly make Uniform both a powerful and simple language that can be
used effectively by both beginners and veterans, some design decisions are to
be considered.

The biggest change concerns syntax. While we agree that there will be an
inevitable learning curve to learning what goes where, the learning experience
can be improved upon. One suggestion that came out of testing was that
one user found that the wording “valid if checkbox equals true;"" was not
intuitive. A normal person would be tempted to think “valid if checkbox
equals checked”. Several aliases could be made to compensate for the different
ways people think. One of Uniform’s core design philosophies is “think it,
don’t program it”.

12.3 Browser Testing

Uniform has been tested and proven to work properly on the following
browsers:

• Safari

• Google Chrome

• Mozilla Firefox

• Opera

12.4 jQuery Support Testing

jQuery support is tested to work on version 1.8 and above.

13 Development Problems and Solutions

13.1 Detecting Circular Dependencies

13.1.1 What is a dependency?

A dependency is updating elements that relate with one another. If A val-
idates B, if A changes, B needs to be updated as well. A dependency is

51

an indirect connection to elements. For a form to be fully complete, every
dependent needs to be updated when its child is updated.

13.1.2 What is a circular dependency?

A circular dependency is when A validates B and B validates A. If Uniform
tries to update either A or B, it will endlessly try to validate both, since they
are changing each other over and over. This is a simple example, although a
dependency graph can get quite complicated and it is not as simple as solving
edge cases.

13.1.3 Can we detect at compile time?

To understand why the problem is unfeasible to resolve, the structure of
Uniform must be understood. So how does Uniform update its dependents?
It does so by using an event based architecture. Going again on a simple
example: C validates D and D validates E, when C is updated, it sends
an event that says "Myself, the C element, was updated, anyone who is
dependent on me please update". Meanwhile D and E are constantly listening
for C to say this, and E is listening for D to say this. It is important to note
that C has no idea who its dependents are. Therefore our program has no
idea who is listening and cannot ensure that every element is updated until
in a specified amount of time, the dust settles and no one is shouting for an
update.

13.1.4 Why it needs to be this way

Simply put, the page can update at any time. An event based architec-
ture listens all the time. A change event, or user input, is what begins the
dependency update call.

13.1.5 The seemingly easy solution

It may seem like a simple task to just implement code that, simply put,
tells the element not to update and not to send a dependency update if it
hears from the same person twice. This leads to an issue with resetting the
code. What if a user changes a textbox field twice? Then the dependency
graph needs to fire another update request. If each node only listens from
a dependent once, then the page can only load once. How do we reset the

52

page? We would have to recompile and rerun the Uniform code, which is not
a scaleable solution.

13.1.6 The surprisingly hard solution (still doesn’t work)

We could then potentially build a dependency graph. There are many al-
gorithms that can be run on the graph to determine if there are any loops,
however, because of the nature of our system, the graph cannot be deleted.
Every change event will simple append new nodes. If a form is large enough,
is open for a long enough time, and is constantly being updated, we would
be generating large overhead. This could lead the browser to overload its
memory and crash.

13.1.7 Decision: Ignore the problem

Given the size and complexity of this issue, it is not worth our time and
resource in a short one-year project to resolve this. If a circular dependency
does occur, it is the Uniform programmer’s fault, not the form filler. A
circular dependency will crash the web browser. A simple page refresh will
break the crash. The penalty for ignoring the problem is very minor. The
programmer will see that his code will crash the page, and this is the browser
crash is the best error message we are able to generate with the limited
resources we have.

13.2 Server-Side HTML Knowledge

The server-side validator’s inability to validate various scripts due to a lack of
knowledge of the accompanying HTML is thoroughly discussed in section 9.7.
This was a major design flaw which was encountered far too late in the devel-
opment cycle. Throughout the process there was an emphasis of working on
features which could be easily demoed and presented. Server-side validation
did not fit those criteria and was delayed as a result. Development on server-
side validation did not begin until the last quarter of the total development
time allotted, most of which was lost to documentation, presentations, and
other schoolwork.

If the server-side module had been started earlier, the hidden dependency
on the HTML structure would have been identified in Winter quarter and
there would have been time to fix the design flaws in the language prior

53

to completely implementing it on the client. Due to time constraints, it is
impossible to fix in the current timeframe and will need to be remedied in
future development work on the language.

Part II

Web Application
14 Solving the Human Element andMobile Use

Cases
Uniform is targeted at enterprise users, that is, businesses and individuals
who rely on forms as critical sources of data. Although the Uniform language
is designed to be an easy-to-pick-up abstraction of current web technologies,
the language on its own is best described as middle-ware. To shine, Uniform
needs to be embedded in a platform or application. To that end, a Web
Application was built that integrates Uniform to drive form creation, com-
pletion, and management while showcasing the advantages Uniform offers
over current solutions.

15 System Components

15.1 Actors

• Administrator

– Responsible for template creation.

– Creates form templates, sets form validation rules, shares asso-
ciates’ capabilities.

• Associate

– Assists clients in filling out the form.

– Instantiates form instances, can provide access to owned form in-
stances, can perform general user tasks.

54

• Client

– Any individual who wants to fill out out the form.

• User

– Anyone accessing the web application.

– Fills out forms, communicates through the web application, saves
and submit forms.

15.2 Form Terminology

• Form Template

– A template containing the form appearance, controls and their
metadata, and validation logic.

• Form

– An instance of a form template.

• Sub-Form

– A form that is also the child of a form element.

• Control

– Form elements that require input from the user such as dropdowns,
radio selectors, checkboxes, or textboxes.

16 Requirements
The Uniform web application can be broken down into the following require-
ments and constraints. Functional requirements state what the system is
capable of while the non-functional requirements state the manner in which
the functional requirements will achieve their goals. A critical requirement is
a core part of the systemâĂŹs functionality, a recommended requirement is
a feature that will enhance the systemâĂŹs overall usability and usefulness,
and a suggested requirement is something that is useful, but not essential,
to the system.

55

16.1 Functional Requirements

16.1.1 Critical

• The system allows

– administrators to create form templates.

– administrators to apply form validation logic to templates.

– associates to instantiate instances of form templates.

– associates to set who has read/write access to form instances.

– users to fill out forms collaboratively.

– users to submit forms.

– users to communicate with each other within the system.

• The system stores form data in a repository.

16.1.2 Suggested

• The system allows

– associates to define permissions for different sections of a form.

– associates to forcibly submit invalid forms.

– administrators to modify existing form templates.

– forms to be audited.

– changes to be logged.

16.2 Non-Functional Requirements

16.2.1 Critical

• The system will be mobile friendly:

– The system interface will be friendly to mobile devices.

– The system will be easily usable from within a native application.

• The system will be accessible:

– The system will be intuitive to use for non-programmers.

56

– The form instances will be easy to fill out.

• The system will be maintainable:

– The system will be easily maintainable by other developers.

– The system will log and report exceptions appropriately.

– The system will be able to recover from fatal exceptions.

• The system will be responsive:

– The system will provide quick and responsive feedback to user
interaction.

• The system will be scalable:

– The system will be able to handle large numbers of users, stored
forms, and templates.

16.2.2 Recommended

• The system will be efficient in both response time and save time.

• The system will be well-documented.

16.3 Design Constraints

• The system must conform to Hewlett-Packard’s User Experience stan-
dards

16.4 Post Implementation Evaluation

Following the final implementation of the Web Application but prior to the
turnover to Hewlett-Packard, our conclusions regarding the degree to which
we have met these requirements follow.

57

16.4.1 Functional Requirements

Fundamentally, all critical requirements were satisfied, resulting in a suitable
product. That said, the requirement that associates are able to provide
read/write access to form instances could be characterized as having been
only partially met as associates are not able to limit certain user access to
read only.

Suggested requirements, by comparison, were largely left out. Only the
third suggested requirement, that administrators be able to modify existing
form templates, was satisfied in the final implementation.

16.4.2 Non-Functional Requirements

Generally, these requirements have been satisfied. However, milestones to
measure the achievement of these requirements were never explicitly set so
this conclusion is largely a matter of opinion. Without external developer
input, for example, it cannot conclusively be stated that the system is main-
tainable other than to say it has been implemented largely in keeping with
industry best practices.

16.4.3 Recommended Features and Design Constraints

Overall the system performs adequately when accessed via an external server,
to the extent that response time was not considered an issue following user
testing, but again, no explicit milestones were set to measure this achieve-
ment.

Similarly, the system makes use of Hewlett-Packard’s User Experience
standards, but does take some creative license outside of these standards, so
this Design Constraint was only partially satisfied.

17 Use Cases
There are a number of ways that users can interact with this system, so a
use case diagram was created in fig. 6 to graphically illustrate the different
ways the system will be used.

58

Figure 6: Use Case Diagram

59

17.1 Create a Form Template

Goal: Create a new form template
Actors: Administrator
Pre-Conditions: Logged in
Post-Conditions: Template is created
Steps:

1. Select “Build Template”

2. Name template

3. Generate Elements

4. Create Validation Script

5. Save template

Exceptions: None

17.2 Issue a Form Instance

Goal: Create a form instance for a customer
Actors: Associate or Administrator
Pre-Conditions: Form template exists. Associate/Administrator is logged
in.
Post-Conditions: Form instance is created
Steps:

1. Access Forms

2. Select “Issue Form”

3. Name Form

4. Select base template

5. Provide list of authorized users

Exceptions: None

60

17.3 Provide Access to a Form Instance

Goal: Modify permissions of a form instance
Actors: Form Issuer
Pre-Conditions: Form instance exists. Associate/Administrator is logged
in and owns the Form
Post-Conditions: Permissions have been changed on form instance
Steps:

1. Select form instance

2. Select “Share”

3. Provide list of authorized users

Exceptions: None

17.4 View a Form Instance

Goal: View data entered in a form instance
Actors: User
Pre-Conditions: User has permission to access the instance. User is logged
in
Post-Conditions: User can view the form instance
Steps:

1. Select form instance

2. Select “View”

Exceptions: None

61

17.5 Fill out a Form

Goal: Fill out information on a form instance
Actors: User
Pre-Conditions: User has permission to edit the form instance. User is
logged in
Post-Conditions: User has partially or completely filled out the form in-
stance
Steps:

1. Select form instance

2. Select “View”

3. Fill out information

4. Save or submit form instance

Exceptions: Cannot submit due to validation errors

17.6 Communicate through Web App

Goal: Communicate a question or comment to other users about the form
instance
Actors: User
Pre-Conditions: User has permission to view the form instance. User is
logged in
Post-Conditions: User has commented on a form control
Steps:

1. Select form instance

2. Select “View”

3. Select Comments

4. Use chat interface

Exceptions: None

62

18 Activity Diagrams
The following diagrams specify the actions of users navigating the Uniform
web application to manage forms and templates.

18.1 Client Workflow

Client Workflow (fig. 7) represents the relatively straightforward task of ac-
cessing a form instance and inputting data and commenting as necessary
until the form can be validated and submitted.

63

Figure 7: Client Workflow
64

18.2 Associate Workflow

Associate Workflow (fig. 8) resolves into two main tasks focused on form man-
agement. On the one hand an associate will issue new forms and share them
with clients, while on the other hand they oversee existing forms, assisting
clients as necessary and adjusting access as necessary.

Figure 8: Associate Workflow

65

18.3 Admin Workflow

Admin Workflow (fig. 9) is entirely focused on the creation of new templates
and management of elements within the template.

Figure 9: Admin Workflow

66

19 Conceptual Model
The following models illustrate how the Uniform web application will display
content to users and provide tools and mechanisms to create, maintain, and
complete forms and templates.

19.1 Landing Page

Figure 10: Landing Page

Forms and templates can be viewed through the landing page. Users will be
able to apply filters on issuer, base template, modification date, status, and
name. New instances and templates can be created assuming a user has the
necessary permissions. Users will also be able to search directly for certain
forms and view recent activities related to their account.

67

19.2 Template Creation

Figure 11: Template Creation

Templates are modified through the Template editor. Template creation is
managed via the construction of rows and containers which render as appro-
priate HTML elements. The type of control, headings, and values can be set
within the template. Individual rows can be re-positioned or deleted.

68

19.3 Instance Creation

Figure 12: Instance Creation

Form instances can be generated through the landing page by selecting issue
form to bring up the creation overlay. Admins and Associates can define
instance specific information such as the name, base template, and list of
authorized users.

69

19.4 Mobile Implementation

Figure 13: Mobile Implementation

The mobile implementation of the web application was aimed primarily at
providing easy access and usability to client and associate users. This largely
came in the form of a simplified, fluid interface that triggered as a result
of view-port queries which tracked the size of the screen, altering active
CSS styling as appropriate for the current dimensions of the user’s device.
Mobile menus in the upper right-hand corner of the screen became host to
the majority of the actions and buttons that the desktop view hosted, leaving
the majority of the display free for content to be highlighted.

On the admin side, while it was certainly conceivable that these users may

70

wish to use their mobile devices to access a form template, the complexity
of the editor far outstrips the other components of the web application and
it was ultimately deemed unrealistic. Investigation into similar solutions,
such as Google Forms, confirmed this was not an out of the ordinary design
decision.

71

20 Architectural Design
To construct the Uniform web application as it has been described, the follow-
ing architecture has been designed to address the major technical challenges
present in this system.

20.1 Data Flow Architecture

Figure 14 shows the data flow of a form throughout its lifecycle. It is first
created as a template by the system administrator, who specifies the con-
trols on the form and the the validation logic associated with them. Once
this template is ready, associates can instantiate a form template into a form
instance for a certain customer. The associate would add the various users
involved in this instance, such as the prospective homeowner, building in-
spector, selling homeowner, etc. Once the form instance is filled out and
agreed upon by all parties, it is submitted to the back-end database.

Figure 14: Form Data Flow Diagram

72

20.2 System Architecture

Figure 15 shows the overall architecture of the system at a technical level.
The client sends a request to the server for a certain resource or action. The
API parses the request, checks authentication, and determines how to re-
spond. If the request requires some data processing, such as updating or
submitting a form, then it will access the database and perform the neces-
sary operations. If the client has requested a web resource such as HTML,
JavaScript, or CSS, it will simply be returned to the client without modifica-
tion. The HTML markup will provide the structure of the client’s page, but
the data will be passed in JSON format using AJAX calls to the API made
via Angular.

Client

JavaScript

Server

jQuery Uniform

AngularJS

HTML

CSS

Uniform

API Authentication

LESS

MongoDB

Database

M
an

ip
ul
at
es

St
yl
es

HTTPS

Events

Compiles to

Figure 15: System Architecture

Server-sent events are implemented using Loopback.io change streams,
which allow clients to subscribe to changes for a particular model or set of
models. The server will then send events to the client when modifications
are made to those models.

20.3 Validation

The Uniform language allows the client to validate inputs before sending the
data to the server. This language lets business users can create complex vali-
dation logic for their forms quickly and easily. This logic will be implemented
on the client side, however all inputs must be validated on the server side

73

as well to ensure correct data is sent. When the server receives information,
it has no guarantee that it went through the client-side checks of the web
application, so it must validate the information as well.

A server-side wrapper was written for the Uniform language which will
allow it to be executed on the server against the data received from the
client. This enables the server to check the data received without requiring a
programmer to manually code the validation logic for each individual form.

20.4 Database Schema

To provide scalable access to such a large amount of data, a NoSQL database
system was used. The overall design is shown in fig. 16, displaying the
relationships between various models within the application. Figure 17 shows
the attributes in more detail for the form and user elements, while fig. 18
shows the attributes and hierarchy of the Control and its related models.

74

Figure 16: Database Schema (Relations)

75

F
ig
ur
e
17

:
D
at
ab

as
e
Sc
he
m
a
(F
or
m
s)

76

Figure 18: Database Schema (Controls)

77

21 Technologies Used

21.1 Server

• NodeJS: Implementation of the V8 JavaScript engine for use in server
applications.

• LoopBack: Node framework designed for building REST APIs

• Jasmine: JavaScript test framework and assertion library.

21.2 Client

• HTML: Markup language used for displaying content in a standardized
way across browsers.

• JavaScript: Client-side scripting language.

– Socket.io: Bidirectional socket communication technology.

– AngularJS: JavaScript framework focused on providing the Model-
View-Controller architecture to front-end web systems.

– Jasmine: JavaScript test framework and assertion library.

• CSS: Styling language describing how HTML elements should be dis-
played to the user.

– LESS: Superset of CSS which adds extra convenience and scala-
bility features.

21.3 Database

• MongoDB: A database schema which uses the NoSQL document model.

22 Design Rationale

22.1 Comet

One of the major requirements for this project was to allow users to work
on the same form simultaneously to encourage collaboration on confusing

78

documents. This means forms must live update for each user with changes
made by others editing the form. This is a major technical challenge for
which typical web technologies were not built.

In the standard HTTP model, the client sends a request to a server which
returns a response. This process is completely atomic, every request begins
with the client, and has only one response from the server. This system works
extremely well for most web systems, but functions very poorly for systems
which require a persistent connection. Within the HTTP framework, there
is no supported way for a server to send an unsolicited message to a client.
This means that something as simple as a chat application can become a
major technical challenge because the server cannot inform the client of new
messages [2, 3].

There are many hacks to get around this limitation, such as infinite
iframes or long polling. Techniques like these, which allow servers to commu-
nicate to clients without an explicit request are considered part of the Comet
web application model. As the web has evolved over the years, Comet ap-
plications have increased significantly and are slowly becoming a supported
standard. WebSockets in HTML 5 and the Socket.io library both allow client
JavaScript to easily receive events triggered by the server. Even servers have
grown to support this trend such as the Jetty framework for Java and Loop-
back’s change streams.

Due to the requirement to live update forms on the client-side, the Comet
architecture was used for this system by implementing change streams ex-
posed by the Loopback framework. This enabled smoother functionality and
a better user experience than a standard HTTP request system would allow.
Unfortunately, change streams are consumed via the EventSource JavaScript
object which is not supported by all modern browsers, notably any version
of Internet Explorer or Microsoft Edge. As of 24th May, 2016, only 80% of
users have access to EventSource and would be able to use HP Forms [4].

EventSource is the feature that limits the user base of the application
the most and is the single largest browser compatibility issue present. Given
more time, it would have been preferable to use WebSockets or Socket.io
to have a greater user base, but doing so would require special server-side
code to be written, which the development timeframe did not allow. Using
Loopback change streams allowed leverage of existing server-sent event logic
already present in the Loopback framework and saved a significant amount
of time to implement a system that will still work for a majority of users.

79

22.2 Single Page Application

When the web was created, client side interaction was done by redirecting the
user to a new page displaying the needed information. As web applications
have grown in scale, this model has become very impractical for managing
and displaying data on the client [5].

Modern web applications often direct users to a single page which simply
downloads a web front-end to display data and handle user interaction. Data
is sent to and from the server via AJAX or WebSockets which can be rendered
to the user by the client JavaScript. This maintains the logic and state of
the JavaScript and only requires the client to download the data to display,
it does not have to re-download the structure or web application again. Data
can be more easily manipulated on the client side using this model and allows
better presentation to the user. Figure 19 illustrates the differences between
the traditional page life-cycle versus those of a single page application [6].

Figure 19: Single-Page Architecture Diagram

80

Single-page applications also benefit the Model-View-Controller architec-
ture, as the data is stored and managed separately from its presentation. The
HTML/CSS presentation layer is sent in the initial response to the client but
does not contain any meaningful data. Follow-up requests from the client’s
JavaScript get the raw data, usually in JSON or XML format, and display
it within the HTML/CSS structure. This makes it very easy to update the
data without completely removing the existing page structure. A single page
architecture will be used in this application to leverage these benefits and
provide a modular and reusable approach to development.

22.3 Technologies

22.3.1 Server

• NodeJS: Node was built primarily to address the challenges which
the Comet architecture presents on the server side. JavaScript’s event
handling system is well-suited to the back and forth communication
required by Comet applications and this one in particular [7]. The
Node package manger will also allow easy installation of third-party
modules to assist development and reuse by the application.

• LoopBack: The LoopBack Node framework was used to create the
server system; LoopBack offers simple API creation tools, connectors
for various database schema, Comet-inspired change streams, and a
framework for Model-View-Controllers which will enable the creation
of a scalable application quickly and efficiently.

22.3.2 Client

• HTML 5: HTML was utilized to make this application widely avail-
able across all major platforms. Almost every computing device has
some access to the Internet and is capable of rendering web technolo-
gies. This will allow the application to leverage such broad device
support to provide access to as many users as possible with the devices
they already have.

• JavaScript: The application uses JavaScript for its client-side script-
ing capabilities. Due to the Comet architecture of this system, the
majority of communication is performed using events managed by the

81

client’s JavaScript rather than using standard HTTP requests sent by
browsers. A number of JavaScript libraries will be used to assist in this
application.

– AngularJS: To ensure resuability and modularity on the client-
side, the application will utilize the AngularJS framework. It will
help enforce a Model-View-Controller architecture on the system’s
front-end logic. It also provides strong testing support, encourag-
ing the test-driven development model. This will enable the team
to improve code quality, maintain code coherence, and reduce cou-
pling throughout the client system.

– Uniform: To provide a solid user experience throughout the form
completion process, this system uses the Uniform language to il-
lustrate a practical use case. This enables a helpful interface for
users and allows administrators to create forms with complex val-
idation quickly and efficiently.

– jQuery: Although AngularJS provides an implementation of jQuery
lite, Uniform is dependent on jQuery specifically and is not design
to run on a lite implementation. Uniform is not tested on that
implementation, so the Web Application will use the full version
of jQuery to avoid unexpected and difficult to debug errors.

• CSS: The client-side of the application takes advantage of CSS to style
and present the data in a usable and user-friendly fashion to facilitate
ease of use.

– LESS: On the server, the Web Application takes advantage of
LESS to enable more reusable and scalable styling code that is
compiled down to CSS. This helps manage a large number of styles
and colors, organize them logically, and enforce its own styling
conventions.

22.3.3 Database

The system uses MongoDB for its database system. This is a NoSQL database
implementation which was chosen over more traditional SQL options. SQL
architecture is highly structured with a clear set of attributes and their re-
lations among each other. This system will support a wide variety of form

82

controls which have many different requirements and relations to each other.
Beyond that, the initial system may only support a small subset of the con-
trols desired, while the rest will be added in the future.

To more easily support the varying needs of each type of control and
to allow easy modification and extension in the future, the system takes
advantage of MongoDB’s NoSQL architecture. MongoDB supports dynamic
and nested schemas much better than SQL systems, allowing easy extension
and modification of the database schema in the future [8, 9].

A major downside to MongoDB is the lack of transaction support, which
could cause invalid database that may behave strangely with the application
logic. In the future, it may become necessary to switch to more traditional
SQL system to allow implementation of transactions on the database. Fortu-
nately, the Loopback framework provides database connector with very few
interface differences between them. As such, the MongoDB connector can
simply be swapped out with the SQL connector with very little modification
of application code, making a database switch trivial.

22.3.4 Testing

Jasmine was used as the system’s test framework and assertion library be-
cause of its simplicity and ease of use. Its design encourages self-documenting
tests, enabling any failing test to clearly describe exactly what went wrong,
facilitating quicker fixes. Jasmine can also be used on the client and the
server, simplifying and unifying the testing process for each piece.

23 Testing Plan
For any piece of software to be used in a production environment, it must
be appropriately tested. This system is no different, and it will be using the
following practices to ensure the level of quality that its users will expect of
it.

23.1 Test-Driven Development

The team used a test-driven development process, where tests are written
before the code satisfying them. This helped ensure that the team continued
writing tests throughout the development process and that every piece of

83

code written was properly tested. This did not replace traditional system
testing at the end of the project life-cycle, but rather supplemented it during
the implementation phase. Often, by the time the testing phase is reached,
it is too late to perform necessary fixes. Early and frequent testing in the
implementation phase allowed the team to fix errors as they were introduced
and before they could become a significant problem. This also allowed easy
regression testing to ensure that new bugs were not introduced into old code.

23.2 Unit Testing

Unit testing was performed throughout the development process as part of
the test-driven development mentality. Unit tests were the majority of those
written during the implementation phase and helped track down bugs that
surfaced while implementing the system.

23.3 Acceptance Testing

To ensure that every part of the system is built to specification, the team met
regularly with both the project adviser, Ron Danielson, and a representative
from HP, Stas Neyman. In these meetings, the most recent build of the
project was shown in order to receive feedback and direction as the project
progressed. This ensured that everyone was on the same page throughout the
entire development process and that everyone understood how each feature
works and was in agreement on the result.

23.4 Security Testing

Due to the sensitive nature of many of the documents being manipulated
by this system, security is major concern. To ensure a secure system, the
team tested for many common software attacks against the system, including
URL manipulation, cross-site scripting, database injection, and general API
misuse. Since this project is not concerned with encryption of network traffic
or database information, such insecurities will not be included as part of this
testing. In a production system, such encryption would be expected and
necessary, but this prototype will not include it to minimize scope.

84

23.4.1 URL Manipulation

URL manipulation is when the user directly edits the URL field in his/her
browser to cause the application to move into an unexpected state. This
could be as simple as putting a different ID or changing a query parameter.
If the query is trusted by the server and not validated, then the server may
believe that a user has different privileges than they actually have or may
perform unwanted operations.

Fortunately, the application did not suffer any vulnerabilities from URL
manipulation. This is because URL parameters are only used by the client
to track the current navigation and are ignored by the server. A client could
modify the URL to direct them to another form which they do not have
access to, but any requests for that form’s information would fail due to a
lack of privilege. As such, the client will receive errors and will not pull any
useful information.

Originally, there was one piece of data in the URL used by the server, the
client’s access token. This is not necessarily a security vulnerability because
the client should not know the access token for any other users and would not
have any data to replace it with. The client could replace it with an invalid
token, but such a token would not grant the user any rights and would be
useless. The only downside to using an access token in the query parameter
is that it may be logged by the server when processing the request. Since an
access token gives the same rights as the user, it should be kept as secret as
their password, and a log on the server is likely not encrypted or particularly
well protected. As such it is a best practice to store access tokens as cookies
or headers, where they will not be logged. The application was modified to
store access tokens in headers and no longer uses query parameters for this
purpose.

23.4.2 Cross-Site Scripting

Cross-site scripting is when an attacker is able to put executable code inside
the system’s database, where a victim could later download and execute it
on their computer. An attacker could easily put as an input to a form field
the line:
<script >alert("I have you now...");</script >

This line would be stored into the database as that form field’s value.
When another user views that form, their browser would download that line

85

and place it into their DOM tree, which would cause the browser to execute
it. This can be avoided by sanitizing user inputs, for instance replacing the
less than and greater than symbols with their encoded counterparts, resulting
in the string:
<script>alert("I have you now...");</ script>

which would not execute when read by another user’s browser. To achieve
this, the application uses the helmet NodeJS library. This uses several re-
sponse headers to set browsers to be much more restrictive about running
code. This helps ensure that no malicious code is executed on the browser.
Currently no attempt is made to sanitize data in the database and it is up
to the client to only use valid inputs.

There are other ways of performing cross-site scripting such as injecting
code into a JavaScript eval() call or other methods. All known cross-site
scripting attacks have been patched and no other vulnerabilities are currently
known. However, due to the complex nature of this kind of attack and the
number of entry points, it is best that the application be reviewed by a
security expert before being put into production.

23.4.3 Database Injection

Database injection is an attack where a user sends a script written the
database language (SQL, Mongo, etc.) and is able to get it to execute on
the database. This is usually a result of the server concatenating unsanitized
user data with database code.

Fortunately, the application is not vulnerable to database injection due to
the Loopback framework. Loopback uses object-relational mapping, mean-
ing that application code does not directly run or otherwise touch database
queries. Instead, Loopback exposes objects to the application code which
have functions that perform various database interactions. This adds a layer
of abstraction between application code and the database, removing any
place where a malicious user could inject database code. As such, the web
application does not suffer from database injection vulnerabilities and none
needed to be patched.

23.4.4 API Misuse

API misuse is when a malicious client sends invalid data to the server. This
invalid data may be as simple as requesting a form the user does not have

86

access to. The server must see identify this and deny the request. Unfortu-
nately, there are many ways an API can be misused and it is impossible to
be certain that every case is handled. Consider the following code:

1 // Get all threads which belong to the given Form
2 Thread.get = function (formId) {
3 return Thread.find({
4 // Find every thread belonging to the given form
5 where: {
6 FormId: formId
7 }
8 });
9 };

When invoked as expected, this works correctly and returns all threads
belonging to the given form. If that form has three threads, then it will
return an array of length three.

var formThreads = Thread.get (1234);
console.log(formThreads.length); // 3

When invoked without a parameter however, things become a little more
interesting.

var formThreads = Thread.get();
console.log(formThreads.length); // 100+ !!!

Now the function returned an array of every thread, regardless of what
form owns it. This is because when the function was called with no ar-
guments, the formId parameter was set to undefined. This means that
Thread.find({ ... }) was called with FormId:undefined. In JavaScript,
setting a key to an undefined value is the same as omitting the key entirely,
making this the same as running Thread.find({ where: { } }), with an
empty object! In Loopback, calling find() on a model without a where
query will return all its instances in the database.

If a user simply did not pass an ID, then they would suddenly receive every
thread in the database, regardless of whether or not they had access to it. It
can be argued that this is a form of database injection, but for the purposes
of this paper, it will be classified as a form of API misuse. This is clearly
a major security vulnerability, and it needs to be handled. Unfortunately,
addressing it is not easy, as every API has different arguments and reacts
differently depending on the format of each. The large variety of values
and types that can be sent makes it difficult to fully test and show that no

87

vulnerabilities exist.
The team has made a best effort to ensure that all edge cases are handled,

and much of the server’s unit testing is explicitly aimed at ensuring that
invalid data is not processed. Unfortunately it is very difficult to be sure
that no holes exist, and the application should be reviewed by a security
expert before being put into production.

23.5 User Testing

Where the web application was concerned, user testing was primarily focused
on ensuring a functional, visually appealing, and most of all usable user
interface. User tests saw testers simulating each of the three system roles
and undertaking appropriate tasks for each. Feedback on the learnability
and memorability of the tasks was recorded using a combination of scale
based answers and free-response. This feedback was used to drive appropriate
design changes, specifically these changes focused on providing more accurate
and in-depth system feedback and making the user interface more easily
navigable. Additionally, general-purpose feedback statements were recorded
and used to determine the focus of remaining front-end development time.

23.6 Browser Testing

To ensure that all audiences are capable of using the web application, browser
testing was undertaken on the final system build on all major web browsers.
By verifying that the web application provides full functionality on these
browsers, the team was able to ensure that no user would be unable to access
the system assuming reasonable access to appropriate technology.

24 Test Results

24.1 User Testing

User testing was performed by a group of eight Santa Clara University stu-
dents. As they progressed through testing, the students were asked a variety
of question focused on rating the difficulty of performing the actions of each
role; client, associate, and admin.

88

24.1.1 Client

As clients, students were asked to fill out a form correctly and to submit
this form. Of the eight students, three were unable to successfully submit
their form. For one of these students, the failure was attributed simply to
the system, thus making it a negative result. For the other two, however,
the failure was attributed to the testing guidelines giving unclear directions
as to what was necessary to fill out the form.

While most of the students found the client portion easy to achieve, feed-
back was focused on providing a clearer submission process to forms. This
led to the implementation of a static submission button automatically lo-
cated at the bottom of all forms and pop-up messages indicating successful
submission.

24.1.2 Associate

As associates, students were asked to issue a form to a client. This section was
largely considered the easiest section, with no student rating the experience
as difficult and only one student having an issue with locating the correct
buttons in the interface.

Feedback here primarily focused on clarifying the labels of specific buttons
on the landing page. This led to the implementation of larger, more distinct
buttons, a simplified navigation menu, and an indication of whether or not
users were viewing forms or templates.

24.1.3 Admin

As admins, students were asked to create the car form following a set of
instructions. All students were able to complete this section, with no student
rating the experience as difficult and only two students having an issue with
locating the correct buttons in the interface.

Feedback for this section focused around clarifying the fact that data was
being updated and saved automatically by the web application. This led to
the implementation of update indicators located atop any actively updating
elements in the template editor.

89

24.1.4 Browser Testing

Desktop

Browser testing was performed without issue on the following desktop browsers

• Chrome

• Mozilla Firefox

• Safari

• Opera

Of the major desktop browsers, Internet Explorer was excluded due to
the web application’s reliance on EventSource updates for real-time updates
and communication. Internet Explorer does not support EventSource and so
the web application cannot run properly on that platform.

Mobile

Browser testing was performed without issue on the following mobile browsers

• Chrome

• UC Browser

Browser testing was also performed using the IOS browser with partial
success. While all functionality was correct on the IOS browser, a number
of CSS features rendered incorrectly, leading to limited functionality in some
cases. In order to deal with these inconsistencies, the CSS of certain elements
was adjusted, making use non-gradient color values where possible as these
were largely the cause of display inconsistencies.

25 Install Guide
To run the web application on a new server, a few steps must be taken:

1. Install system dependencies

2. Install application dependencies

3. Test server (optional)

4. Run server

90

25.1 Installing system dependencies

System dependencies include NodeJS and MongoDB. These can be set up
individually and even on different computers.

25.1.1 NodeJS

The process for installing Node will differ depending on the operating system
of the server. Node must be installed, and it should install NPM (Node
Package Manager) with it. Both Node and NPM should be on the system’s
path. This can be tested by running:

$ node -v
v4.4.2
$ npm -v
3.3.12

This system was developed and tested using Node 4.2.2. While future
versions of Node should not break it, it is impossible to foresee such issues.

25.1.2 MongoDB

MongoDB can installed from the Mongo website and must be running before
the server is started. If the server and database will be on the same machine
(probably as a development or test server), then simply running
$ mongod

should be sufficient. If the server and database will be on different machines,
then the server must be configured to connect to the remote database. This
can be done by editing “server/datasources.json”. This file should have in
the connection information for the database in the “db” key value. The data
that should be put here depends on the database connection information,
but Loopback’s documentation on datasource configuration can be used as
reference [10].

25.2 Installing application dependencies

Installing application dependencies is very easy with NPM. Simply open a
terminal/command prompt window in the directory of the source code. If
building a development or test system, run
$ npm install

91

This will install all packages which the web application is dependent on
for both production dependencies and development tools.

If building a production system to be used by the public, run
$ npm install --production

This will install all production dependencies but omit development tools
and their dependencies which are not necessary on production systems. This
may throw some warnings that certain grunt-* modules could not be found.
That is expected as those modules are only needed for development systems.

Once completed, a node_modules folder should have appeared in the
current directory which contains all the application’s dependencies. The
dependency tree should also be printed to the console to verify that it was
successful.

25.3 Testing the server

When installed on a new system, the server should be tested to ensure that
there are no obfuscated bugs that have been introduced. This can only be
done on systems that were installed with
$ npm install

rather than
$ npm install --production

as the testing tools are only installed on development systems.
Tests can be executed by running

$ npm test

This will perform all server-side and client-side tests, so there should be
two sections with two sets of results. All tests should pass for both test
suites, if one or more does not, then there is a problem in the set up of the
system.

25.4 Run server

If the server passes all its tests, then it is ready to be started. Simply run
$ npm start

to execute the server. It should print that the web server is listening on a cer-
tain IP and port. Those values can be changed by editing server/config.json.

92

Using a browser and navigating to the server’s IP at the listening port should
now display the application home page or login page. The server can be
stopped by pressing Ctrl+C in the running terminal.

If running on a production system, it is wise to set the environment
variable NODE_ENV to “prod” in the same terminal before starting the server.
This is done with

Windows: $ set NODE_ENV=prod
Unix: $ NODE_ENV=prod

which sets Node to use a production environment and some settings are differ-
ent. For instance, the application will use server/datasources.prod.json
instead of server/datasources.json. This is used to keep development
and production database configurations separate, as the production environ-
ment probably uses an external database, while a development system likely
has its own internal database. Note that this environment variable must be
set before running the server within the terminal it is started. If the server
is killed and restarted, it is wise to run the NODE_ENV command again, or
configure the system to always have the correct environment set.

25.5 Common errors

25.5.1 Address in use

If the server is unable to start and displays an error message similar to the
one below, then the port it is trying to bind to is taken by another process.

events.js:141
throw er; // Unhandled ’error ’ event
^

Error: listen EADDRINUSE 0.0.0.0:3000
...

If the server was running successfully earlier, then it is likely that the
previous instance is still running and blocking the new instance from taking
the port. Look for a running Node process owning the port and kill it. This
should free the port for the new instance.

If the server has not been able to run successfully, then it is likely that
another application has the port. Either find the application owning the port
and kill it, or try changing the port that the Web Application binds to in
server/config.json to make it use an open port.

93

25.5.2 Database connection error

If the server starts successfully but displays a “connected fails” message sim-
ilar to the one below, then it is unable to connect to the database.

Web server listening at: http:// localhost :3000
Connection fails: { [MongoError: connect ECONNREFUSED

127.0.0.1:27017]
name: ’MongoError ’,
message: ’connect ECONNREFUSED 127.0.0.1:27017 ’ }

It will be retried for the next request.

If this was on a development machine running the database locally, then
it is likely that the database was not started. Find the MongoDB installation
directory and run the mongod command to start the server. Verify that the
port the database listens to is the one that the application is using.

If this was on a server connecting to a remote database, then it is more
likely that the connection information is wrong. The information in server/datasources.json
should be verified. If the database IP and port do not match the configura-
tion put in the datasources file, then it is likely using a different configuration
file. If NODE_ENV is set to “prod”, then the system will actually use the con-
figuration present in server/datasources.prod.json, and that is the file
that must be edited.

25.5.3 Home page perpetually loads

If the server starts, but visiting the home page shows a loading icon that never
disappears, then likely the current user profile is invalid. If the browser caches
an access token, and then the database deletes that token or its associated
user, then it can fail to load. Simply click the “logout” button and then log
in again to reset the token on the client.

26 User Guide
The Uniform web application has been designed for ease of use, but for those
unfamiliar with the system, the following instructions can guide a group of
users through the implementation of a form template and the production and
completion of a form instance.

94

26.1 Accessing the Application

Accessing the application requires user authentication performed at the land-
ing page. Users attempting to access any portion of the application who have
not been authenticated will automatically be redirected to the following URL:

yoursite/#/login.

At the landing page, a user need only input the email address and pass-
word linked to their account in the specified fields to authenticate their-self
and access the application.

Figure 20: Accessing the Application

95

26.2 Navigating the Landing Page

Upon successful authentication, users will be redirected to the landing page.
From this page, users can view the form instances and form templates avail-
able to them, access these objects, and, provided they are an associate or
admin, create and issue new form templates and form instances.

26.2.1 Form Instances

By default, users accessing the landing will be presented with the compre-
hensive list of their available form instances. These will take the form of a
large list that can be sorted by name, issuer, last modification date, or status
by clicking the bold, white column headers that indicate these displays. A
specific form instance, when clicked, will expand to offer user specific actions,
such as the ability to view that instance or to remove it entirely all of which
can be activated with a single click.

Expanding on this functionality, various toggleable filters can be set by
selecting the button labeled ’Filters’ and choosing from the available options
all of which are enabled by default. Furthermore, users can search for a
specific form instance by keyboard using the search menu located at the top
of the screen.

Figure 21: Form Instances

26.2.2 Form Templates

In order to view available form templates, a user requires associate or admin
credentials. Assuming a user fills one of these roles, they may toggle their

96

view between instances and templates by selecting the button labeled ’Show
Templates’ located just above the status column. All functionality available
for form instances is replicated for form templates with the exception of the
ability to directly share a template and certain filters which are unnecessary.

26.2.3 Creating a Form Template

To create a form template, users need admin credentials. Assuming a user
is an admin, they can create a template by selecting the button labeled
’Build Template’ just above the modified column. Upon selecting this option,
users will be presented with a simple pop-up that asks them to title their
template. After providing a title, users can select ’Build’ and they will shortly
be redirected to the template editor which will be covered later in the guide.

Figure 22: Building a Template

26.2.4 Issuing a Form Instance

To issue a form instance, users must be either an associate or an admin.
Assuming a user fills one of these roles, they may issue a new form instance
by selecting the button labeled ’Issue Form’ located just above the issuer
column. Upon selecting this option, users will be presented with a simple
pop-up that asks them to title their instance, select a base template from
a dropdown list of the templates available to them, and input a comma

97

separated list of user email addresses whom they wish to share this instance
with. After providing this information, users can select ’Issue’ and they will
soon see their instances list populate with the new form instance.

Figure 23: Issuing a Form Instance

98

26.3 Using the Template Editor

The template editor can be accessed in one of two ways. First, a user is
automatically redirected to the editor upon creation of a new template. Al-
ternatively, a user can access the editor by selecting a form template in the
landing view, and selecting the edit option if it is available.

The template editor is comprised of three main views, the HTML editor,
the Uniform editor, and the instance preview.

26.3.1 The HTML Editor

The HTML editor is designed to replace the otherwise manual task of creating
a web form’s structure using HTML. This editor allows users to create groups
of containers, and controls within these containers, that will later be turned
into structured HTML when an instance is generated.

Figure 24: The HTML Editor

Initially, a new template will consist of the root template and a single
container. Located at the top of the editor, the root template section allows
users to create additional containers by selecting the button with a plus icon
and a box icon, as well as set the HTML id of the entire form.

99

Beneath the root template, the default container will contain a single
control, indicated by the indented blue line bordering it. Users can add
additional controls to a container by selectin ghte button with a plus icon
and a gears icon, as well as set the HTML id and class of the container,
in addition to specifying a header for the form section that the container
represents.

Controls are slightly more complex, with users being able to specify the
type, such as text-box or check-box, default values, and attached descriptions
in addition to the HTML id and class of the control. Both controls and
containers can be deleted by selecting the trash-bin icon located in the bottom
right corner of these objects, although the last control of a container cannot
be deleted.

26.3.2 The Uniform Editor

The Uniform Editor offers a simple location to attach Uniform code to a form
template. Users are able to use the large textbox to directly input Uniform
or copy it in from an external editor.

Figure 25: The Uniform Editor

100

26.3.3 The Instance Preview

Lastly, users can preview the base form instance that their template will gen-
erate through the preview tab which reflects the default values and structure
they have set in place in the HTML editor.

Figure 26: The Instance Preview

101

26.4 Viewing a Form Instance

Any user who has received access to a form instance may view this instance
by selecting the instance on their landing page and selecting the view action.
Upon undertaking this action, users will be redirected to the form view which
offers users the ability to collaboratively complete the form instance and
communicate with each other through a chat style comment system.

Figure 27: Viewing a Form Instance

26.4.1 Editing a Form Instance

All users with access to a form instance have equal right to edit it by simply
selecting the pertinent sections of the form and inputting appropriate data.
Forms can be altered at any point up to their successful submission at which
point they are permanently frozen in the state which they were submitted
in. If a section of the form cannot be selected and is otherwise darkened or
grayed out, it indicates that the Uniform code governing this form will not
currently allow users to access this section based on the current form values.

102

Part III

Development
27 Tools

27.1 Git

Version controls software was used to enable the development team to work
collaboratively on the same code base without interfering with each others’
modifications. Team members were be able to work independently on in-
dividual issues while still maintaining easy merging with each others’ work.
Git’s popularity over other version control systems gives it a strong commu-
nity with a significant amount of support and documentation available for
reference. It also supports offline work and enables quick and easy branching,
giving it a significant advantage over other source control software.

27.2 JetBrains WebStorm

WebStorm was chosen as the integrated development environment for this
project for a few reasons. It has some of the best syntax highlighting and
auto-completion for JavaScript, has Git integration built into the tool, allows
test running in editor, and live compilation of code as it is written. Most
importantly, it is cross-platform, a critical feature, as the team used both
Microsoft Windows and Apple Macintosh for development.

27.3 Atlassian JIRA

The JIRA management system was selected to keep track of the project’s
backlog, organize sprints, and perform code review. It supports many Agile
practices out of the box which were utilized for this project. The team was
able to receive access to a paid instance of JIRA courtesy of the project’s
sponsor, Hewlett-Packard.

27.4 Source Code Hosting

The Git source code repository was hosted on BitBucket throughout develop-
ment. There are two major reasons for choosing BitBucket over competing

103

products. Firstly, it supports viewing commits and leaving comments on
them which will help facilitate the code review process. Secondly, it in-
tegrates with Atlassian JIRA and easily maps commits to the issues they
relate to, helping the team track commits and issues together. However, Bit-
Bucket has much lower notoriety and fewer features regarding open-source
development. As such, the Uniform Validation Language was migrated from
BitBucket to GitHub at the end of this development cycle. GitHub provides
the increased visibility such a project requires to gain support and interest
from the open-source community. The future of the language is dependent
on the response from the community, so it needs the highest visibility and
notoriety that it can get, GitHub is the first step to entering the open-source
community. The web application will continue to be hosted on internal HP
repositories as necessary throughout its life cycle.

28 Development Problems and Solutions

28.1 Interface Redesign

As the development of the web application progressed numerous revisions
and outright redesigns of the user interface became necessary. For instance,
early designs of the front-end relied on a left side action bar. It was intended
that this bar would display contextually appropriate actions to the user dy-
namically in reaction to actions taken by the user. However, as development
progressed it became clear that new users were not connecting their actions
to changes in the sidebar, and this, in turn, harmed overall system learnabil-
ity. Moreover, many of the actions originally intended to reside in the left
sidebar were more appropriately embedded in the page content itself, leading
to a large portion of the sidebar remaining empty. After the sidebar was re-
moved, a large amount of on-screen real-estate became available, triggering
further alterations to the interface.

28.2 Development on Local-Host Masked Latency

Development of the web application was performed on a server running lo-
cally on development machines. The direct result of this was that issues
of latency between the client and server were not made apparent because
connections to localhost are effectively instantaneous. Once a development

104

build was uploaded to a remote Heroku App environment a number of cases
were found that some event-based functionality degenerated in more realistic
conditions where our server was not able to keep up with requests triggered
by these events. The system was updated to handle slower, more realistic
connections, without causing an annoying user experience.

28.2.1 Value Update Race Conditions

The most endemic issue through development builds was race conditions re-
sulting from conflicting value updates and server responses. In initial builds,
the web application performed general updates when it received data from
the server. For simplicity’s sake, these updates were not targeted at the spe-
cific data that had been changed, but rather the template or form as a whole.
When running on localhost, this was fine and it did not cause any difficulties
for the interface because it could update fast enough. Only after uploading
the build to a remote server was it obvious that this “lazy updating” sig-
nificantly impacted the user experience by overwriting user input with old
values as they were typing it. This eventually lead to a rewrite of the update
code to target individual components only.

29 Development Timeline
To accomplish these goals in accordance to Santa Clara University’s expec-
tations, a development timeline is presented in fig. 28, fig. 29, and fig. 30.

The team followed various Agile guidelines. Work was done in weekly
“sprints,” with the goal of creating a “potentially shippable product” each
week. Each sprint began by estimating and planning the work to be done.
As work was done, the development team met regularly to discuss progress
made, current work, and impediments to progress. At the end of each sprint
the team would meet to discuss the current state of the project, how it should
change moving forward, and how the backlog should be re-prioritized. The
team also discussed the process in place, any weaknesses or problems that
have been identified, and improvements which could be incorporated moving
forward. JIRA enabled the team to enforce this process by clearly defining is-
sues, sprints, estimates, and even providing metrics such as burndown charts.
With this process, the team was able to ensure that the product remained
on schedule.

105

Figure 28: Development Timeline (Fall)

106

Figure 29: Development Timeline (Winter)

107

Figure 30: Development Timeline (Spring)

108

30 Ethics
With any project, no matter how good the intentions might be, ethics be-
comes a concern. This system is composed only of software components. As
such, physical ethical concerns, such as personal safety, are out of the scope
of the project. There are still however components that can compromise
information security, and promised results.

30.1 Information Security

The Web Application includes a database which stores sensitive personal
information. Privacy is always a major ethical concern, and several design
decisions have been made to our system accordingly.

30.1.1 Design Decisions to Ensure Privacy

• Hierarchy of permissions: Admin > Associate > Client

– Permissions can only be changed by an admin.

– An associate for example, will only be able to view forms that
involve his or herself.

• Data encryption

– Although building mechanisms for encryption is out-of-scope for
this project, the system will be supporting encrypted data. This
ensures that data will not be open to the public.

• Developer privacy

– The system might need maintenance by a developer or an admin.
During maintenance, the parties will not be able to access personal
information.

30.2 Team and Organizational Ethics

As in all team environments, it is important to treat team members with
mutual respect and understanding. Fair treatment among all members of a
team is always a concern. During development, work was divided as evenly

109

as possible, and all feedback is heard and incorporated into the design. Ex-
tra consideration was given to each others’ schedules. During code reviews,
constructive criticism is the ideal, while differences of subjective opinion are
avoided.

30.3 Social and Cultural Issues

30.3.1 Product expectations

There is always an ethical duty for any individual to do his/her best, be
truthful, and guarantee results to a degree. The goal is to implement a form
creation tool to build forms more easily, but more importantly, the goal is to
make it easier on the user to create and fill out the forms required of them.
Both of these conditions are required for a the project to be considered ethical
at even the most basic level.

30.3.2 Sponsor expectations

This project was funded by Hewlett-Packard. They are funding it in exchange
for special consideration of their input and concerns. HP will ultimately take
ownership of the Web Application, and any future users of it will expect
software on the level of quality of any other HP system.

30.3.3 Malicious use

By making a tool to create forms more easily, creating a phishing form is
that much easier to build as well. This tool cannot prevent itself from being
used for malicious purposes, such as tricking users and stealing information.

30.4 Documentation

30.4.1 Open source library

All code produced for the Uniform language will be public for the world to
see, work on, and use. It is an ethical concern to make sure that the work
done is well-implemented and well-documented to ensure that others picking
up the project have the tools to properly understand and build off the current
framework.

110

30.4.2 API documentation

The Web Application will be passed to Hewlett-Packard for further devel-
opment and additional features. As such, it is extremely likely that other
developers completely unfamiliar with the project will be required to write
code building on top of the system defined in this document. In particular,
the API exposed by the server is one of the most integral and complicated
pieces of the project. Proper and in-depth documentation on the APIs is
critical to bringing other developers up to speed and how the system works
and how it can be extended.

31 Aesthetic Analysis
Aesthetics are a major part of any product, as it defines how users will
interact with and perceive it. This is especially true for engineering, since
anything developed ultimately must be used by people, and they are the ones
who determine its value. The end user must always come first in any design,
and the best way to modify how a user interacts with a particular product is
to modify its aesthetics. The end goal of any engineering effort is to create
the best user experience possible; this causes aesthetics to be among the
most important aspects of the design. This project is no exception to this.
The two major components each have their own aesthetic requirements and
challenges to provide the user experience that will be expected of them.

31.1 Uniform Validation Language

The first component, the validation language, does not contain any visual
component which can be manipulated aesthetically to influence our users.
Rather, its aesthetic comes from the design of the language itself. Its syntax,
grammar, diction, consistency, clarity, and readability are no different than
traditional human languages. The main difference between this design and
that of natural language is that Uniform was rigidly defined for a very clear
and specific purpose, while human tongues have slowly evolved over time to
encompass new thoughts and discuss new ideas. Even computer languages
have evolved over time, from C to C++ or JavaScript to NodeJS, but their
original creators exercised a level of control that no one person could claim
over any human language. The development team is currently in this position

111

for Uniform, and the effectiveness of the design will decide if it will ever be
used by society.

The aesthetics of natural languages are often most clearly seen in po-
ems, where words are aligned to create a specific meter and rhyme. This
involves choosing the single perfect word from a chaotic dictionary of options
accumulated over centuries of use. Uniform will find its aesthetic appeal in
the expansive meaning that can be conveyed with a minimal set of terms.
A simple and concise yet powerful statement can have the same impact as
a perfectly timed rhyme in natural language. This will provide users with
the most productive and enjoyable experience writing our language, making
such a design the end goal of the language. Table 3 illustrates a few decisions
made to achieve this purpose.

112

Design Decision Aesthetic Impact
Minimal keywords Reducing the keywords of the language minimizes

the dictionary users must learn and understand.
This makes the language simpler to learn and eas-
ier to understand.

Internal consistency There are intended to be zero irregularities within
the grammar and style of Uniform. The inconsis-
tency of natural languages often makes them diffi-
cult to learn and adds unnecessary complexity to
otherwise simple statements.

Clear meaning Many computer languages use symbols as short-
cuts for many concepts, such as &&, ‖, and !
for and, or, and not. These symbols obfuscate
the meaning of very simple concepts, so Uniform
avoids this and tries to be as verbal as possible,
only using symbols where they would be clearer
than their spoken counterparts (such as x < y in-
stead of x lessThan y).

CSS selectors Uniform uses CSS selectors to identify form ele-
ments due to its familiarity with users and strong
documentation. It also gives a huge amount
of power very simplistically by allowing a single
“term" to refer to any number of arbitrary elements
within a given form.

Recursive validation Humans tend to think hierarchically, so it is very
easy to conceptualize a form as being completed
when a set of subconditions are met, which may
depend on further subconditions and so on. Uni-
form directly supports this conceptual model to
help users understand their particular problem and
invent a clean and scalable solution.

Table 3: Design decisions and their aesthetic impact on the Uniform Valida-
tion Language

113

31.2 Web Application

The Web Application uses the Uniform Validation Language to improve the
user experience of filling out forms. Today, completing a form is something
everyone must do and no one enjoys. Forms are often complicated, confusing,
and contradictory leading to errors, time and money lost, and dissatisfied
users. This system improves this user experience by utilizing the three main
methods listed below.

31.2.1 Mobile Accessibility

People are always on-the-go in today’s society and cannot afford to sit down
at a computer to fill out many forms of a simpler nature. The Web Applica-
tions places emphasis on being mobile-accessible to cater to this user persona
and improve their experience.

31.2.2 Error Handling

Forms are not always straightforward and it is easy to enter invalid or contra-
dictory data without realizing it. Many modern form system protect against
this, but implementations are often sloppy, lazy, or simply incorrect. This
system will utilize Uniform to enable form creators to easily define logic for
their forms which is clean and user-friendly without requiring any extra effort
on the part of the author.

31.2.3 Collaboration

Even the best laid forms encounter unique situations that were not planned
for, and the best way for users to be satisfied that everything is correct
is to speak with an expert on the form or with the others involved in its
completion. Collaboration among users adds a human element to the cold
complexity of unfriendly forms and helps streamline the process to reduce
unnecessary, unpleasant, and untimely back and forth emails between users.

114

Part IV

Appendix
A Design Philosophy of Paper Forms
A major problem with digital forms today is that they are designed as if they
are actually on paper. This is no longer true, as most users will interact with
digital forms instead of their paper equivalents. Entire software solutions
have been built to expedite and simplify the completion of these forms, but
it’s important to recognize that none of these solutions address the underlying
issue: forms bloated by edge cases, exceptions, and an archaic design tailored
toward physical completion in a digital era. These problems exist in forms
that everyone uses. For example, the U.S. Individual Income Tax Return
Form, shown below with comments in fig. 31 and fig. 32.

The U.S. Government is notorious for having extremely complicated forms.
They are often long, confusing, misleading, ambiguous, and otherwise diffi-
cult. People pay accountants to make this process as easy and painless as
they can. Despite this reputation, the form shown in fig. 31 and fig. 32 is
surprisingly well-made. Form 1040 was first published for tax year 1913, over
100 years ago, and has been slowly updated over time as tax codes have be-
come more and more complicated. With this context, below are listed a few
interesting design choices made on this form, and how they actually make a
good amount of sense.

• Only uses one page front and back

– Paper is expensive, this form is filled out by every household in
America every year, which adds up drastically.

– Big forms of many pages are intimidating to taxpayers. It is dif-
ficult to know where to start and where attention should be di-
rected. A single page is much easier to manage and conceptualize.

– Common cases are listed on this form, while edge cases defer
to more paperwork. This keeps taxpayers focused on the small
amount of forms that matter to their particular case while reduc-
ing the complexity of this form.

115

Figure 31: Form 1040 “U.S. Individual Income Tax Return"

116

Figure 32: Form 1040 “U.S. Individual Income Tax Return" (Back)

117

– Instructions are separate so they do not need to be copied for
every form filed.

• Metadata is required in the margins

– Taxpayers must write extra data in the margins listing the number
and types of their dependents, whether or not additional forms
should be expected.

– Taxes are complicated, as such there many different departments
covering many different classifications and cases that are possible.
When processing a form, it is easier look at a single number or
check box to determine where to send it to the group most appli-
cable, rather than training the entire IRS staff to evaluate every
possible case on the entire form for everyone all at once.

• Numbered lines

– Each question and answer are appropriately numbered to clearly
associate the two and avoid errors of writing in the wrong box.

– Questions can reference each other, telling taxpayers to use values
from other questions in a clear and concise manner.

This illustrates the design philosophy that went into the 1040, and it
has stood the test of time. Looking at all the various iterations of this form,
from 1913 to 2011, the form has only undergone minor changes and additions.
By 1930, the overall structure of the form is nearly identical to its modern
counterpart. While more questions have been added fairly regularly, the form
itself hasn’t had a major update in over 85 years.[1]

However the world of 2016 is not the same 1913, the digital age brings
different requirements and constraints than previous, and the 1040 has not
kept up. Below is listed the same design choices praised in 1930, and why
they are no longer applicable today.

• Only uses one page front and back

– Computers are not paper. A screen can scroll as far as it needs to
and no trees are harmed.

– Digital forms can separate their content more practically and pro-
vide clear progress indicators to their users. The physical size of
a form is irrelevant today.

118

– Users are forced to redirect to other forms and fill them out as
necessary. In a digital environment, it is possible to customize the
form for each particular user. A form of information for a spouse
should be hidden until the user indicates that they married, at
which time they can be presented with the extra fields for their
spouse to be completed immediately without confusion.

– Printed instructions are often expensive, easily lost, bulky, and out
of date, making them unreliable and confusing for users. Digital
instructions can be retrieved instantly on-demand with zero cost
to the user.

• Metadata is required in the margins

– Computerized environments should be smart enough to compute
this kind of metadata for their users. Computers are far faster
and more reliable than any human in this regard, reducing errors
and frustration.

– Computers automate the processing of all forms of information,
and can compute whatever values they require from the raw data.
No one will ever look at the form and manually direct it one way
or another.

• Numbered lines

– In a reasonably spaced form, there is no risk of entering data in
the wrong field, making a numbering system obsolete.

– Any question that is dependent on another should simply have its
value computed using the raw data, avoiding inconsistencies.

Form 1040 was designed with a piece of paper in mind, and succeeded
in that context quite well. Now the 1040 is filled out primarily online, in
a completely different context. For this form to continue to be usable in a
modern digital environment, it needs to adapt and redesign for the digital
age. This example focused on a common “bad" form, but it is only indicative
of a larger problem of an out-of-date methodology regarding forms, which is
prevalent almost everywhere.

The Uniform language aims to address these problems by creating a sim-
ple tool which will allow forms to be built quickly and easily while taking
advantage of digital features without falling back to old methods.

119

B Santa Clara Graduate Program of Studies
Form

The SCU Graduate COEN Program of Studies form is a good example of a
lackluster form that can be cleaned up and expedited through the use of Uni-
form. There are several sections in the program of studies that either expect
a specifically formatted input or enforce constraints on the combinations of
inputs which can be provided. On a physical form the individual filling it
out is required to ensure that these criteria are met. On a hard coded form
it would be fairly tedious to implement these criteria using JavaScript on
the client-side and again in PHP or another language on the server-side to
provide a back-end. With Uniform, implementing the Program of Studies is
simple.

120

Figure 33: SCU Graduate Program of Studies Form

1 <form id="programOfStudies">
2 <div class="subForm" id="studentInformation">
3 <input type="text" id="name"/>
4 <input type="text" id="scuID"/>
5 <input type="text" id="email"/>

121

6 <input type="text" id="gradDate"/>
7 </div>
8 <div class="subForm list" id="transferCredits">
9 <!-- Row div can be duplicated as many times as

necessary -->
10 <div class="row">
11 <input placeholder="Course & Title" type="text"

class="CaT"/>
12 <input placeholder="Institution" type="text"

class="inst"/>
13 <input placeholder="Grade" type="text" class="

grade"/>
14 <input placeholder="Units" type="text" class="

transferUnits"/>
15 <input placeholder="Year Completed" type="text"

class="yrComp"/>
16 </div>
17 </div>
18 <div class="subForm" id="foundationCourses">
19 <input type="checkbox">COEN 20</input>
20 <input type="checkbox">COEN 21</input>
21 <input type="checkbox">COEN 12</input>
22 <input type="checkbox">COEN 19</input>
23 <input type="checkbox">AMTH 210</input>
24 <input type="checkbox">Advanced Programming </input >
25 <div class="subForm" id="amthSplit">
26 <input type="radio">AMTH 106</input>
27 <input type="radio">AMTH 220</input>
28 <input type="radio">AMTH 245</input>
29 </div>
30 <div class="subForm" id="coenCore">
31 <input type="checkbox">COEN 210</input>
32 <input type="checkbox">COEN 279</input>
33 <input type="checkbox">COEN 283</input>
34 </div>
35 <div class="subForm" id="gradCore">
36 <input type="text" id="ete"/>
37 <input type="text" id="ebe"/>
38 <input type="text" id="eas"/>
39 </div>
40 <div class="subForm list" id="track">
41 <!-- Row div can be duplicated as many times as

necessary -->
42 <div class="row">

122

43 <input placeholder="Title" type="text" class="
trackTitle"/>

44 <input placeholder="Course Number" type="text"
class="trackCN"/>

45 <input placeholder="Coen Units" type="text" class
="coenUnits"/>

46 <input placeholder="Non -Coen Units" type="text"
class="nonCoenUnits"/>

47 </div>
48 </div>
49 <div class="subForm" id="totalUnits">
50 <input type="text" id="tuInput"/>
51 </div>
52 <div class="subForm" id="signatures">
53 <input type="radio" id="newPS">New PS</input >
54 <input type="radio" id="oldPS">Updated PS</input >
55 <input type="signature" id="studentSignature"/>
56 <input type="signature" id="advisorSignature"/>
57 </div>
58 </form>

As stated previously, the Uniform language offers RegEx support, both
pre-defined and user-defined, which can be used to enforce basic input for-
matting.

1 $("#programOfStudies") {
2 //Form valid if all sub -forms are valid
3 valid: all $(".subForm") is valid;
4 }
5
6 // Id is a ’W’ followed by 7 digits
7 @idRegex: /"W[0 -9]{7}"/;
8 @emailRegex: /".*@.*"/;
9 @yearRegex: /"[0 -9]{4}"/;

10 @filled: /".*"/;
11
12 $("#studentInformation") {
13 valid:
14 $("#name") matches @filled and
15 $("#scuID") matches @idRegex and
16 $("#email") matches @emailRegex and
17 $("#gradDate") matches @yearRegex;
18 }
19
20 // Valid if less than 9 transfer units

123

21 $("#transferCredits") {
22 valid: all this.find("input") is valid and
23 sum this.find(".transferUnits") < 9;
24 }
25
26 $(".grade") {
27 valid: this matches @integer;
28 }
29
30 $(".transferUnits") {
31 valid: this matches @integer;
32 }
33
34 // sum not implemented yet , but is an intended feature
35 // Valid if more than 6 credits of grad core courses listed
36 @gradCoreSum: sum $("#gradCore input");
37 $("#gradCore") {
38 valid:
39 // Short circuit evaluation
40 all this.find("input") is valid and
41 @gradCoreSum >= 6;
42 }
43
44 $("#gradCore input") {
45 valid:
46 this matches @integer and
47 this > 0;
48 }
49
50 // Sum values for each section of units
51 @coenUnitsSum = sum $("#track .coenUnits");
52 @nonCoenSum = sum $("#track .nonCoenUnits");
53
54 // Set requirements on totals
55 // Must have more than 8 COEN units
56 // Must use less than 10 non -COEN units
57 $("#track") {
58 valid:
59 all this.find("input") is valid and
60 @coenUnitsSum > 8 and
61 @nonCoenSum < 10;
62 }
63
64 $(".trackCN") {
65 valid:

124

66 this matches @integer and
67 this > 300;
68 }
69
70 $(".coenUnits") {
71 valid:
72 this matches @integer and
73 this >= 1;
74 }
75
76 $(".nonCoenUnits") {
77 valid: this matches @integer;
78 }
79
80 $("#totalUnits") {
81 valid: $("#tuInput") is valid;
82 }
83
84 $("#tuInput") {
85 valid: this matches @integer;
86 }
87
88 $("#signatures") {
89 valid: all this.find("input") is valid;
90 }

C Santa Clara Financial Aid Office Verification
Worksheet

The Santa Clara Financial Aid Verification Worksheet is clearly designed to
be printed out and completed physically before being scanned and returned
electronically. Below is the HTML markup for a version of this form im-
plemented using the Uniform language which would drastically improve the
turnaround time on such a document.

125

Figure 34: SCU Financial Aid Verification Form

126

1 <form id="financialAidVerification">
2 <p>
3 Your 2015, 2016 Free Application. . . {remaining text

omitted for brevity}
4 </p>
5 <h1>Dependent Student Information </h1>
6 <div class="subForm" id="studentInformation">
7 <input type="text" id="lastName"/>
8 <input type="text" id="firstName"/>
9 <input type="text" id="middleInitial"/>

10 <input type="text" id="socialSecurity"/>
11 <input type="text" id="address"/>
12 <input type="text" id="dateOfBirth"/>
13 <input type="text" id="city"/>
14 <input type="text" id="state"/>
15 <input type="text" id="zipCode"/>
16 <input type="text" id="email"/>
17 <input type="text" id="phone"/>
18 <input type="text" id="studentID"/>
19 </div>
20 <h1>Dependent Student Family Information </h1>
21
22 <h2>List below the people in your parent household

including:</h2>
23 Yourself and your parent(s) (including a step -

parent), and
24 . . .
25 {Remaining list omitted for brevity .}
26
27 <p>
28 Write the names of all household members. . . {text

omitted for brevity .}
29 </p>
30 <div class="subForm list" id="familyInformation">
31 <!-- Row div can be duplicated as many times as

necessary -->
32 <div class="row">
33 <input placeholder="Full Name" type="text" class=

"memberName"/>
34 <input placeholder="Age" type="text" class="

memberAge"/>
35 <input placeholder="Relationship" type="text"

class="memberRelationship"/>
36 <input placeholder="College" type="text" class="

memberCollege"/>

127

37 <input placeholder="Will be enrolled at least
half -time" type="text" class="memberEnrollment
"/>

38 </div>
39 </div>
40 </form>

The application of the Uniform language follows.
1 $("#financialAidVerification") {
2 // Root form valid if all sub -forms are valid
3 valid:
4 $("#studentInformation") is valid and
5 $("#familyInformation") is valid;
6 }
7
8 $("#studentInformation") {
9 // Valid if all inputs falling under this id are valid

10 // By default , text inputs are valid if they contain data
11 valid: all this.children("input") is valid;
12 }
13
14 $("#socialSecurity") {
15 valid: this matches /^\d{3}-\d{2}-\d{4}$/;
16 }
17
18 $("#zipCode") {
19 valid: this matches /^\d{5}$/;
20 }
21
22 $("#studentID") {
23 valid: this matches /W[0 -9]{8}/;
24 }
25
26 $("#familyInformation") {
27 // Valid if all items falling under this id are valid
28 valid: all this.find("input") is valid;
29 }
30
31 $("#age") {
32 // @number is a pre -set variable defined by the language
33 valid: this matches @number;
34 }

128

D Uniform Server Validator Example
The following code comprises a NodeJS server which asks the user to check
a box for the request to be considered valid. If the user does not check the
box, then the request is invalid. If the user does check the box, then the
request is valid.

Note that normally invalid requests will be caught on the client and not
be sent to the server at all. This is how most users would want to interact
with the application. This example is meant to show how the server can
react to bad data, so client validation has been disabled by running the line
uniform.options.disableClientValidation ();

on the client. This is useful for debugging a server when it is given bad
requests, but is not intended to be used on a production system.

server.js

1 var express = require("express");
2
3 // Require Uniform server -side validator
4 var validate = require("uniform -validation");
5
6 // Create express application
7 var app = express ();
8
9 // Set directory to serve static files

10 app.use(express.static("www"));
11
12 // On POST request to /submit
13 app.post("/submit", validate ({
14 path: "www/script.ufm", // Uniform script to validate
15 main: "#rootForm" // Check if $("# rootForm ") is valid
16 }), function (req , res) { // Callback function
17 ...
18 });
19
20 // Start server and listen for requests on port 8000
21 app.listen (8000);

129

www/index.html

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <script src="/jquery.js"></script >
5 <script src="/uniform.js"></script >
6 <script >uniform.options.href("/script.ufm");</script >
7 <script >uniform.options.disableClientValidation ();</

script >
8 </head>
9 <body>

10 <form id="rootForm" method="POST" action="/submit">
11 <input id="chkBox" name="chk" type="checkbox"/>
12 Check me to validate!
13
14 <button type="submit">Submit </button >
15 </form>
16 </body>
17 </html>

www/script.ufm

1 $("#rootForm") {
2 // Form is valid if the check box is checked
3 valid: $("#chkBox");
4 }

E API Documentation
The API for the Web Application was developed using Loopback.io, which
supports the Swagger API standard. It is able to export all the APIs it
exposes as a JSON file that can be interpreted by any Swagger renderer and
displayed in any format. The framework even contains a built in API explorer
to help developers learn, build, and debug the API. It can be accessed by
running the server in a development environment and visiting “/explorer”.
This shows all the APIs the server can accept and how to use them. It also
allows users to directly send API requests to easily examine their effects.

Not all API documentation is accurate, this is because many APIs were
custom-built for this application and were not auto-generated by Loopback,
while other APIs were modified from their original intended usage. As such,
the APIs may not work precisely as indicated in the documentation.

130

References
[1] Yanofsky, David. "Line for line, US income taxes are more complex than

ever." Quartz. 13 Dec. 2012. Web. 11 Apr. 2015.

[2] Synodinos, Dio. "HTML 5 Web Sockets vs. Comet and Ajax." InfoQ.
N.p., 11 Dec. 2008. Web. 18 Nov. 2015.

[3] Lubbers, Peter. "HTML5 WebSocket - A Quantum Leap in Scalability
for the Web." WebSocket.org. Kaazing Corporation, n.d. Web. 10 Oct.
2015.

[4] Can I use.... N.p. N.d. Web. 24 May 2016.

[5] Sotelo, Caleb. "Evolution of the Single Page Application." Paislee.io.
N.p., 08 July 2014. Web. 10 Oct. 2015.

[6] Wasson, Mike. The Traditional Page Lifecycle vs. the SPA Lifecycle. Dig-
ital image. MSDN Magazine. Microsoft, Nov. 2013. Web. 11 Nov. 2015.

[7] Salihefendic, Amir. "Is Node.js Best for Comet?" Hacking and Gonzo.
N.p., 22 Oct. 2010. Web. 10 Oct. 2015.

[8] McNulty, Eileen. "SQL vs. NoSQL- What You Need to Know." Datacon-
omy. N.p., 1 July 2014. Web. 15 Oct. 2015.

[9] Tezer, O.S. "A Comparison Of NoSQL Database Management Systems
And Models." DigitalOcean. N.p., 21 Feb. 2014. Web. 15 Oct. 2015.

[10] Strongloop. "datasources.json." Loopback - Documentation. 15 Apr.
2016. Web. 25 May 2016.

131

	Santa Clara University
	Scholar Commons
	6-9-2016

	Uniform: The Form Validation Language
	Sawyer Novak
	Reid Palmquist
	Douglas Parker
	Recommended Citation

	Introduction
	Digital Forms
	Digital Forms Require Programming Skills
	Logically Simple but Hard to Implement
	We Need a Solution

	Emerging Solutions
	Problem 1: Limited Functionality
	Problem 2: Inadequate Interactive Help
	Problem 3: Lack of Mobile Support

	Uniform Validation Language
	Why Uniform?
	Uniform's Capabilities
	Powerful, Yet Easy to Learn

	Web Application
	Web Application's Capabilities
	Mobility Addressed

	Document Layout
	I Logical Language
	The Logical Solution
	Design Philosophy
	Requirements
	Functional Requirements
	Non-Functional Requirements
	Design Constraints

	Why Uniform?
	The Problem: Car Form
	Intended Form Logic
	Problems

	The Solution: The Uniform Language
	The Car Problem Revisited
	index.html
	carForm.ufm

	Uniform Code Structure
	Blocks
	Selectors
	Tags
	Statements
	Advanced Features
	Regular Expressions
	Variables
	Applying Rules to Multiple Elements

	Examples in the Real World
	Architectural Design
	Lexer and Parser
	Lexical Components
	Expression Priority
	Grammar

	Ruleset
	Evaluator
	jQuery Plugin
	Server-Side Validation
	Install and Usage Guide
	Client-Side
	Server-Side

	Security
	Uniform Ambiguity
	Server Data Format
	Extraneous Client Information
	Server-Side HTML
	Language Redesign
	Cross-Script Validation
	Main Misdirection

	Design Rationale
	Usability
	Logical Design
	CSS Format

	Efficiency
	Nested Form Evaluation

	Design Patterns
	Shared Logic

	Technologies Used
	Testing
	Unit Testing
	User Testing
	Quiz Results
	Improvements Suggested

	Browser Testing
	jQuery Support Testing

	Development Problems and Solutions
	Detecting Circular Dependencies
	What is a dependency?
	What is a circular dependency?
	Can we detect at compile time?
	Why it needs to be this way
	The seemingly easy solution
	The surprisingly hard solution (still doesn't work)
	Decision: Ignore the problem

	Server-Side HTML Knowledge

	II Web Application
	Solving the Human Element and Mobile Use Cases
	System Components
	Actors
	Form Terminology

	Requirements
	Functional Requirements
	Critical
	Suggested

	Non-Functional Requirements
	Critical
	Recommended

	Design Constraints
	Post Implementation Evaluation
	Functional Requirements
	Non-Functional Requirements
	Recommended Features and Design Constraints

	Use Cases
	Create a Form Template
	Issue a Form Instance
	Provide Access to a Form Instance
	View a Form Instance
	Fill out a Form
	Communicate through Web App

	Activity Diagrams
	Client Workflow
	Associate Workflow
	Admin Workflow

	Conceptual Model
	Landing Page
	Template Creation
	Instance Creation
	Mobile Implementation

	Architectural Design
	Data Flow Architecture
	System Architecture
	Validation
	Database Schema

	Technologies Used
	Server
	Client
	Database

	Design Rationale
	Comet
	Single Page Application
	Technologies
	Server
	Client
	Database
	Testing

	Testing Plan
	Test-Driven Development
	Unit Testing
	Acceptance Testing
	Security Testing
	URL Manipulation
	Cross-Site Scripting
	Database Injection
	API Misuse

	User Testing
	Browser Testing

	Test Results
	User Testing
	Client
	Associate
	Admin
	Browser Testing

	Install Guide
	Installing system dependencies
	NodeJS
	MongoDB

	Installing application dependencies
	Testing the server
	Run server
	Common errors
	Address in use
	Database connection error
	Home page perpetually loads

	User Guide
	Accessing the Application
	Navigating the Landing Page
	Form Instances
	Form Templates
	Creating a Form Template
	Issuing a Form Instance

	Using the Template Editor
	The HTML Editor
	The Uniform Editor
	The Instance Preview

	Viewing a Form Instance
	Editing a Form Instance

	III Development
	Tools
	Git
	JetBrains WebStorm
	Atlassian JIRA
	Source Code Hosting

	Development Problems and Solutions
	Interface Redesign
	Development on Local-Host Masked Latency
	Value Update Race Conditions

	Development Timeline
	Ethics
	Information Security
	Design Decisions to Ensure Privacy

	Team and Organizational Ethics
	Social and Cultural Issues
	Product expectations
	Sponsor expectations
	Malicious use

	Documentation
	Open source library
	API documentation

	Aesthetic Analysis
	Uniform Validation Language
	Web Application
	Mobile Accessibility
	Error Handling
	Collaboration

	IV Appendix
	Design Philosophy of Paper Forms
	Santa Clara Graduate Program of Studies Form
	Santa Clara Financial Aid Office Verification Worksheet
	Uniform Server Validator Example
	API Documentation

