
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2012

Online Collaborative Editor
Aditya Rao
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Rao, Aditya, "Online Collaborative Editor" (2012). Master's Projects. 245.
DOI: https://doi.org/10.31979/etd.ju4a-e5hv
https://scholarworks.sjsu.edu/etd_projects/245

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/245?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

 1

Online Collaborative Editor

A Writing Project

 Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment of the

Requirements for the

Degree Master of Computer Science

By

 Aditya Rao

Spring 2012

 2

 © 2012

Aditya Rao

ALL RIGHTS RESERVED

 3

 SAN JOSÉ STATE UNIVERSITY

The Undersigned Writing Project Committee Approves the Writing

Project Titled

Online Collaborative Editor

By

Aditya Rao

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Robert Chun, Department of Computer Science

05/02/2012

Dr. Chris Pollett, Department of Computer Science

05/02/2012

Mr. Mayuresh Hajirnis, Software Engineer, Yahoo! Inc

05/02/2012

 4

Abstract

“Online collaborative editor” is a node.js based browser application that provides

real time collaborative editing of files and improves pair programming. Current real

time editors fail to provide simultaneous viewing and editing of files within the

server and results in a complex version controlling system. Such systems are also

vulnerable to deadlocks and race conditions. This project provides a platform for

real time collaborative editors, which can support simultaneous editing and viewing

of files and handle concurrency problems by using locking mechanism. The

experiment results showed that node.js platform provides good performance for

collaborative editing.

 5

Acknowledgements

I would like to thank my project advisor, Dr. Robert Chun, for providing his constant

guidance; support and direction that helped me achieve my goals on this thesis

project. I appreciate my committee members, Dr. Chris Pollett and Mr. Mayuresh

Hajirnis for their valuable feedback and guidance.

I would also take this opportunity to thank my classmate Mr. Shailesh Sawant to

guide me during the tricky phases of this project.

 6

TABLE OF CONTENTS

1 INTRODUCTION .. 9
1.1 PROBLEM STATEMENT .. 9
1.2 WHAT IS COLLABORATIVE EDITOR? .. 9
1.3 DESIGN OVERVIEW ... 10
1.3.1 EDITING FUNCTIONALITIES: .. 11
1.3.2 FILE SYSTEM FUNCTIONALITIES: .. 11
1.3.3 ACCOUNT FUNCTIONALITIES: .. 11

2 RELATED WORK .. 12

3 TECHNOLOGY STACK ... 14
3.1 NODE.JS .. 14
3.1.1 WHY NODE.JS ... 14
3.2 EXPRESS FRAMEWORK .. 16
3.3 REDIS DATABASE .. 17
3.3.1 WHY REDIS? .. 18
3.3.2 WHO USES REDIS: ... 18
3.4 SOCKET IO ... 18
3.5 JQUERY FRAMEWORK ... 19

4 PROJECT DESIGN ... 19
4.1 BACK-END SERVER ... 19
4.2 METHODS USED BY SOCKET IO: ... 22
4.2.1 SERVER SIDE: ... 22
4.2.2 CLIENT SIDE ... 24
4.3 BACK-END DATABASE: ... 25
4.4 SESSION MANAGEMENT: ... 27
4.5 ACCOUNT MANAGEMENT: .. 27
4.6 CHAT APPLICATION: ... 27

5 PROJECT FLOW .. 28
5.1 GENERAL FLOW:.. 28
5.2 DETAILED FLOW: .. 30

6 EXPERIMENT .. 33

7 ANALYSIS .. 35

8 PROBLEMS ... 38

9 CONCLUSION ... 39

10 FUTURE WORK ... 39

 7

11 REFERENCES ... 40

LIST OF TABLES

TABLE 1 STATISTICAL ANALYSIS - COLLABEDIT VS COLLABORATIVE EDITOR
………. 40

 8

TABLE OF FIGURES

Figure 1: Expressjs framework ... 17

Figure 4: Creating a node.js app server ... 20

Figure 5: Establishing Client-Server connection ... 21

Figure 6: node.js and Socket IO create server... 22

Figure 7: Socket IO on connection request .. 23

Figure 8: Socket IO on disconnect request ... 23

Figure 9: Socket IO broadcast message to clients ... 24

Figure 10: Socket IO client Script accepting Server message .. 24

Figure 11: Redis Publish/Subscribe - Send/Receive updates ... 26

Figure 12: Chat room for connected clients .. 28

Figure 13: General design flow of collaborative editor .. 29

Figure 14: Google Docs sharing a doc file ... 34

Figure 15: Google Docs - Sharing a spreadsheet ... 35

Figure 16: Two users sharing a document with collaborative editor 36

 9

1 INTRODUCTION

1.1 Problem Statement

It’s been a common practice where team members working on a common project

share their documents and text files electronically as an email attachment or storing

the files on external devices (such as USB hard drive and flash-drive) and physically

sending these devices to team members. When any member of the team updates the

files then the entire process of distribution has to be repeated so that everyone has

an updated copy. This process of distribution is slow and time consuming.

The primary goal of my project is to design a platform that is simple yet a practical

solution that supports multi-user file editing over a distributed environment.

One way of solving the above problem is to create a web server that will maintain all

the files being shared by group of users. These users will then use their client

machines to request particular files from the web server. The web server will

maintain files in its centralized repository along with the users information. When

any client updates the shared file, the server synchronously updates the changed file

to maintain a consistent state of the file.

1.2 What is collaborative Editor?

Online collaborative editing is a concept, where group of users geographically

dispersed over a network are simultaneously working with the same set of files. As

defined by Wilson (1991) [1] Computer Supported Cooperative Work is the way

 10

people work in groups with enabling technologies of computer networking and

associated software, hardware, services and techniques.

Developing a collaborative system involves people from geographically different

locations working on a common project. Collaboration can be achieved in many

ways but the simplest form of collaboration is through file editing and sharing. That

is, files are retrieved from the web server, edited by a group of people and then

saved on the web server in an asynchronous mode.

Computer software designers have constantly developed groupware (collaborative

software) [2] that help users complete their projects collaboratively.

1.3 Design Overview

The project platform is designed in Client-Server styled architecture. The shared file

is stored on a Back-End database that can be accessed by the server. Team members

in the project query the server from client side. A key mechanism in this platform is

the locking mechanism that will provide concurrency control. The different

functionalities within this platform can be underlined as follows:

 11

1.3.1 Editing functionalities:

Editing a file, with other users being able to view the file (and the changes)

simultaneously. Lock or unlock the textarea block being edited to provide

consistency control.

1.3.2 File system functionalities:

Create new files, open existing files and save modified files back to the server.

1.3.3 Account functionalities:

Secure Login (Username and Password), session management. If the client

accidently gets disconnected from the server or closes his browsing session, the

server will maintain his session until he reconnects or until the default time for

reconnection expires.

 12

2 Related work

Existing collaborative editors have also adopted the Client-Server architecture

where the server holds a persisted copy of the shared document. Clients will have

their own local copy of this shared document. Any changes to this document is

synchronized to the server and then propagated to other clients by the server.

Below I describe some collaborative editors with their restrictiveness on

collaboration.

SASSE collaborative editor [3] uses the concept of shared workspace for every user

working on the document concurrently. A unique color is assigned to every user of

the document to represent changes in the document. This system however fails to

provide any concurrency control.

DUPLEX distributed editor [4] splits the single document into individual modules

maintained separately by different team members within the group. Kernel

replicates updates to the server and reduces any communication overhead. This

system failed to provide any simultaneous editing.

RCS [20] is a version control system where a user modifies the document by an

external checkout step and finishes any updates by performing the check-in step.

Multiple users can perform the same set of actions to reflect changes however

exceptions are thrown if the user checks-in an update on an old copy of the

document. The system uses locking mechanism to detect any editing conflicts and

 13

provides diagnostic messages to the affected users. In this system users modify their

local copy and save changes on central copy for consistency however the system

fails to provide synchronous editing or viewing of a file.

Google Docs [18] provides capability to share documents collaboratively with

different users. With Google docs we can share excel sheet documents with another

user and collaboratively work to update any block within excel. However real time

collaborative editing within the excel block is limited. User A can edit one block and

user B can edit and see the changes only after user A has left that block. No real time

editing content can be seen synchronously. Google doc also provides a document

editor that displays real-time changes synchronously. This feature is advantageous

where multiple users need to make changes simultaneously, however, it fails to

provide any locking mechanism to the document where only a particular user needs

to update the file. This project (inspired by Google Docs) provides both locking as

well as synchronous editing functionalities and attempts to produce a simple and

robust platform for real-time collaborative editing.

This project aims to reduce the traditional system limitations by providing a

platform that enables us to have simultaneous read writes on a file and also provide

effective consistency control on the file being edited.

 14

3 Technology Stack

3.1 Node.js

Node.js [13] is a platform built on top of chrome’s JavaScript runtime that is capable

of building scalable and fast network applications. It uses an event driven and non-

blocking I/O model that is lightweight and efficient. It’s a technology ideal for real-

time data-intensive applications that run across distributed devices. Node’s

provides memory efficiency under high loads for each connection and prevents

deadlocks as no function of Node directly performs input/output operations.

3.1.1 Why node.js

Problem Statement:

Traditional web servers have always been thread-based models. We need to launch

an Apache server to accept connections. The web server on receiving a connection

will keep that connection open until it services the request for a page or it sends any

information. All this time the server is blocking on that input/output operation.

In order to scale this type of web server additional copies of web servers are

required. This is referred as ‘thread-based’ because every copy of the web server

will require another operating system thread.

 15

Solution:

In contrast to the above problem statement, Node.js is an event-based model where

a web server accepts the request and then passes this request to handlers. It then

continues to service the next request. Once the previous request is completed, it

goes back to the process queue and on reaching the front of queue the results are

returned to the requesting client.

This model is scalable and highly efficient as the web server always accepts requests

and not blocking on any read/write operation. This is termed as ‘event-driven’ or

‘non-blocking Input/Output’. The process can be given in following steps:

1. Web browser will make a request for “/MainPage.html” with the node.js server.

2. The node.js server will accept the browser’s request and will call a function to

retrieve that file from the disk.

3. While the node.js server is waiting for the file to be retrieved, it will service the

next web request if any.

4. When the server retrieves this file from the disk, a callback function is added to

the server’s queue.

5. The node.js server will execute that callback which in this scenario will render

“/MainPage.html” and then return the requested page back to the client’s web

browser.

 16

This process may take milliseconds to service the request, but this would count

when many requests are being processed.

3.2 Express framework

Express.js [14] is a high-class web development framework built on top of node.js

that helps developers builds complex distributed web applications easily and

efficiently. It extends the methods provided by standard node.js toolkit. This

framework can be used along with connect framework to create http web server,

sessions and cookie parser. An advantage of using such a framework is that it

provides an efficient source code management. Files are managed in different

modules where server files are placed at root level, view files are placed in view

module and node specific modules and dependencies are placed in separate

sections. Following figure shows the basic layout of express framework (opened

with a text editor).

 17

Figure 1: Expressjs framework

3.3 Redis Database

Redis [15] is open source key value pair storage. Since the keys within redis can

contain Strings, lists, hashes, sets and ordered sets, its consider more of a data

structure server. It supports Master-slave replication and so data from any redis

server can be replicated to any number of slaves. Redis provides persistency of data

by asynchronously transferring data from memory to disk at regular intervals. Redis

also contains commands to lock any keys defined within its data structure. This

project is using a redis client ‘node-redis’ to leverage all redis capabilities.

 18

3.3.1 Why Redis?

Advantages:

• Redis provides fast key-value storage. It can perform a quick read and write

operation on a database by using the GET, SET operations.

• Its collection types and the atomic operation on those types allow us to

handle complex data scenarios.

• It can be used for data persistence.

Because of these advantages I chose redis to be my back-end database that can

provide simple key-value operations.

3.3.2 Who uses Redis:

Craigslist, GitHub, guardian.co.uk, flickr by Yahoo and stackoverflow are some of the

real world examples where redis is being used as a persistent storage.

3.4 Socket IO

Socket IO [16] is used to make real time applications on every browsers or mobile

devices overcoming any differences between different transport mechanisms. This

project uses Socket IO to create different client server connections.

 19

3.5 jQuery framework

jQuery is a fast and efficient JavaScript library [17] that provides event handling,

Ajax interaction and simplified HTML traversing for rapid web development. This

project uses jQuery version 1.7.2.

4 Project Design

The main objective of this project is to design a browser-based editor that will be

easy to use and help users share their work collaboratively over a geographically

distributed network.

4.1 Back-End Server

Back-End of this project consists of two parts. One part is to serve regular http

requests and other part to serve web socket requests. For serving http requests this

project uses a node.js web framework called ‘Express’. A simple http request server

can be created as follows:

 20

Figure 2: Creating a node.js app server

The above figure describes the process of creating http request server. We create a

‘createServer’ object and reference it using app. All corresponding calls to http

server can be handled by using the reference variable app. When a client connects

to the server, the requests are handled using the ‘req’ object and the response from

server is initiated using the ‘res’ object. The server listens on a unique port ‘3000’

for any connections.

The second part of the Back-End server is to provide WebSocket requests.

WebSocket’s provide us with methods to send client messages to the server

efficiently using simple syntax. Socket IO is a WebSocket API [16]. Socket IO will

decide based on feature detection if connection can be established with Ajax long

polling, WebSocket or flash. Most real time applications that can be run on different

browsers use Socket IO for client server communication.

 21

Figure 3: Establishing Client-Server connection

The figure above describes the Socket IO connectivity between client and server.

Socket IO consists of two parts:

1. A server program that sends and receives data from client.

2. A client script that connects to the Socket IO server and then send and receive

data.

Multiple client browsers can establish Socket IO connection and communicate with

each other using the common Socket IO connection.

Client browser can request for webpages irrespective of using Socket IO, where the

request response objects of node.js are used to send and receive data. This project

establishes the connection with Socket IO at the same time when connection with

 22

node js server is established through login. Only data send and receive is done

through Socket IO and any web page requests are handled directly by node js server.

Socket IO is attached to the node.js server, enhancing WebSocket capabilities to

provide horizontal scalability, built-in multiplexing and automatic JSON

encoding/decoding. This can be achieved using the code below:

Figure 4: node.js and Socket IO create server

4.2 Methods used by Socket IO:

4.2.1 Server Side:

Socket on connection: This script on the server listens for connections by clients and

provides a handle that can be used for request response objects.

 23

Figure 5: Socket IO on connection request

Socket on Disconnect: This script on the server is triggered when a client

disconnects or closes his browser session. Any code related to disconnect event is

placed within this section.

 Figure 6: Socket IO on disconnect request

Socket on Message, join room, broadcast: Server side script contains a ‘on message’

method that accepts messages or data from client and then processes that message.

Server script can also create multiple rooms and then add clients to them using the

‘join’ method. The server can then send messages only to clients within that room by

using ‘broadcast.to(room)’ method. A broadcast in general would send messages to

all clients connected to that socket session. The code below illustrates the desired

functionality.

 24

Figure 7: Socket IO broadcast message to clients

4.2.2 Client side

Socket on connect: The client side script establishes connection with the socket

server. Client sends a connection request to the server listening on a particular port.

The following code describes the connection procedure.

 Figure 8: Socket IO client Script accepting Server message

 25

4.3 Back-End Database:

This project uses redis as the Back-End data store. Redis can be used for providing

two important functionalities: redis as a persistent store and message delivery using

redis publish/subscribe.

Redis as persistent store: This project uses redis as a persistent data store. Its key-

value store provides fast in-memory access to data. It periodically writes the data to

a disk. This mechanism is important to this project where integrity of data and

faster access matters. Redis also supports different data types. At times the

messages from chat sessions or files can be stored as lists within the redis data

structure.

Message delivery using redis publish/subscribe: When the client edits any text

within the editor, the data (text) needs to be propagated correctly to other clients.

Redis publish/subscribe methods implement this functionality. Whenever clients

are collaboratively using a single file, two redis client instances are created for them.

One client is used for publishing the message and other client is used to listen for

incoming messages from subscribed channels. So when one client writes

(publishes) to the file, other clients are listening (subscribed) to that client. We need

two redis-client instances per user because in redis when we subscribe to a channel

we cannot run any other redis commands. So by using another instance of redis-

client the user can run any other redis commands. A client can subscribe and

 26

publish to multiple channels in redis. Following figure describes the architecture of

redis publish/subscribe.

Figure 9: Redis Publish/Subscribe - Send/Receive updates

In above figure, Client 1 and Client 2 have two redis client instances out of which

one redis-client is used for publishing to channel1 and other is used to subscribe to

channel1. Similarly Client 2 subscribes and publishes to channel1. Any message

published by Client 1 to channel1 will be sent to clients subscribed to channel1.

When any client subscribes to a channel, a subsequent listener function within the

subscribe method will listen to that channel and display the received message to the

clients browser.

 27

4.4 Session Management:

In this project, when a client wants to access the collaborative editor he has to login

to the application. When a client has successfully logged in, a session is created for

that client and stored within redis. This session will be persisted within redis until

the client log’s out. If the user is disconnected without logging out, his session will

be maintained within the redis data store. This session can then be accessed for

reconnection. If a client logs out of the application, then his session will be removed

from redis store.

4.5 Account Management:

Every successfully logged in client is saved within an array list of users. This user list

will be updated (increment or decrement) when any client log’s in or log’s out of the

application.

4.6 Chat application:

This project also provides a chat application, where connected users (clients) can

communicate. This application also displays list of users currently using the chat

session. Every client is notified when any client joins the chat room or leaves the

chat room. Subsequent users list with updated users are displayed. Following

displays the chat UI.

 28

Figure 10: Chat room for connected clients

5 Project Flow

5.1 General Flow:

The general flow of the collaborative editor can be displayed as follows:

 29

Figure 11: General design flow of collaborative editor

1) Client connects to the server and provides the login credentials.

2) On successful login the client is redirected to the main page of the

application.

3) The Main page has link to two URL’s. The Chat application and the Editor

application.

4) Within Editor application, the client has an option to create a file or edit a file.

5) Client log’s out of the application and the connection between client and

server terminates.

 30

5.2 Detailed Flow:

Login: The client browser sends a connection request to the node.js server listening

on port 3000. On failure the client receives an error message else the client-server

connection is established and the client is redirected to the login page. A list of valid

usernames and their passwords are maintained within the node.js server. On

successful login, a session is created for the respective client, which is persisted

within the redis data store. A nickname corresponding to the client’s login ID is used

to name the session for that client. This name is then added to the list of users

connected to the node js server. When the client successfully establishes the

connection with node.js server another connection with Socket IO server is

established automatically. Socket IO server references this client by his nickname,

which is same as his login name saved by the node.js server.

Main Page: On successful login the client is redirected to the main home page of the

application. This page has links for ‘Chat’ and ‘Editor’ applications. Clicking the chat

URL redirects client to the chat application whereas clicking on the editor URL

redirects client to the editor application.

Chat application: When the client is redirected to the chat application, the

nickname as identified by the Socket IO server will be used for display. Alternatively

the client can create a separate nickname for this chat session. The client is able to

view subsequent users joining and leaving the chat room. Messages sent to this chat

room will be broadcasted to every client connected to the chat room. That is, Socket

 31

IO server broadcasts every message in this chat room to every client connected to

the Socket IO server.

Editor application: The main feature of this project is the editor application. It has

two features implemented within it. The create file and edit file.

Create File: The client writes the file name within the text box and enters the

contents of the text within the textarea of the editor application and then saves the

file. On clicking the save button, a key value pair is saved within redis data store. The

key will be the name of the file and the value will be the text written inside the

textarea. This is achieved using the redis LPUSH key [value] command. For the

scope of this project all created files are shared between clients connected to the

node.js server.

Edit File: The client opens a file for editing. The file stored within the redis data

store is fetched and its contents are displayed within the textarea. All clients

currently on the editor page can view the contents of the file within their editor

textarea. The client who initiates the edit session by clicking on the textarea box

becomes the writer and all other clients become viewers of the file. The textarea of

all viewers are disabled and so contents of the file cannot be edited. Changes made

to this file by the writer can be seen simultaneously by the viewer’s. This

functionality is achieved by using the redis publish/subscribe methods. Client

making the changes becomes the publisher and the viewer’s become the

 32

subscribers. Any changes made to that file is published to the channel and

subscribers listening to that channel get the changes made to that file.

The updates made to the file are synchronously being appended to the value

attribute of the key within redis data store where the key is the name of the file.

When the writer finishes editing the file, he clicks on the release button that fires a

jQuery event that releases the locks on all the viewer’s textarea. The client who then

initiates the edit event will own the lock for that file. Redis also provides SETNX

command that can be used to lock a particular key within the data store and only the

client who owns the lock is able to append the file. If other clients attempt to access

the key they are unable to acquire the lock as its already being held by a different

client. The only way to release the lock is when the time set for the key expires or if

the client releases the lock held for the key. In this way deadlocks and race

conditions are avoided using redis.

 33

6 Experiment

After designing the platform for collaborative editor, experiments were done to test

the performance and functionality of editor when multiple clients were involved.

Test 1: Basic collaborative Editor functional test.

Three browsers with multiple tabs (5 each) were used to simulate 15 clients. Before

this experiment some files were added to the redis data store, which were shared

between all the connected clients. After every client logged in to the editor client1

selected the file test1 to edit and then the contents of this file was retrieved in the

text area box of all the clients. When client1 clicked on the text area to edit the file,

all other users became readers and their text area was locked. All other users were

able to successfully view the changes simultaneously made by client1. After cleint1

left the editing session other users were able to acquire the lock and continue with

edit session.

Contents of file ‘test1’, was synchronously updated at the redis data store.

In this experiment, the platform successfully helped all the clients to edit the same

file collaboratively. Concurrency control by using locks prevented any deadlock or

race conditions. The only glitch in the platform is due to users having to wait for a

long time to acquire the lock.

Test 2: Google Docs vs. Collaborative editor:

 34

Case 1: Google Docs:

A document file (*.doc) and a spreadsheet file were shared between two users.

Simultaneous read writes were performed on the document to analyze real-time

editing and locking.

Figure 12: Google Docs sharing a doc file

 35

Figure 13: Google Docs - Sharing a spreadsheet

7 Analysis

Case 1 and Case 2 compared with Collaborative editor:

Using Google Docs, the two users were able to simultaneously update/edit a shared

document. The files were saved on the fly and the simultaneous editing was

indicated with a different color code, one for each user. The document (*.doc) file

was unable to provide any locking mechanism to prevent one user from editing the

document. This is feature is highly desired when one user does wants to limit access

of the file to shared users.

For case 2, the users were able to share a spreadsheet and collaboratively edit the

blocks within spreadsheet. Different color code was used to indicate individual user

editing the block. However, the updates/edits were not displayed simultaneously

 36

and the edit/updated block was displayed only after one user left the block after

performing update. Other user was unable to edit the block until the user holding

block released edit section.

Compared with the above two cases, collaborative editor was able to provide

simultaneous update/edit the editor. The changes to the file was displayed in real-

time to other user and also provided the feature to lock the edit area and prevent

other user from editing the file. Thus locking mechanism implemented a semaphore

on the textarea with one user being the writer and other users being the readers of

the file. The files were saved upon clicking the save button which made sure the

latest contents of the edit session being saved to the file. Since the edit session were

synchronous and in real-time, the project successfully implemented updated

collaborative editing enhancing collaborative work.

Figure 14: Two users sharing a document with collaborative editor

 37

Statistical comparison with Collabedit:

Compared with CollabED [21], although our platform sometimes increases the wait

time for users during synchronous editing, it has advantages because the

performance in terms of CPU usage, no of clients that can be supported and

performance of system with all the users are significantly better than the compared

system. A table representing the observations is given below.

No of Browser clients CollabED Collaborative Editor

3 Performance: Fast.

Concurrency: No

CPU Usage: ~40%

Performance: Fast.

Concurrency: Yes

CPU Usage: ~20%

10 Performance: very slow.

Concurrency: No

CPU Usage: ~70%

Performance: Fast.

Concurrency: Yes

CPU Usage: ~40%

1000 Do not support Performance: Fast.

Concurrency: Yes

CPU Usage: ~50%

Table 1: Statistical Analysis - Collabedit vs Collaborative editor

Maximum of 5000 clients can be supported by collaborative editor due to redis

publish subscribe capability which is stable with a maximum of 5000 clients.

 38

8 Problems

Technical Challenges:

The main challenge involved with this project was to select the right technology.

Significant time was invested in researching different technologies like PHP, jQuery,

MySQL etc. Most of these technologies did not have the required library to

implement certain functionalities (like session creation and locks). Finally, node.js

was selected along with redis data store for faster development of this collaborative

editing application.

Design Challenges:

The main design challenge for this project was to implement concurrency control.

Since redis is an upcoming technology certain commands are yet to be implemented

completely. Redis SETNX command provided ways to acquire lock for a file however

there are ways where this feature can be broken. Designing this semaphore such

that readers can only read and writer only writes was the main challenge. The

SETNX of redis along with ajax events in jQuery helped provide a stable solution to

this design.

Another design challenge was to have multiple clients publish and subscribe to

different channels and get updates from any channel they have subscribed. Many

conflicting issues were seen when multiple channels were used along with Socket

IO.

 39

Hardware/Software Challenges:

Each version of the node.js server is compatible with certain stable releases of

connect middleware; redis data store and Socket IO. All configurations needed to be

compatible with each other.

9 Conclusion

This project designed and implemented a general collaborative editing platform.

The platform was designed using node.js and Socket IO for providing real time

sending and receiving data. A single file was shared by multiple clients and

synchronously updated at real time within the redis data store. This project created

a platform to provide concurrency control. File locking mechanism was used to help

provide concurrency control. The experiment analysis showed that the designed

platform made a good performance for collaborative real time editing but users had

to wait for a long time before another user quitted editing a file.

10 Future work

In future work, we should be designing a more effective method to improve

concurrency control, which would decrease users waiting time. For example redis

provides ways to lock a key (file) for a specified amount of time by including the

time to expire for the lock, however the user may increase the lock time by issuing

another SETNX command with additional time to expire. If the user holding the lock

gets disconnected then other users will have to wait for a longer time (till the lock

time expires) before getting a new lock to the file.

 40

In addition, other databases like MongoDB, CouchDB can be used as an experiment

instead of redis data store.

11 References

[1] Wilson, P. Computer Supported Cooperative Work: An Introduction. Oxford, UK:

Intellect Books, 1991

[2] Carstensen, P. H. Schmidt, K. Computer Supported Cooperative Work: new

challenges to systems design. To appears in Handbook of Human Factors, Kenji Itoh,

Tokio, 1999 (23p)

[3] Dewan, P., and Hegde, R. Semi-Synchronous Conflict Detection and

Resolution in Asynchronous Software Development. Proc. ECSCW 2007, 159-178

[4] Kenroy G. Granville and Timothy J. Hickey. 2009. CollabEd: A Platform for

Collaboratizing Existing Editors. In Proceedings of the 2009 International

Conference on Mobile, Hybrid, and On-line Learning (ELML '09). IEEE Computer

Society, Washington, DC, USA, 90-96.

[5] Ellis, C.A., Gibbs, S.J., and Rein, G.L. Design and use of a group editor. In

Enmne~mr for Human- Computer Interaction. G. Cockton, Ed., North-Holland,

Amsterdam, 1990, 13-25

 41

[6] Du Li, Rui Li, Yingwei Yu, and Yi Yang, Using Familiar Single- Users Editors for

Collaborative Editing. Proc. of the 36th Hawaii International Conference on System

Sciences (HICS). Jan. 2003. 10p.

[7] Knister, M. J. and Prakash, A., “DistEdit: A distributed toolkit for supporting

multiple group editors,” Proceedings of ACM Conference on Computer- Supported

Cooperative Work, pages 343-355, 1990.

[8] Knister M. J. and Prakash,A. "Issues in the design of a toolkit for supporting

multiple group editors," Journal of the Usenix Association, Vol. 6, No. 2, pp. 135-166,

Spring 1993.

[9] Pacull, F., Sandoz, A. and Schiper, A., “Duplex:a distributed collaborative editing

environment in large scale,” Proceedings of ACM Conference on Computer- Supported

Cooperative Work, pages 165-173, 1994.

[10] Baecker, R. M., Glass, G., Mitchell, A. and Posner, I. “SASSE: the collaborative

editor,” ACM Conference on Human Factors in Computing Systems, pages 459 – 462,

1994.

 42

[11] J. Begole, M.B. Rosson and C.A. Shaffer, Flexible Collaboration Transparency:

Supporting Worker Inde- pendence in Replicated Application-Sharing Systems, ACM

Transactions on Computer-Human Interaction 6, 2(June, 1999), 95-132.

[12] C. Gutwin, S. Greenberg, and M. Roseman, A usabil- ity study of awareness

widgets in a shared workspace groupware system, Proceedings of ACM CSCW’96,

November 1996, 258–267.

[13] nodejs.org, Joyent Inc!

[14] expressjs.com.

[15] redis.io, Cytrusbyte Inc!

[16] socket.io, Guillermo Rauch, gradebook learnboost labs.

[17] jquery.org, jQuery foundation.

[18] Google docs basics. http://docs.google.comlsupport/bin/static.py?hl=

en&page=guide.cs&guide=20322, 2010.

 43

[19] Qinyi Wu, Calton Pu, “Modeling and Implementing Collaborative Editing

Systems with Transactional Techniques”, Proceedings of ACM Conference on

Computer- Supported Cooperative Work, 2010.

[20] Walter F. Tichy, “Revision Control System”, GNU Project, Version No. 5.8,

August 30, 2011.

[21] Ben Noland, “Collabedit – simple collaborative text”, 2010.

	San Jose State University
	SJSU ScholarWorks
	Spring 2012

	Online Collaborative Editor
	Aditya Rao
	Recommended Citation

	Online Collaborative Editor
	A Writing Project
	Presented to
	The Faculty of the Department of Computer Science
	San José State University
	In Partial Fulfillment of the
	Requirements for the
	Degree Master of Computer Science
	Aditya Rao
	Spring 2012
	Aditya Rao
	ALL RIGHTS RESERVED
	SAN JOSÉ STATE UNIVERSITY
	Online Collaborative Editor
	By
	Aditya Rao
	APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE
	Abstract
	Acknowledgements
	1 INTRODUCTION
	1.1 Problem Statement
	1.2 What is collaborative Editor?
	1.3 Design Overview
	1.3.1 Editing functionalities:
	1.3.2 File system functionalities:
	1.3.3 Account functionalities:

	2 Related work
	3 Technology Stack
	3.1 Node.js
	3.1.1 Why node.js

	3.2 Express framework
	3.3 Redis Database
	3.3.1 Why Redis?
	3.3.2 Who uses Redis:

	3.4 Socket IO
	3.5 jQuery framework

	4 Project Design
	4.1 Back-End Server
	4.2 Methods used by Socket IO:
	4.2.1 Server Side:
	4.2.2 Client side

	4.3 Back-End Database:
	4.4 Session Management:
	4.5 Account Management:
	4.6 Chat application:

	5 Project Flow
	5.1 General Flow:
	5.2 Detailed Flow:

	6 Experiment
	7 Analysis
	8 Problems
	9 Conclusion
	10 Future work
	11 References

