11,129 research outputs found

    On local fractional continuous wavelet transform

    Get PDF
    We introduce a new wavelet transform within the framework of the local fractional calculus. An illustrative example of local fractional wavelet transform is also presented

    Novel Fractional Wavelet Transform with Closed-Form Expression

    Get PDF
    yesA new wavelet transform (WT) is introduced based on the fractional properties of the traditional Fourier transform. The new wavelet follows from the fractional Fourier order which uniquely identifies the representation of an input function in a fractional domain. It exploits the combined advantages of WT and fractional Fourier transform (FrFT). The transform permits the identification of a transformed function based on the fractional rotation in time-frequency plane. The fractional rotation is then used to identify individual fractional daughter wavelets. This study is, for convenience, limited to one-dimension. Approach for discussing two or more dimensions is shown

    Wavelet Method for Locally Stationary Seasonal Long Memory Processes

    Get PDF
    Long memory processes have been extensively studied over the past decades. When dealing with the financial and economic data, seasonality and time-varying long-range dependence can often be observed and thus some kind of non-stationarity can exist inside financial data sets. To take into account this kind of phenomena, we propose a new class of stochastic process : the locally stationary k-factor Gegenbauer process. We describe a procedure of estimating consistently the time-varying parameters by applying the discrete wavelet packet transform (DWPT). The robustness of the algorithm is investigated through simulation study. An application based on the error correction term of fractional cointegration analysis of the Nikkei Stock Average 225 index is proposed.Discrete wavelet packet transform ; Gegenbauer process ; Nikkei Stock Average 225 index ; non-stationarity ; ordinary least square estimation

    Fractional Hankel and Bessel wavelet transforms of almost periodic signals

    Get PDF
    The main objective of this paper is to study the Hankel, fractional Hankel, and Bessel wavelet transforms using the Parseval relation. We construct a generalized frame and write new relations and inequalities using almost periodic functions, strong limit power signals, and these transform methods.Publisher's Versio

    Intermittent process analysis with scattering moments

    Full text link
    Scattering moments provide nonparametric models of random processes with stationary increments. They are expected values of random variables computed with a nonexpansive operator, obtained by iteratively applying wavelet transforms and modulus nonlinearities, which preserves the variance. First- and second-order scattering moments are shown to characterize intermittency and self-similarity properties of multiscale processes. Scattering moments of Poisson processes, fractional Brownian motions, L\'{e}vy processes and multifractal random walks are shown to have characteristic decay. The Generalized Method of Simulated Moments is applied to scattering moments to estimate data generating models. Numerical applications are shown on financial time-series and on energy dissipation of turbulent flows.Comment: Published in at http://dx.doi.org/10.1214/14-AOS1276 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Construction of Hilbert Transform Pairs of Wavelet Bases and Gabor-like Transforms

    Get PDF
    We propose a novel method for constructing Hilbert transform (HT) pairs of wavelet bases based on a fundamental approximation-theoretic characterization of scaling functions--the B-spline factorization theorem. In particular, starting from well-localized scaling functions, we construct HT pairs of biorthogonal wavelet bases of L^2(R) by relating the corresponding wavelet filters via a discrete form of the continuous HT filter. As a concrete application of this methodology, we identify HT pairs of spline wavelets of a specific flavor, which are then combined to realize a family of complex wavelets that resemble the optimally-localized Gabor function for sufficiently large orders. Analytic wavelets, derived from the complexification of HT wavelet pairs, exhibit a one-sided spectrum. Based on the tensor-product of such analytic wavelets, and, in effect, by appropriately combining four separable biorthogonal wavelet bases of L^2(R^2), we then discuss a methodology for constructing 2D directional-selective complex wavelets. In particular, analogous to the HT correspondence between the components of the 1D counterpart, we relate the real and imaginary components of these complex wavelets using a multi-dimensional extension of the HT--the directional HT. Next, we construct a family of complex spline wavelets that resemble the directional Gabor functions proposed by Daugman. Finally, we present an efficient FFT-based filterbank algorithm for implementing the associated complex wavelet transform.Comment: 36 pages, 8 figure

    A recursive scheme for computing autocorrelation functions of decimated complex wavelet subbands

    Get PDF
    This paper deals with the problem of the exact computation of the autocorrelation function of a real or complex discrete wavelet subband of a signal, when the autocorrelation function (or Power Spectral Density, PSD) of the signal in the time domain (or spatial domain) is either known or estimated using a separate technique. The solution to this problem allows us to couple time domain noise estimation techniques to wavelet domain denoising algorithms, which is crucial for the development of blind wavelet-based denoising techniques. Specifically, we investigate the Dual-Tree complex wavelet transform (DT-CWT), which has a good directional selectivity in 2-D and 3-D, is approximately shift-invariant, and yields better denoising results than a discrete wavelet transform (DWT). The proposed scheme gives an analytical relationship between the PSD of the input signal/image and the PSD of each individual real/complex wavelet subband which is very useful for future developments. We also show that a more general technique, that relies on Monte-Carlo simulations, requires a large number of input samples for a reliable estimate, while the proposed technique does not suffer from this problem
    corecore