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Wavelet Method for Locally Stationary
Seasonal Long Memory Processes

Dominique GUEGAN ∗and Zhiping LU †

March 25, 2009

Abstract

Long memory processes have been extensively studied over the past
decades. When dealing with the financial and economic data, season-
ality and time-varying long-range dependence can often be observed
and thus some kind of non-stationarity can exist inside financial data
sets. To take into account this kind of phenomena, we propose a new
class of stochastic process: the locally stationary k−factor Gegenbauer
process. We describe a procedure of estimating consistently the time-
varying parameters by applying the discrete wavelet packet transform
(DWPT). The robustness of the algorithm is investigated through sim-
ulation study. An application based on the error correction term of
fractional cointegration analysis of the Nikkei Stock Average 225 index
is proposed.

Keywords: Discrete wavelet packet transform, Gegenbauer process, Nikkei Stock
Average 225 index, Non-stationarity, Ordinary least square estimation.

JEL Classification: C13, C14, C15, C22, C63, G15.

1 Introduction
In the last several decades, the long memory models have been widely in-
vestigated. The fractional integrated model (FARIMA) was introduced by
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Granger and Joyeux (1980) and Hosking (1981) using the differencing opera-
tor (I−B)d, where −1/2 < d < 1/2: it permits to model singularity or a pole
at the zero frequency in the spectrum. An extension of FARIMA model has
been developed permitting singularities at non-zero (seasonal and/or cycli-
cal) frequencies. It is the class of the k−factor Gegenbauer autoregressive
moving average model introduced by Gray et al. (1989) and Giraitis et Leipus
(1995). A stochastic process (yt)t is defined as a k−factor GARMA process
if it satisfies the relationship

φ(B)
k∏

i=1

(I − 2νiB +B2)diyt = θ(B)εt, (1)

where (εt)t is a white noise, B is the backshift operator, and φ(B) and θ(B)
are polynomials of order p and q. Most of the studies on model (1) have been
done in a stationary setting. This means that if the νi are distinct frequencies

in equation (1) then one assumes that |di| <
1

2
when |νi| < 1, and |di| <

1

4
when |νi| = 1. The model (1) includes most of the well known long memory
processes: the fractional integrated process (when k = 1, νi = 1, φ(B) = I
and θ(B) = I); the FARIMA process (when k = 1 and νi = 1), and the
k−factor Gegenbauer process (when φ(B) = I and θ(B) = I), for a review
we refer to Guégan (2005).

This previous model has been extensively used in economics and finance to
model existence of seasonals inside data sets assuming stationarity. We can
cite for instance the works of Diebold and Rudebush (1989), Sowell (1992),
Gil-Alana and Robinson (2001), Porter Hudak (1990), Franses and Ooms
(1997), Arteche and Robinson (2000), Ferrara and Guégan (2001), Diongue
and Guégan (2004), Gil-Alana and Hualde (2008) and Diongue et al. (2009).
But, in practice, series cannot always make stationary even by transformation
or sometimes it has no sense to make the data sets stationary. Working with
the existence of non-stationarity does not mean that we observe explosions.
Recent works in ecology illustrate this fact, Whitcher and Jensen (2000) and
Cavanaugh et al. (2002).

It exist some works where the authors investigate long memory models in a
non-stationarity setting. Beran and Terrin (1996) permit the long memory
parameter of FARMA models to evolve between 1/2 and 1, see also Ve-
lasco and Robinson (2000), Shimotsu and Phillips (2005), and Moulines et
al. (2008). Other works deal with a time-varying long memory parameter.
A locally stationary FARIMA model is introduced in Jensen (1999a, b) and

2
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Whitcher and Jensen (2000) using the operator (I −B)d(t). Cavanaugh et al
(2002) explored the time-varying fractional Brownian motion. For these last
both works, the authors developed an estimation procedure based on wavelets
techniques, succeeding in capturing the local changes in the series. However,
although these previous models take into account the local changes, they do
not permit at the same time the existence of seasonalities characterized with
time-varying long memory parameter, feature which is common for a lot of
data sets, in meteorology, finance and economics.

In this paper, we introduce an estimate for the fractional difference pa-
rameters of a non-stationary k-factor Gegenbauer process that is allowed
to vary smoothly over time, i.e., d(t). The non-stationary k-factor Gegen-
bauer process that we consider is a member of the non-stationary class of
processes known as locally stationary process introduced by Dalhaus (1996).
The model introduced in this paper, we call it a locally stationary k−factor
Gegenbauer model.

In the stationary case, estimation methods for long memory models with
seasonalities, have been developed using Whittle methods, by Diongue et al
(2004), and using semi-parametric methods by Robinson (1995) and Arteche
and Robinson (2000). In this paper, we proceed in a different way to estimate
d(t) and develop a procedure based on wavelet method. Indeed, the strength
of the wavelet method lies on its capability to simultaneously localize a pro-
cess in time and scale. At high scales, the wavelet has a small centralized
time support enabling it to focus on short-lived time phenomena such as
singularity point. At low scales, the wavelet has a large support allowing
it to identify long periodic behavior. By moving from low to high scales,
the wavelet zooms in a process’s behavior, identifying singularities, jumps
and cups (Mallat and Zhong 1992; Mallat and Hwang 1992; Mallat 1999).
Thus, this approach appears pertinent to solve the estimation problem in
presence on seasonalities and non-stationarity. In this paper we focus on
the discrete wavelet packet transform (DWPT) which permits to decorrelate
the spectrum of the process. We provide an approximate log-linear relation-
ship between the time-varying variance of the DWPT coefficients and the
time-varying long memory parameter d(t), then applying locally the OLS re-
gression method, we obtain local estimates for the time-varying parameters.
Our method may be regarded as an extension of the work of Cavanaugh et al.
(2002): here we use a wavelet packet transform which needs to be adapted
to the existence of seasonalities. In another hand, the main difference be-
tween our work and Whitcher’s (2004) approach lies in that we dealt with
non-stationary processes while Whitcher (2004) considered only stationary

3
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processes with seasonalities.

The paper is organized as follows. Section 2 introduces the methodology:
model and estimation procedure. Section 3 studies the robustness of the
time-varying long memory estimates using simulation experiments for finite
samples. Section 4 proposes an application based on the Nikkei Stock Aver-
age 225 index. Section 5 concludes.

2 Methodology
To get an asymptotic estimation theory for di(t), i = 1, · · · , k, we introduce
an estimate that is allowed to vary smoothly over time and we use a method
permitting to determine the location in time of this long memory parameter.

We begin to define the locally stationary k−factor Gegenbauer model and
to describe its time-varying spectral density. The DWPT of a finite length
vector is then defined in terms of filtering. We look at the local wavelet vari-
ance based on the DWPT method and describe a procedure for estimating
the local fractional parameters.

2.1 Local stationary k-factor Gegenbauer model

In the first step, we restrict to a 1-factor Gegenbauer model and we assume
that we observe (yt)t, t = 1, · · · , N , such that:

(I − 2νB +B2)d(t)yt = εt, (2)

(εt)t being a Gaussian white noise and cos−1 ν being the Gegenbauer fre-
quency, and B is the backshift operator, yt−j = Bjyt. We assume that the
time-varying fractional parameter is such that d(t) < 1/2. In order to es-
timate d(t), providing an asymptotic theory, we need to make N tends to
infinity. To avoid instability for d(t), we suppose that we observe d(t) on a
finer grid (making d(t) rescaled on [0, 1]), that we observe (yt)t such that:

(I − 2νB +B2)d(t/N)yt,N = εt. (3)

Letting N tends to infinity means that we have, in the sample y1,N , · · · , yN,N ,
more and more observations for each value of d(t).

Now, we are going to characterize this local stationary process through its
spectral density: this tool being privilege in presence of seasonalities, to the

4
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autocovariance function.

The stochastic process defined in (2) is a Gegenbauer process that is locally
stationary in the sense of Dalhaus (1996), with realizations of length N . Its
spectral density is such that:

fN(λ) =
σ2

εt

2π

1

2|cosλ− ν|2d(t/N)
, −1/2 < λ < 1/2. (4)

Because the process (yt,N)t is non-stationary, increasing the number of ob-
servations by measuring new realizations of the process tell us nothing about
the process’ behavior at the beginning of the period. As a result, we fix the
time period and as N increases we liken it to measuring the process at higher
and higher levels of resolution on a fixed time interval.

The spectral density for the process defined in (3) is an even, 2π-periodic
function that is uniformly Lipchitz continuous in t/N ∈ [0, 1]. The time-
varying spectral density function has the specific behavior:

fN(λ) ∼ |λ− cos−1 ν|−2d(t/N), as λ→ cos−1 ν.

Then, if d(t/N) > 0, fN(λ) is smooth for frequencies around cos−1 ν, but
is unbounded when λ → cos−1 ν. In other words the behavior of (yt,N)t is
concentrated over the frequency associated with seasonality. This behavior
can be extended in the case that we have several explosions inside the spec-
tral density. This means that, on the interval [0, N ], we observe the locally
stationary k−factor Gegenbauer process:

k∏
i=1

(I − 2νiB +B2)di(t/N)yt,N = εt, (5)

where (εt)t is a Gaussian white noise, and cos−1 νi are Gegenbauer frequen-
cies. Then, the time-varying spectral density is:

fN(λ) =
σ2

ε

2π

k∏
i=1

| cos(λ)− νi|−2di(t/N). (6)

2.2 Discrete Wavelet Packet Transforms

In this Section we introduce the wavelet technique that we use for the esti-
mation of the parameters di(t) introduced in (5). In order to decorrelate long
memory time series, Jensen (1999a, b), and Cavanaugh et al. (2002) used the

5
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orthonormal discrete wavelet transform (DWT). In presence of seasonalities,
we need a more general wavelet transform to decorrelate the process (yt,N)t

given in (5). Using the discrete wavelet packet transform (DWPT) we ap-
proximately decorrelate the spectrum of the process (yt,N)t introduced in (5).

We assume that we observe a single realization (y1,N , · · · , yN,N) of the locally
stationary long memory model given in (5), and that N is an integer multiple
of 2J , where J is any positive integer. To realize this approximate decorrela-
tion, we use the minimum-bandwidth discrete-time (MBDT) wavelets with
length L, where L < N (denoted by MB(L)), introduced by Morris and Per-
avali (1999): it permits to approximately decorrelate the spectrum and to
choose the adaptive orthonormal basis (Whitcher 2004).

Let h0, · · · , hL−1 be the unit scale wavelet (high-pass) filter. Thus, the scaling
(low-pass) coefficients may be computed via the “quadrature mirror relation-
ship"

gl = (−1)l+1hL−l−1, l = 0, 1, · · · , L− 1.

We define
un, l =

{
gl, if n mod 4 = 0 or 3
hl, if n mod 4 = 1 or 2,

as the approximate filter at a given node of the wavelet packet tree. In-
stead of one particular filtering sequence, the DWPT executes all possi-
ble filtering combinations to construct a wavelet packet tree, denoted by
T = {(j, n)|j = 0, · · · , J − 1;n = 0, · · · , 2j − 1}.

The DWPT coefficients are then calculated using the pyramid algorithm of
filtering and downsampling (Mallat 1999). Denote Wj, n, K the K−th element
of length Nj(= N/2j), corresponding to the wavelet coefficient vector Wj, n,
(j, n) ∈ T with W0, 0 = y1,N . Given the DWPT coefficients Wj−1, [n

2
], K ,

where [ · ] represents the "integer part" operator, then the coefficient Wj, n, K

is calculated by

Wj, n, K ≡
L−1∑
l=0

un, lWj−1, [n
2
], 2K+1−l mod Nj−1, K = 0, 1, · · · , Nj − 1. (7)

An adaptive orthonormal basis B ⊂ T is obtained when a collection of DWPT
coefficients is retained such that band-pass frequencies are disjoint and cover

the frequency interval [0,
1

2
] (Percival and Walden 2000; Gençay et al. 2001).

For the locally stationary 1−factor Gegenbauer process defined in (3), its

6
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time-varying spectral density is expressed in equation (4). Thus by applying
the logarithmic transform to both sides of equation (4), we get

log fN(λ) = C − 2d(
t

N
) log 2| cosλ− ν|, −1

2
< λ <

1

2
. (8)

In order to take into account the local behavior of the process (yt,N), we
partition the time interval [0, 1) into 2l (0 < l < J − 1) non-overlapping
subintervals Ih:

Ih = [h2−2l, (h+ 1)2−2l), h = 0, · · · , 2l − 1,

on which we assume that the process (yt,N)t is locally stationary. This means

that the time-varying parameter d(
t

N
) is constant on these intervals.

Now, since the time-varying wavelet variance provides an estimate of the
spectral density function, we are going to use the following logarithmic trans-
formation of this variance to estimate locally the long memory parameter.
Let be the following relationship:

log σ2(λj,n, t) = α(t) + β(t) log 2| cosµj,n − ν|+ u(t), (9)

where σ2(λj, n, t) is the variance of the DWPT coefficients Wj, n associated,

at time t, with the frequency interval λj, n = (
n

2j+1
,
n+ 1

2j+1
] (where n =

0, · · · , 2j − 1; j = 0, · · · , J − 1); µj, n is the midpoint of the interval λj, n;
β(t) is the slope of the log-linear relationship at time t, and d(t) = −β(t)/2.
We assume that the previous relationship is verified for the k explosions
observed on the periodogram, thus, in the following we use the following
approximation to estimate di(t), i = 1, · · · k:

log σ2
i (λj,n, t) = αi(t) + βi(t) log 2|µj,n − cos−1(νi)|+ ui(t), (10)

where ui(t) is a sequence of correlated random variables, Arteche and Robin-
son (2000).

2.3 Procedure for Estimating di(t) (i = 1, · · · , k)
Using the previous approach, we present now a general procedure for esti-
mating the time-varying parameters di(t) (i = 1, · · · , k). We assume that
the sample size is dyadic (N = 2J), otherwise we repeat the last data value
several times to achieve such a sample size. We detail the different steps:

7
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1. We first detect the Gegenbauer frequency cos−1 ν1 corresponding to the
highest explosion in the periodogram. This frequency is fixed all along
the procedure.

2. We compute the DWPT coefficient vectors Wj, n of length Nj using the
formula (7), where j = 0, · · · , J − 1; n = 0, · · · , 2j − 1.

3. We associate to the vector Wj, n an adaptive orthonormal basis B,
such that the squared gain function of the wavelet filter associated
with Wj, n is sufficiently small at the Gegenbauer frequency. Practi-
cally, we define Uj, n(f) = |Uj, n(f)|2 to be the squared gain function
for the wavelet packet filter uj, n, l, where Uj, n(f) is the discrete Fourier
transform (DFT) of

uj, n, l =

Lj−1∑
k=0

un, kuj−1, [n
2
], l−2j−1k, l = 0, · · · , Lj − 1,

with u1, 0, l = gl, u1, 1, l = hl and Lj = (2j − 1)(L − 1) + 1, gl and hl

being the scaling filter and the wavelet filter defined before.

4. The basis selection procedure involves selecting the combination of
wavelet basis functions such that Uj, n(fG) < ε for some ε > 0 at the
minimum level j. However, the method of basis selection is not unique
and the basis is not unique either. We apply the white noise tests like
the portmanteau test to determine the best adaptive orthonormal basis
that decorrelates the observed time series.

5. We partition the sampling interval [0, 1) into 2l non-overlapping subin-
tervals of equal length, where l is an integer chosen such that 0 <
l < (J − 1). ”l” depends on the length of the data and the required
precision. The 2l subintervals are as follows

Ih = [h2−l, (h+ 1)2−l), where h = 0, · · · , 2l − 1.

6. We locate the DWPT coefficients Wj,n,K on each subinterval Ih. In
order to construct the local estimates for the time-varying long memory
parameter d1(t), we proceed according to the Heisenberg uncertainty
principle: every DWPT coefficient vector is mapped to a rectangle
(Heisenberg box) defined in the time-frequency plane with the boxes
covering completely the plane.

8
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7. Since the DWPT coefficient vector Wj, n = (Wj, n, K) corresponds to the

frequency interval λj, n = (
n

2j+1
,
n+ 1

2j+1
], we obtain the corresponding

time interval on the time-frequency plane with width 2j/N , whereas,
the length of the vector Wj,n is Nj. Therefore, we partition the ele-
ments of the vectors Wj,n with equal length Nj/2

l = 2J−j−l and attach
them sequently.

8. On each subinterval Ih (h = 0, · · · , 2l − 1), we consider the bivariate
collection of data

{(log 2|µj,n − f1|, log σ2
1(λj, n)) | 0 ≤ n ≤ 2j − 1; 0 ≤ j ≤ J − 1},

and we use the approximate log-relationship (10). On each subinterval
Ih, we carry out the ordinary least squares (OLS) regression to get the
local estimates for the slope β1(t). Thus we obtain 2l local estimates

for the parameter β1(t). Since d1(t) = −β1(t)

2
, we get 2l local estimates

for the parameter d1(t).

9. We omit the first and the last estimates to avoid the boundary effects.
We smooth the estimated 2l points by two local polynomial meth-
ods: spline method and loess (locally weighted scatter plot smooth-
ing) method. Thus, we obtain two smoothed curves for d1(t) which
approximate locally the true parameter curve. Finally, we denote these
estimates, d̂1(t).

10. Knowing ν1, the above steps (2-9) permit to get the estimates d̂1(t).

11. Now, we proceed in the same way to estimate the other time-varying
long memory parameters, corresponding to each Gegenbauer frequency.
First we calculate y1

t,N := (1 − 2ν1B + B2)d̂1(t)yt,N , where d̂1(t) is ob-
tained in the previous steps. We need to interpolate some points such
that the vector d̂1(t) is of length N , due to the fact that the number
of points on the smoothed curves is less than N if we adopt the loess
smoothing method, for instance.

12. Assuming that we know the frequency cos−1 ν2, we repeat the above
steps 1 to 9 on the vector y1

t,N to get the estimate d̂2(t)).

13. We proceed in the same way for other Gegenbauer frequencies until the
(k + 1)-th step providing the white noise (εt)t.

9
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At the end, there is no more peak in the periodogram, and we have k pairs of
estimations for the Gegenbauer frequencies and time-varying long memory
parameters.

2.4 Consistency for estimates d̂i(t) (i = 1, · · · , k)
In this subsection, we study the properties of the estimates d̂i(t) (i = 1, · · · , k).
To get d̂i(t), we have previously established a linear regression between the
variance of the DWPT wavelet coefficients Wj,n,t and the long memory pa-
rameters di(t). Some similar approaches have been developed, in a stationary
setting, by Geweke and Porter-Hudak (1983), Robinson (1995), Hurvich and
Beltrao (1981) and Arteche (1998). They obtain the consistency of the con-
stant long memory parameter di. We extend their results.

Here, we assume that the assumptions A1 - A2 and A4 - A5 introduced
in Arteche (1998) are verified for fN(λ) defined in (6). The assumptions
A1 and A2 specify the local behavior of the spectrum. The assumption
A4 corresponds to the "‘trimming"’ condition introduced first in Robinson
(1995). Now, under these assumptions and in the case of a 1-factor stationary
Gegenbauer model, the asymptotic normality of the long memory parameter
is known, and has been proved by Arteche (1998).

Lemma 2.1 Consider the Gegenbauer model (I − 2ν1B +B2)d1yt = εt with
the previous assumptions A1 - A2 and A4 - A5. Let d̂1 be the least squares
estimate of d1 obtained from the following regression:

log I(ω + λj) = c+ d1(−2 log λj) + uj, j = l + 1, · · · ,m, (11)

where I(λ) denotes the periodogram c = logC − η, η is the Euler’s constant,

uj = log(
I(ω + λj)

Cλ−2d1
j

) + η, and λj =
2πj

n
are Fourier frequencies, . Then

2
√
m(d̂1 − d1) →d N(0,

π

6
).

Now we consider the locally stationary 1−factor Gegenbauer process (I −
2νB + B2)d1(t)yt = εt. The parameter d1(t) has been locally estimated on
a sequence of intervals Ih (h = 0, · · · , 2l − 1) using the locally stationary
process yt,N , then using the previous lemma and the relationship (10) we get

∀h,
√
l(d̂1(h)− d1(h)) →d N(0,

π

24
), h = 0, 1, · · · , 2l − 1.

10
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In order to get a smoothed curve for d̂1(t), we have smoothed the 2l indepen-
dent estimates (d̂1(0), · · · , d̂1(2

l − 1)) using two local polynomial methods:
spline method and loess method. This means, that for each method there

exists a set of basis function ω̂h(t) such that
2l−1∑
h=0

ωh(t))
2 = C <∞, where C

is a constant. Thus we get:

d̃1(t) =
2l−1∑
h=0

ω̂h(t)d̂1(h).

We can remark that E[d̃1(t)] =
2l−1∑
h=0

ω̂h(t)E[d̂1(h)] = 0, and V ar[d̃1(t)] =

V ar[
2l−1∑
h=0

ω̂h(t)d̂1(h)] = C
π

24
= C1. Thus, assuming that N tends to infinity,

we obtain: √
l(d̃1(t)− d1(t)) →d N(0, C1).

If we observe k explosions on the periodogram, we apply the same approach
for each couple (νi, di(t), i = 1, · · · , k).

3 Simulation experiments
In this section, we carry out some Monte Carlo simulations to establish the
robustness of the estimation of the parameter function di(t) using wavelet
approach, for finite samples. We focus on model (2) assuming that (εt)t is a
Gaussian noise:

(I − 2νB +B2)d(t)y(t) = ε(t). (12)

We use linear and quadratic functions for d(t):

1. d(t) is linear: d1(t) = 0.2t+ 0.1

2. d(t) is quadratic: d2(t) = 0.3(t− 0.5)2 + 0.1.

For convenience, we assume that the data points that we observe [y1, · · · , yN ]′

are equally spaced on the time interval and are scaled on the time interval

[0, 1), using the transformation ti =
i− 1

N
(where i = 1, · · · , N = 2J). Here,

N = 4096 = 212 (J = 12) and cos−1ν == 1/3.

11
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For the estimation procedure, we use the MB(16) wavelet filter (L = 16),
and we choose the adaptive orthonormal basis using portmanteau test with
p = 0.01. We partition the sampling interval [0, 1) into 26 = 64 subintervals
(l = 6), and we get 64 local estimates for d(t). Finally, we smooth the esti-
mates using two local polynomial methods, spline method and loess method.
We replicate the simulations 100 times for each locally stationary 1−factor
Gegenbauer process (12) using the two previous functions d(t). We carry out
the code on the computer Mac OS X 10.5.1 Léopard, written in language R
with the help of the package "waveslim".

We denote (y1,t)t the process (12) with linear parameter function d1(t) =
0.2t + 0.1 and (y2,t)t the process (12) with quadratic parameter function
d2(t) = 0.3(t − 0.5)2 + 0.1. On Figures 1 and 5, we provide the trajecto-
ries for the processes (y1,t)t and (y2,t)t respectively. On Figures 3 and 7 we
provide their autocorrelation functions. Finally on Figures 4 and 8 we ex-
hibit the true linear and true quadratic function d(t), with the estimated
curves smoothed by spline method and loess method. In Table 1, we provide
the mean of the estimated Gegenbauer frequencies, and the bias and of the
RMSE for ˆd(t) using 100 simulations.

Gegenbauer frequency λ̂1 bias of ˆd(t) RMSE of ˆd(t)
Y1 0.33 spline: -0.115436 spline: 0.1039803

loess: -0.089052 loess: 0.0632354
Y2 0.33 spline: -0.006068 spline: 0.01021453

loess: -0.001749 loess: 0.009949698

Table 1: Estimation of Gegenbauer frequencies, bias and RMSE of (y1,t)t,
(y2,t)t.

In summary, we observe that:

1. each estimated curve approximates the general shape of the time-varying
parameter function. The rebuilding of the curve smoothed using the
loess method appears better than that using the spline method;

2. the small values for the bias and the RMSE of the estimated parameter
suggest that our algorithm is robust. Comparing the two smoothing
methods, we find that in most cases, the loess method performs a little
better than the spline method.
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Figure 5.1: Sample path of the LSGP Y_1
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Figure 5.3: ACF of the LSGP Y_1

Figure 2: ACF of (y1,t)t
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Figure 3: Spectrum of (y1,t)t
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Figure 5.6: Sample path of Y_2
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Figure 5.8: ACF of Y_2

Figure 6: ACF of (y2,t)t
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Figure 7: Spectrum of (y2,t)t
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4 Application to the Nikkei Stock Average 225
index data

4.1 The data set

In this section we consider the Nikkei Stock Average 225 (NSA 225) spot
index and futures price which correspond to 4096 daily observations of the
spot index and the futures price of the NSA 225, covering the period from
January 2nd, 1989 through September 13rd, 2004. Daily closing values of the
spot index and the settlement prices of the futures contracts are used. The
regular futures contracts mature in March, June, September and December.
For further details on the futures price series, we refer to Lien and Tse (1999).
Data sets are available from Thomson data stream.

4.2 Modeling

Figure 9 represents the spot index and futures prices from January 2nd 1989
to September 13rd 2004. (St)t denotes the logarithm of the spot price and
(Ft)t the logarithm of the futures price. Lien and Tse (1999) assumed that
(St)t and (Ft)t are both integrated of order one and they modeled the re-
lationship between (St)t and (Ft)t using an error correction model (ECM),
proposed by Engle and Granger (1987). Current prices are affected by the
past prices and error correction term and the authors used the following
relationship:

∆St = φ0 +

p∑
i=1

φi∆St−i +

q∑
j=1

ψj∆Ft−j + γZt−1 + εSt , (13)

where φi, i =, 0, · · · , p, φj, j = 1, · · · , q and γ are real numbers, and (Zt)t

is such that Zt = Ft − St, for t = 1, · · · , T . Figure 10 represents the error
correction term (Zt)t, which is the difference between the log futures prices
and the log spot prices.

Our aim is to estimate the error correction term (Zt)t using the method that
we have developed previously. Indeed, Lien and Tse (1999) and Ferrara and
Guégan (2001) have already considered this problem using stationary models
on a shorter period (from January 1989 to August 1997 and from May 1992
to August 1996 respectively). In the error correction model (ECM) of Lien
and Tse (1999), the spot prices and futures prices are integrated of order one
but the bias (the difference between the futures price and the spot indexes)
is fractionally integrated. Whereas, Ferrara and Guégan (2001) modeled the
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bias in the ECM using stationary Gegenbauer process, which has been proved
to be more efficient than the modeling used by Lien and Tse (1999).

However, we would like to consider an even longer data set, which is not
necessarily globally stationary. In another way, since we observe the exis-
tence of volatility in (Zt)t, it seems appropriate to model the series (Zt)t by
time-varying models. Thus, we propose to model the series using a locally
stationary 1−factor gegenbauer process.

In the first step, we use the wavelet multiresolution analysis to remove the
time-varying mean. For this purpose, we apply the Maximal Overlap Discrete
Wavelet Transform (MODWT) (J=6) with a Daubechies least asymmetric
(LA(8)) wavelet filter and perform the multiresolution analysis that we pro-
vide on Figure 11. The wavelet details, D1, · · · , D6, exhibit zero mean, while
the wavelet smooth S6, associated with the low frequency [0, 1/64], captures
the trend of the series. To remove the time-dependent mean, we ignore the
wavelet smooth and sum up the six wavelet details. Thus we get the residu-
als: Zt − S6,t which still keep the periodicity in the data set.

In the second step, we obtain the estimate of Gegenbauer frequency cos−1 ν =
0.015 which corresponds to the highest explosion in the periodogram. Thus,
we apply the DWPT on the residuals, choosing the orthonormal basis, lo-
cating the DWPT coefficients on the partitioned 64 subintervals, calculating
locally the variance, and carrying out the OLS regression on each subinter-
val. Then, we get the estimated curves smoothed by spline and loess method.

Thus, the estimated model for the series (Zt)t is:

(I − 2× 0.995B +B2)d̂(t)(Zt − S6,t) = εt,

where d̂(t) is the estimated curve provided on Figure 12. The thin real curve
is the estimated parameter function smoothed by spline method, and the
thick real curve is the one smoothed by loess method. In Figure 12, we
also provide the estimation results in dashed line and dotted line using two
semi-parametric methods say, Robinson method (1995) and Whittle method
(1951), regarding the parameter function as a constant in the stationary
Gegenbauer model. S6,t is the wavelet smooth obtained using the multireso-
lution analysis given in Figure 11.

Comparing our result with the result proposed by Ferrara and Guégan (2001)
on a shorter time period using the Whittle approach, we get close behavior.
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Thus, the method we developed here permits to extend the previous result.
Indeed, on a shorter time period, it seems reasonable to assume the station-
arity for the series. However on a longer time period, it seems more robust
to work locally. Thus, this approach permits to work with non-stationary
data sets without making them stationary.

Figure 6.1: Nikkei stock average(02/01/1989−13/09/2004)
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Figure 6.2: Error correction term (Z_t)_t
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5 Conclusion
In this paper, we have proposed a new class of model: the locally stationary
k−factor Gegenbauer process with time-varying parameters to adequately
model non-stationary time series. It can be regarded as an extension of the
stationary k−factor Gegenbauer process by taking into account the time-
varying parameter functions. We have proposed, discussed and investigated
an algorithm for estimating the time-varying parameters of this new model.
We investigate the consistency of the estimated parameters through simu-
lations experiments. The estimation algorithm proposed in this paper does
not restrict the type of parameter function: other time varying functions can
be considered. We retain for estimation procedure the ordinary least squares
method.

19

Document de Travail du Centre d'Economie de la Sorbonne - 2009.15

ha
ls

hs
-0

03
75

53
1,

 v
er

si
on

 1
 - 

15
 A

pr
 2

00
9



Figure 6.3: Multiresolution analysis of NSA 225 index (J=6)
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Figure 12: d̃(t) by loess method

Therefore, we apply our algorithm to the error correction model for the data
of NSA 225 spot index and futures price for a long time period (4096 data
points). For the same time period considered by other authors, we get a
similar result. However, we obtain an overall estimation for the parameter
function, which grasps the local characteristics much more precisely. This ex-
ample shows the interest of the methodology developed in that paper permit-
ting to be free of the stationary assumption in the modeling of long memory
behavior in presence of seasonalities.
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