663 research outputs found

    Modelação e simulação de equipamentos de rede para Indústria 4.0

    Get PDF
    Currently, the industrial sector has increasingly opted for digital technologies in order to automate all its processes. This development comes from notions like Industry 4.0 that redefines the way these systems are designed. Structurally, all the components of these systems are connected in a complex network known as the Industrial Internet of Things. Certain requirements arise from this concept regarding industrial communication networks. Among them, the need to ensure real-time communications, as well as support for dynamic resource management, are extremely relevant. Several research lines pursued to develop network technologies capable of meeting such requirements. One of these protocols is the Hard Real-Time Ethernet Switch (HaRTES), an Ethernet switch with support for real-time communications and dynamic resource management, requirements imposed by Industry 4.0. The process of designing and implementing industrial networks can, however, be quite time consuming and costly. These aspects impose limitations on testing large networks, whose level of complexity is higher and requires the usage of more hardware. The utilization of network simulators stems from the necessity to overcome such restrictions and provide tools to facilitate the development of new protocols and evaluation of communications networks. In the scope of this dissertation a HaRTES switch model was developed in the OMNeT++ simulation environment. In order to demonstrate a solution that can be employed in industrial real-time networks, this dissertation presents the fundamental aspects of the implemented model as well as a set of experiments that compare it with an existing laboratory prototype, with the objective of validating its implementation.Atualmente o setor industrial tem vindo cada vez mais a optar por tecnologias digitais de forma a automatizar todos os seus processos. Este desenvolvimento surge de noções como Indústria 4.0, que redefine o modo de como estes sistemas são projetados. Estruturalmente, todos os componentes destes sistemas encontram-se conectados numa rede complexa conhecida como Internet Industrial das Coisas. Certos requisitos advêm deste conceito, no que toca às redes de comunicação industriais, entre os quais se destacam a necessidade de garantir comunicações tempo-real bem como suporte a uma gestão dinâmica dos recursos, os quais são de extrema importância. Várias linhas de investigação procuraram desenvolver tecnologias de rede capazes de satisfazer tais exigências. Uma destas soluções é o "Hard Real-Time Ethernet Switch" (HaRTES), um switch Ethernet com suporte a comunicações de tempo-real e gestão dinâmica de Qualidade-de-Serviço (QoS), requisitos impostos pela Indústria 4.0. O processo de projeto e implementação de redes industriais pode, no entanto, ser bastante moroso e dispendioso. Tais aspetos impõem limitações no teste de redes de largas dimensões, cujo nível de complexidade é mais elevado e requer o uso de mais hardware. Os simuladores de redes permitem atenuar o impacto de tais limitações, disponibilizando ferramentas que facilitam o desenvolvimento de novos protocolos e a avaliação de redes de comunicações. No âmbito desta dissertação desenvolveu-se um modelo do switch HaRTES no ambiente de simulação OMNeT++. Com um objetivo de demonstrar uma solução que possa ser utilizada em redes de tempo-real industriais, esta dissertação apresenta os aspetos fundamentais do modelo implementado bem como um conjunto de experiências que o comparam com um protótipo laboratorial já existente, no âmbito da sua validação.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Simulation and Evaluation of Wired and Wireless Networks with NS2, NS3 and OMNET++

    Get PDF
    Communication systems are emerging rapidly with the revolutionary growth in terms of networking protocols, wired and wireless technologies, user applications and other IEEE standards. Numbers of industrial as well as academic organizations around the globe are bringing in light new innovations and ideas in the field of communication systems. These innovations and ideas require intense evaluation at initial phases of development with the use of real systems in place. Usually the real systems are expensive and not affordable for the evaluation. In this case, network simulators provide a complete cost-effective testbed for the simulation and evaluation of the underlined innovations and ideas. In past, numerous studies were conducted for the performance evaluation of network simulators based on CPU and memory utilization. However, performance evaluation based on other metrics such as congestion window, throughput, delay, packet delivery ratio and packet loss ratio was not conducted intensively. In this thesis, network simulators such as NS2, NS3 and OMNET++ will be evaluated and compared for wired and wireless networks based on congestion window, throughput, delay, packet delivery and packet loss ratio. In the theoretical part, information will be provided about the wired and wireless networks and mathematical interpretation of various components used for these networks. Furthermore, technical details about the network simulators will be presented including architectural design, programming languages and platform libraries. Advantages and disadvantages of these network simulators will also be highlighted. In the last part, the details about the experiments and analysis conducted for wired and wireless networks will be provided. At the end, findings will be concluded and future prospects of the study will be advised.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    SCTP - Evaluating, Improving and Extending the Protocol for Broader Deployment

    Get PDF
    Zugriff auf den Volltext ist gesperrt, neue Version unter DuEPublico-ID 35000 The Stream Control Transmission Protocol (SCTP), originally designed for the transport of signaling messages over IP based telephony signaling networks, is a general transport protocol with features suitable for a variety of applications that can benefit from multihoming, multiple streams, or one of SCTP’s numerous extensions. To date, SCTP has found its way into all kernel implementations of UNIX derivatives and a Windows prototype, but there are still flaws, which have to be identified and corrected. In this thesis, first, a suite of tools consisting of an SCTP simulation and testing environment is provided to lay the groundwork for further studies. Starting from comparing and analyzing kernel implementations, several aspects of the protocol that lead to undesirable behavior are examined. Congestion and flow control that are adopted from the Transmission Control Protocol (TCP), although using the same mechanisms, need a special treatment because of SCTP’s message orientation. The analysis of the SCTP specific characteristics with the help of the simulation will finally result in solutions that lead to a better performance. The deployment of SCTP will be another concern that can be improved by introducing a specific Network Address Translation (NAT) for SCTP.Zugriff auf den Volltext ist gesperrt, neue Version unter DuEPublico-ID 35000 Das Stream Control Transmission Protocol (SCTP) wurde ursprünglich für den Transport von Signalisierungsnachrichten über IP basierte Netze konzipiert. Inzwischen hat es sich jedoch zu einem allgemeinen Transportprotokoll entwickelt, das einzigartige Eigenschaften besitzt. Daher ist es besonders für Anwendungen interessant, die von mehreren Netzwerkadressen pro Verbindung (Multihoming), mehreren unabhängigen Nachrichtenströmen oder einer der zahlreichen Protokollerweiterungen profitieren können. Mittlerweile hat SCTP in die Betriebssystemkerne aller UNIX-Derivate und eines Windows Prototyps Einzug gehalten, aber es gibt noch Mängel, deren Ursachen es zu entdecken und zu korrigieren gilt. In dieser Dissertation wird zunächst eine Reihe von Werkzeugen bereitgestellt, um die Grundlage für weitere Untersuchungen zu schaffen. Ausgehend von der Analyse und dem Vergleich von Implementierungen im Systemkern verschiedener Betriebssysteme werden einige Aspekte des Protokolls untersucht, die zu unerwünschtem Verhalten führen. Die Prinzipien der Überlast- und Flusskontrolle wurden vom stream-orientierten Transmission Control Protocol (TCP) übernommen und benutzen daher dieselben Mechanismen. SCTP als nachrichtenorientiertes Protokoll benötigt jedoch eine diesem Unterschied Rechnung tragende Implementierung der Algorithmen. Die Analyse von SCTP-spezifischen Charakteristika mithilfe der Simulation wird schließlich zu Lösungen führen und zu einer Verbesserung des Durchsatzes. Ein weiteres Anliegen dieser Arbeit ist die Verbreitung von SCTP. Sie kann durch die Einführung einer SCTP-spezifischen Methode zur Umsetzung von Netzwerkadressen (Network Address Translation (NAT)) verbessert werden

    Cross-layer RaCM design for vertically integrated wireless networks

    Get PDF
    Includes bibliographical references (p. 70-74).Wireless local and metropolitan area network (WLAN/WMAN) technologies, more specifically IEEE 802.11 (or wireless fidelity, WiFi) and IEEE 802.16 (or wireless interoperability for microwave access, WiMAX), are well-suited to enterprise networking since wireless offers the advantages of rapid deployment in places that are difficult to wire. However, these networking standards are relatively young with respect to their traditional mature high-speed low-latency fixed-line networking counterparts. It is more challenging for the network provider to supply the necessary quality of service (QoS) to support the variety of existing multimedia services over wireless technology. Wireless communication is also unreliable in nature, making the provisioning of agreed QoS even more challenging. Considering the advantages and disadvantages, wireless networks prove well-suited to connecting rural areas to the Internet or as a networking solution for areas that are difficult to wire. The focus of this study specifically pertains to IEEE 802.16 and the part it plays in an IEEE vertically integrated wireless Internet (WIN): IEEE 802.16 is a wireless broadband backhaul technology, capable of connecting local area networks (LANs), wireless or fixed-line, to the Internet via a high-speed fixed-line link

    A blockchain-based trust management system for 5G network slicing enabled C-RAN

    Get PDF
    The mobility nature of the wireless networks and the time-sensitive tasks make it necessary for the system to transfer the messages with a minimum delay. Cloud Radio Access Network (C-RAN) reduces the latency problem. However, due to the trustlessness of 5G networks resulting from the heterogeneity nature of devices. In this article, for the edge devices, there is a need to maintain a trust level in the C-RAN node by checking the rates of devices that are allowed to share data among other devices. The SDN controller is built into a macro-cell that plays the role of a cluster head. The blockchain-based automatically authenticates the edge devices by assigning a unique identification that is shared by the cluster head with all C-RAN nodes connected to it. Simulation results demonstrate that, compared with the benchmark, the proposed approach significantly improves the processing time of blocks, the detection accuracy of malicious nodes, and transaction transmission delay

    Enhancing Capacity and Network Performance of Client-Server Architectures Using Mobile IPv6 Host-Based Network Protocol

    Get PDF
    A huge number of studies have been done supporting seamless mobility networks and mobile technologies over the years The recent innovations in technology have unveiled another revolution from the static architectural approach to more dynamic and even mobile approaches for client-server networks Due to the special equipments and infrastructure needed to support network mobility management it is difficult to deploy such networks beyond the local network coverage without interruption of communications Therefore MIPv6 as developed by the Internet Engineering Task Force IETF and ancillary technologies were reviewed to provide clear insights on implementing MIPv6 in Client-Server architectures However MIPv6 technology presents weaknesses related to its critical handover latency which appears long for real-time applications such as Video Stream with potential loss of data packets during transmissio

    Topology and congestion invariant in global internet-scale networks

    Get PDF
    PhDInfrastructures like telecommunication systems, power transmission grids and the Internet are complex networks that are vulnerable to catastrophic failure. A common mechanism behind this kind of failure is avalanche-like breakdown of the network's components. If a component fails due to overload, its load will be redistributed, causing other components to overload and fail. This failure can propagate throughout the entire network. From studies of catastrophic failures in di erent technological networks, the consensus is that the occurrence of a catastrophe is due to the interaction between the connectivity and the dynamical behaviour of the networks' elements. The research in this thesis focuses particularly on packet-oriented networks. In these networks the tra c (dynamics) and the topology (connectivity) are coupled by the routing mechanisms. The interactions between the network's topology and its tra c are complex as they depend on many parameters, e.g. Quality of Service, congestion management (queuing), link bandwidth, link delay, and types of tra c. It is not straightforward to predict whether a network will fail catastrophically or not. Furthermore, even if considering a very simpli ed version of packet networks, there are still fundamental questions about catastrophic behaviour that have not been studied, such as: will a network become unstable and fail catastrophically as its size increases; do catastrophic networks have speci c connectivity properties? One of the main di culties when studying these questions is that, in general, we do not know in advance if a network is going to fail catastrophically. In this thesis we study how to build catastrophic 5 networks. The motivation behind the research is that once we have constructed networks that will fail catastrophically then we can study its behaviour before the catastrophe occurs, for example the dynamical behaviour of the nodes before an imminent catastrophe. Our theoretical and algorithmic approach is based on the observation that for many simple networks there is a topology-tra c invariant for the onset of congestion. We have extended this approach to consider cascading congestion. We have developed two methods to construct catastrophes. The main results in this thesis are that there is a family of catastrophic networks that have a scale invariant; hence at the break point it is possible to predict the behaviour of large networks by studying a much smaller network. The results also suggest that if the tra c on a network increases exponentially, then there is a maximum size that a network can have, after that the network will always fail catastrophically. To verify if catastrophic networks built using our algorithmic approach can re ect real situations, we evaluated the performance of a small catastrophic network. By building the scenario using open source network simulation software OMNet++, we were able to simulate a router network using the Open Shortest Path First routing protocol and carrying User Datagram Protocol tra c. Our results show that this kind of networks can collapse as a cascade of failures. Furthermore, recently the failure of Google Mail routers [1] con rms this kind of catastrophic failure does occur in real situations
    corecore