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Abstract

The Stream Control Transmission Protocol (SCTP), originally designed for
the transport of signaling messages over IP based telephony signaling net-
works, is a general transport protocol with features suitable for a variety
of applications that can benefit from multihoming, multiple streams, or one
of SCTP’s numerous extensions. To date, SCTP has found its way into all
kernel implementations of UNIX derivatives and a Windows prototype, but
there are still flaws, which have to be identified and corrected.

In this thesis, first, a suite of tools consisting of an SCTP simulation and
testing environment is provided to lay the groundwork for further studies.
Starting from comparing and analyzing kernel implementations, several as-
pects of the protocol that lead to undesirable behavior are examined. Con-
gestion and flow control that are adopted from the Transmission Control
Protocol (TCP), although using the same mechanisms, need a special treat-
ment because of SCTP’s message orientation. The analysis of the SCTP
specific characteristics with the help of the simulation will finally result in
solutions that lead to a better performance.

The deployment of SCTP will be another concern that can be improved
by introducing a specific Network Address Translation (NAT) for SCTP.
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Zusammenfassung

Das Stream Control Transmission Protocol (SCTP) wurde ursprünglich für
den Transport von Signalisierungsnachrichten über IP basierte Netze kon-
zipiert. Inzwischen hat es sich jedoch zu einem allgemeinen Transport-
protokoll entwickelt, das einzigartige Eigenschaften besitzt. Daher ist es
besonders für Anwendungen interessant, die von mehreren Netzwerkadressen
pro Verbindung (Multihoming), mehreren unabhängigen Nachrichtenströmen
oder einer der zahlreichen Protokollerweiterungen profitieren können. Mitt-
lerweile hat SCTP in die Betriebssystemkerne aller UNIX-Derivate und eines
Windows Prototyps Einzug gehalten, aber es gibt noch Mängel, deren Ur-
sachen es zu entdecken und zu korrigieren gilt.

In dieser Dissertation wird zunächst eine Reihe von Werkzeugen bereit-
gestellt, um die Grundlage für weitere Untersuchungen zu schaffen. Aus-
gehend von der Analyse und dem Vergleich von Implementierungen im Sys-
temkern verschiedener Betriebssysteme werden einige Aspekte des Protokolls
untersucht, die zu unerwünschtem Verhalten führen. Die Prinzipien der
Überlast- und Flusskontrolle wurden vom stream-orientierten Transmission
Control Protocol (TCP) übernommen und benutzen daher dieselben Mech-
anismen. SCTP als nachrichtenorientiertes Protokoll benötigt jedoch eine
diesem Unterschied Rechnung tragende Implementierung der Algorithmen.
Die Analyse von SCTP-spezifischen Charakteristika mithilfe der Simulation
wird schließlich zu Lösungen führen und zu einer Verbesserung des Durch-
satzes.

Ein weiteres Anliegen dieser Arbeit ist die Verbreitung von SCTP. Sie
kann durch die Einführung einer SCTP-spezifischen Methode zur Umsetzung
von Netzwerkadressen (Network Address Translation (NAT)) verbessert wer-
den.

Schlüsselwörter:
SCTP, Simulation, Analyse, Verbreitung, NAT, Nachrichtenorientierung
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Chapter 1

Introduction

The Stream Control Transmission Protocol (SCTP) has its origin in the tele-
phony signaling environment. To meet the strict performance and reliability
requirements necessary for this vital medium, SCTP has been designed as a
reliable message oriented transport protocol. New features like the support
of multihoming and multiple streams have been added, and finally SCTP has
first been specified in 2000 in the RFC 2960 of the Internet Engineering Task
Force (IETF).

Although its main field of application is still the telephony signaling envi-
ronment, SCTP has evolved into a general transport protocol, which is now
specified in RFC 4960. SCTP has been integrated in the kernels of the major
UNIX-like operating systems. Furthermore, numerous extensions have been
added to handle the dynamic reconfiguration of addresses, authenticate mes-
sages, support partial reliability, or provide packet drop reporting to improve
the throughput on lossy links.

Often, SCTP is compared to the Transmission Control Protocol (TCP) as
the main reliable transport protocol and fairness towards TCP is demanded.
SCTP has adopted major features from TCP, most important are the conges-
tion and the flow control mechanism. Although the principles used are the
same, some issues arise from the fact that SCTP operates message oriented
whereas TCP operates byte stream oriented. In addition, SCTP supports
the bundling of small messages, common in the telephony signaling environ-
ment, which can lead to a large amount of header bytes compared to the
payload in a packet. Detailed studies revealed that these differences in the
protocol design have an impact on the fairness towards TCP and the number
of unnecessary retransmissions.

1



2 Introduction

1.1 Fields of Research Regarding SCTP

As the most outstanding new feature of SCTP is multihoming, the majority
of research projects address this topic.

Based on the works of Maximilian Riegel and Michael Tüxen about Mo-
bile SCTP [73, 74] numerous groups are investigating the applicability of
SCTP in mobile environments. Some researchers focus on the improvement
of the handover mechanism in wireless networks [23,24], while others choose
SCTP as transport protocol to improve the behavior of existing mobility
protocols [66].

Another aspect of multihoming is the use of multiple links at the same
time. Concurrent Multipath Transfer (CMT), first introduced at the Uni-
versity of Delaware [43], is still an ongoing research topic there and at other
institutions. At the University of Duisburg-Essen a project funded by the
Deutsche Forschungsgemeinschaft (DFG) focusses on the improvement of
load sharing in SCTP multihomed heterogeneous environments.

Using multiple independent streams alleviates the risk that a message is
blocked because an earlier one has not arrived yet. This positive effect is
taken advantage of when the performance of application layer protocols like
the Hypertext Transfer Protocol (HTTP) [60] is improved. A DFG project at
Münster University of Applied Sciences concentrates on the applicability of
several stream scheduling algorithms and their impact on flow and congestion
control.

Securing messages is a prerequisite to deploy SCTP in areas where secu-
rity considerations are vital. Studies have been conducted to secure SCTP
on different layers [6, 21, 49], yet each solution had a disadvantage [33] that
prevented its implementation. Datagram Transport Layer Security (DTLS)
was the only protocol that could be implemented to secure SCTP with all
its features [99]. At Münster University of Applied Sciences it has been
integrated in the OpenSSL sources [64].

A research team at the University of British Columbia concentrates on
the behavior of Message Passing Interface (MPI) applications. They have
chosen SCTP as transport level protocol for MPI [50, 51] and ported the
FreeBSD SCTP stack in a userland version. Ongoing research focusses on
the influence of network characteristics on MPI application performance.

1.2 Outline of this work

One goal of this thesis is the validation of protocol features, the improvement
of SCTP’s behavior concerning performance, and the interaction with TCP
regarding fairness. Misbehavior shall be discovered and suitable solutions for
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its correction found. To enhance the deployment of SCTP, a new concept for
a specific NAT for SCTP shall be introduced.

To obtain a solid research basis, a suite of tools shall be developed to
enable the simulation and an easy testing of the protocol behavior.

This thesis will be organized as follows. After a short introduction to
the main features of SCTP in Chapter 2 and its protocol extensions with an
emphasis on those that are relevant for the course of this work, computer
simulation models will be briefly explained and some network simulators
presented in Chapter 3. The OMNeT++ simulation environment and the
INET framework, which were chosen for further use, will be described in
more detail.

Chapter 4 introduces packet capturing and then focuses on Wireshark
as the most popular open-source network analyzer. The integrated graphical
representation of message flows and statistical data related to the associations
will be presented extensively.

Another invaluable tool for testing is the ExtInterface, a network inter-
face that makes the connection between the simulation environment and real
networks possible. Its structure and necessary modules will be described in
Chapter 5. To make performing hundreds of runs more efficient, OMNeT++
has been extended to support the generation of specification files that are
needed as input for Xgrid, a tool provided by Mac OS X to distribute tasks.

The implementation of SCTP in the INET framework is the subject of
Chapter 6. The simulation architecture is outlined together with the neces-
sary new modules and messages that are needed to realize the functionality of
SCTP. Implemented protocol extensions, application modules, and a section
about the validation of the simulation round the chapter off.

For the course of this thesis the performance characterized by the through-
put plays an important role. Therefore, formulae for the throughput under
ideal conditions and for lossy links are developed in Chapter 7.

Chapter 8 concentrates on the improvement of SCTP. Starting from the
comparison of real kernel implementations, topics related to the message
orientation of SCTP are examined. Thus, the fairness towards TCP can be
improved and unnecessary retransmissions can be avoided. A new flag is
introduced that informs the data receiver that an acknowledgment should
be sent as soon as possible. This feature can lead to an increase in the
throughput for long term and a shortening of the life time of short term
connections. Lossy links, which are typical for wireless LANs, often result in
spurious retransmissions. To mitigate this effect, the packet drop extension
is applied to the effect that the negative impact of error-prone links can be
almost fully compensated. Finally, an advice is given for the handling of
retransmissions when dealing with handovers from long to short delay links.



4 Introduction

Chapter 9 is dedicated to the deployment of SCTP, which should be re-
alized by a specific Network Address Translation (NAT) for SCTP. It is ex-
plained why the traditional NAT is not applicable for SCTP, and the concept
for a new NAT is introduced. Examples that explain the message flow of the
NAT transversal are outlined for all relevant scenarios including multihoming
and peer-to-peer networks.

The final chapter provides a conclusion and an outlook on future work.



Chapter 2

The Stream Control
Transmission Protocol (SCTP)

2.1 History

The Stream Control Transmission Protocol has its origin in the telephony
environment. In the late nineties the need arose to send signaling data over
Internet Protocol (IP) based networks. Up to that time most telephony
signaling messages were sent with the protocols of the Signaling System
No. 7 (SS7) suite over networks with a link bandwidth of 64 kbps. With
the growing traffic a faster means of transportation became necessary.

As the requirements for the SS7 network concerning reliability and avail-
ability are very high, the transport protocol, which was to deliver the signal-
ing data over IP, was to meet those demands, too. Neither the reliable Trans-
mission Control Protocol (TCP) nor the message oriented User Datagram
Protocol (UDP) was considered suitable to fullfill the rigid standards [91].

The Internet Engineering Task Force (IETF) solved this problem by set-
ting up the Signaling Transport (SIGTRAN) working group that created a
new protocol suite called SIGTRAN that adapts the SS7 messages for the
transport over SCTP. First, SCTP was part of the SIGTRAN suite, until
it was used as transport protocol directly over IP. The responsibility for its
further development was taken over by the IETF Transport Area Working
Group (tsvwg). According to the three higher levels of the SS7 protocol
suite, corresponding application layers were designed to run over the new
transport protocol SCTP:

• MTP Level 2 User Adaptation (M2UA) defined in [55] to transport
messages from MTP 2 to MTP 3 over IP,

5



6 The Stream Control Transmission Protocol (SCTP)

• MTP Level 2 Peer Adaptation (M2PA) defined in [27] to transport
messages between MTP 2 layers over IP,

• MTP Level 3 User Adaptation (M3UA) defined in [56] to transport
MTP 3 messages to the application,

• SCCP User Adaptation (SUA) defined in [52] for the SCCP message
transport, and

• ISDN User Adaptation (IUA) defined in [57] to transport ISDN Q.931
messages.

A special node called Signaling Gateway (SG) was introduced and placed
at the border between the signaling network and the IP based network to
terminate the SS7 network and transport the messages to an IP based node.

Signaling Gateway

Figure 2.1: Transport of SS7 messages over SCTP

An example of the architecture for M3UA, the most popular of the SIG-
TRAN protocols, is shown in Figure 2.1. The Nodal Interworking Function
(NIF), which was not specified by the IETF, is responsible for the conversion
of the protocol formats. For further information on SS7 see the International
Telecommunication Union (ITU) Recommendations [35–41]. The SIGTRAN
protocol suite is specified in [27, 52, 55–57, 63], an overview on all protocols
is given in [18].

2.2 Main Features of SCTP

In 2000, SCTP was defined in the RFC 2960, which was updated to RFC
4960 [85] in 2007. Although designed for a special application, SCTP evolved
into a general purpose transport protocol.
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SCTP is a reliable connection oriented transport protocol, which sup-
ports multihoming and multiple streams. A connection, which is called an
association in SCTP, is set up between a client and a server. The user mes-
sages have to be sent reliably and some of them also in the correct sequence.
The algorithms for congestion and flow control prevent overutilization of the
links and lead to fairness towards TCP. Supervising the availability of the
paths and changing to an alternative one in the case of a failure adds to the
robustness of this protocol.

The main features of SCTP which are relevant for the course of this thesis
are discussed in the following subsections.

2.2.1 Message orientation

SCTP is a message oriented protocol. To keep the message boundaries, all
messages are organized in so-called chunks (Figure 2.2).

32 bit

Chunk Type Chunk Flags Chunk Length

Variable Length Chunk Value 

Figure 2.2: SCTP chunk format

To distinguish between the different types of chunks, e.g. control chunks
to set up or shut down an SCTP association or chunks that carry application
layer messages, a Chunk Type field is introduced. Mostly the Chunk Flags
value is set to zero, but there are cases, like in the DATA or ABORT chunk,
where these flags are very important. In Section 8.4 a new DATA chunk
flag will be suggested the use of which can save resources and improve the
performance of an association. The Chunk Length field features the length of
the complete chunk in bytes including the just mentioned fields.

The Chunk Value is type dependent and even optional in some cases. The
only requirement is its 32-bit alignment, which is achieved by adding up to
three padding bytes. The number of these bytes is not included in the Chunk
Length field. Besides mandatory fields and parameters, optional parameters
can be added which follow the so-called TLV format. It consists only of a
two bytes type field, a two bytes length field and a variable length value.

Signaling data feature relatively small single messages that are, for in-
stance, in the case of ISDN User Part (ISUP) traffic typically only between
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17 and 48 bytes long (see [80]). However, the maximum size of a packet to
be transferred without fragmentation is limited by the maximum transmis-
sion unit (MTU), which is defined as the maximum size of a datagram that
can be transmitted through the next network [69]. It is dependent on the
underlying hardware, e.g. for an Ethernet link it is 1500 bytes. To be able to
utilize the full size of a packet, SCTP chunks can be bundled, which means
that smaller chunks can be combined into one packet (see Figure 2.3). With
the exception of some combinations, an SCTP message can also be composed
of different types of chunks.

32 bit

Source Port Number Destination Port Number

Verification Tag 

Chunk Type Chunk Flags Chunk Length

Variable Length Chunk Value 

Chunk Type Chunk Flags Chunk Length

Variable Length Chunk Value 

Checksum

SCTP 
Common 
Header

1st chunk

nth chunk

.

.

.

Figure 2.3: SCTP message format

Figure 2.3 shows a complete SCTP message that consists of the common
header and a number of chunks. The common header includes information
about the source and destination port like the headers in other transport
protocols. In addition, a Verification Tag is introduced that identifies all
the chunks that belong to the same direction of an association (see Sub-
section 2.2.2). A Checksum that is calculated according to the CRC32c al-
gorithm introduced by Castagnoli et.al. in [12] verifies the integrity of the
SCTP message.
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2.2.2 Establishing and Shutting down an Association

SCTP is a connection oriented protocol. Therefore, before sending data, an
association has to be established. In contrast to TCP, SCTP uses a four way
handshake that can protect the server against blind Denial-of-Service (DoS)
attacks according to the guidelines of RFC 4732 [31].

Host A Host B
INIT

COOKIE-ECHO

INIT-ACK

COOKIE-ACK

Host A Host B
INIT

COOKIE-ECHO

INIT-ACK

COOKIE-ACK

.

.

.
INIT

INIT

Host A Host B

INIT-ACK

COOKIE-ACK

COOKIE-ECHO

INIT

Figure 2.4: Variants of SCTP handshakes

In Figure 2.4 three variants of four way handshakes are drawn. The most
common flow (left hand side of Figure 2.4) will be described in more detail.

The client starts by sending a packet containing an INIT chunk, whose
parameters inform the server about:

• The initiate tag, which is going to be the verification tag that the server
will use in each common header.

• The maximum advertised receiver window (arwnd) that indicates, how
many bytes the client can accept without delivering data to the appli-
cation.

• The initial 32-bit transmission sequence number (TSN), i.e. the TSN
of the first DATA chunk that the sender of the INIT chunk will use. The
following DATA chunks are numbered consecutively to obtain a unique
identification.

• The number of outbound and inbound streams the client wants to set
up.

The server accepts the INIT chunk by sending an INIT ACK chunk of the
same format. To mitigate the risk of a successful DoS attack, the server does
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not reserve resources for a future association, but includes a State-Cookie

parameter that contains all the information that is needed to create the
future association. For further information about the advantage of a four
way handshake concerning DoS attacks refer to the results in [71].

Besides the State-Cookie parameter, additional ones can be included
in the INIT or INIT ACK chunk to inform its receiver about implemented
protocol extensions, addresses etc.

The State-Cookie parameter is reflected in the COOKIE ECHO chunk that
is acknowledged in the COOKIE ACK chunk.

The handshake in the middle of Figure 2.4 can happen, if one endpoint
starts the association procedure again while the peer is still in the established
state. A reason for this behavior could be that one side rebooted without
tearing down the association and then restarted the association setup pro-
cedure. The four way handshake will succeed and for the server side the
association will restart.

SCTP does not only support the client-server model for association setup,
but also the more general peer-to-peer model. Both endpoints can start the
four way handshake at about the same time and the SCTP setup procedure
will ensure that exactly one association is established. This is called an
INIT collision. An example message flow is given on the right hand side of
Figure 2.4. Detailed descriptions of the handling of all the possible scenarios
are given in the SCTP reference guide [91].

After the association is established, the data transfer may start, which
will be decribed in the next section.

One of the hosts initiates the closing of an association by sending a shut-
down primitive to the transport layer. SCTP will send a SHUTDOWN chunk,
after the local send queues have been emptied. The receiver answers with
a SHUTDOWN ACK chunk, which is acknowledged with a SHUTDOWN COMPLETE

chunk. This three way handshake terminates an association gracefully, while
an ABORT chunk can be sent any time on reception of a packet for which no
association can be looked up, or when a critical error occurs, to close the
association abruptly.

Error conditions can be signaled by sending an ERROR chunk that can
include the causes of the error in order to provide more detailed information
for the receiver.

2.2.3 Reliable Data Transfer

All messages that are handed down from the upper layer are encapsulated
as payload into the DATA chunk (Figure 2.5).

The DATA chunk is divided into a fixed length header of 16 bytes and the
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32 bit

Chunk Type = 0 Reserved   U  B  E Chunk Length

TSN

Stream Identifier Stream Sequence Number

Payload Protocol Identifier

Variable Length User Data

Header

Payload
Padding

Figure 2.5: SCTP DATA chunk format

variable length application data (payload), which have to be padded at the
end to become 32-bit aligned. The DATA chunk is identified by the TSN that
it will keep for its lifetime. If user data does not fit into an MTU and has to
be fragmented, each fragment will be assigned a distinctive TSN. Three of the
eight possible flags are in use indicating whether a series of fragments begins
(B-Bit) or ends (E-Bit) or data should be sent unordered (U-Bit). Unordered
DATA chunks must be dispatched to the upper layer by the receiver without
any attempt to reorder. In Section 8.4 another flag will be introduced that
initiates the immediate sending of an acknowledgment and thus improves the
performance in some situations.

One unique feature of SCTP are streams, unidirectional logical channels
within an association. In TCP, as a reliable transport protocol, all data is
delivered to the application in the same order as it was sent. This implies
that the absence of one packet at the beginning of a series of data to be
delivered results in the blocking of the other already received data. This
phenomenon is called Head-of-Line (HOL) blocking. To overcome these un-
desirable delays, the streams in SCTP are independent from each other in
that the sequence has to be kept only within a stream and not within the
overall message flow. Furthermore, only the user messages which are marked
as ordered have to keep the sequence. The user can choose the stream for
a particular message by setting its Stream Identifier (SID). The SCTP layer
assigns a Stream Sequence Number (SSN) to define the order within a stream.
SCTP can handle a great number (up to 65536) of streams that can be filled
according to special needs of the application, sending, for instance, important
data unordered to be delivered immediately.

Finally, the Payload Protocol Identifier (PPID) informs about the protocol
of the encapsulated message. This is needed, for example, in the case of all
SIGTRAN protocols that are transported over SCTP. In case the payload
does not contain data of another protocol, the PPID is set to zero.
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As SCTP is a reliable transport protocol, all data have to be acknowl-
edged. In SCTP a selective acknowledgment (SACK) chunk is sent for every
second packet. The Cumulative TSN Ack (CumTSNAck) field (Figure 2.6)
carries the TSN up to which all TSNs have been received. In case that TSNs
have arrived out of order, the receiver fills gap ack blocks with the first and
the last sequenced TSNs of a block. Thus, the sender will be informed about
the missing TSNs, i.e. those between the Cumulative TSN Ack and the first
block and those between the blocks. If a TSN arrives although it has been
acknowledged in a previous SACK chunk, this TSN is added to the list of
duplicate TSNs.

32 bit

Chunk Type = 3 Chunk Flags Chunk Length

Cumulative TSN Ack

Number of Gap Ack Blocks = N Number of Duplicate TSNs = M

Advertised Receiver Window Credit

Gap Ack Block #1 Start

Header

Gap Ack
Blocks

Gap Ack Block #1 Stop

Gap Ack Block #N Start Gap Ack Block #N Stop

. . .

Duplicate TSN #1

Duplicate TSN #M

. . . Duplicate
TSNs

Figure 2.6: SCTP SACK chunk format

The Advertised Receiver Window Credit (arwnd) plays an important part
in the flow control mechanism and will be discussed in Subsection 2.2.6.

Packet loss due to queue exhaustion or error-prone links leads to gap
reports, i.e. a TSN higher than the one missing has been acknowledged and
announced in a gap ack block. If a specific TSN has been reported missing
for three successive times, it will be marked for retransmission to be re-sent
as soon as possible. In most scenarios this mechanism is sufficient so that
packet loss has no negative influence on the performance.

In the case of error-prone links or heavy traffic, one fast retransmission
per TSN might not be enough to fill the gap. When a DATA chunk leaves the
sender, a timer is started to expire after a retransmission timeout (RTO). If
the TSN has not been acknowledged before, a timer-based retransmission is
triggered.
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2.2.4 Multihoming and Path Supervision

A feature that is unique to SCTP is multihoming, which means that an
endpoint may have several IP addresses that can be used as destination
addresses to reach this endpoint.

During the association setup the endpoints announce their addresses in
the address parameter of the INIT or INIT ACK chunk, respectively. One
address is selected as primary path, either explicitly by the upper layer or
the destination address of the first message is used.

The availability of the paths is supervised by sending HEARTBEAT chunks
every (HB Interval + RTO) seconds to all known endpoint addresses. If the
corresponding HEARTBEAT ACK chunk arrives, this path is stated confirmed.
The value for HB Interval is usually 30 secs. The first value for RTO is RTOMin

which is one second by default. The next values are calculated by taking the
round trip time (RTT) into account. The RTT is measured by either calcu-
lating the time difference between the sending of a HEARTBEAT chunk and the
arrival of the corresponding HEARTBEAT ACK chunk, or the first transmission
of a user message and its acknowledgment in the SACK chunk, considering
only the DATA chunks that have not been retransmitted. The computation
of RTO in SCTP follows closely the rules for TCP in RFC 2988 [67].

HEARTBEAT chunks are only sent when the path has been idle for some
time. In case the acknowledgment does not arrive, RTO is doubled and a
path error counter is increased. The maximum number of trials for the path
supervision is configured in the Maximum Path Retransmission (RTX

(P)
Max )

parameter. After RTX
(P)
Max fruitless trials, the path is declared inactive. All

regular traffic is transmitted via the primary path, but in case of a timer
based retransmission or a path failure, i.e. the path becomes inactive, the
next confirmed path is used.

As the properties and the usage of the paths are different from each other,
the calculation of the RTO has to be done for each path individually.

Up to date multihoming is used for redundancy purposes only, however,
the utilization of the additional paths for load-balancing has been the topic
of several research projects [42,43,46,47].

2.2.5 Congestion Control

Congestion control, which is also adopted from TCP, is a mechanism to
control the traffic on a link between two endpoints of a connection. The goal
is to prevent senders from blocking links by forcing them to reduce the rate
of sending packets.

The most important parameter is the congestion window (cwnd). It limits



14 The Stream Control Transmission Protocol (SCTP)

the number of bytes the sender is allowed to transmit before waiting for a
new acknowledgment. That means that not more than cwnd bytes may be
outstanding, i.e. sent, but not acknowledged yet.
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Figure 2.7: Evolution of the congestion window

The congestion control mechanism is divided into two phases (see Fig-
ure 2.7). The first one is called slow start. It operates for cwnd values
less than or equal to the slow start threshold (ssthresh), which is set to an
arbitrary value (mostly the advertised receiver window of the peer during
association setup) at the beginning of an association. Slow start is charac-
terized by an exponential increase of the congestion window. Every time an
incoming SACK chunk announces that the Cumulative TSN Ack parameter
has advanced and the cwnd is fully utilized, i.e. the number of outstand-
ing bytes is greater than cwnd, the minimum of the path MTU and the
acknowledged bytes is added to cwnd.

When cwnd exceeds the slow start threshold, congestion avoidance re-
sults only in a linear increase of cwnd. As cwnd indicates the upper bound
for the amount of data that may be sent, its growth can lead to an excessive
injection of data into the network which will result in packet loss. While fast
retransmissions result in halving the congestion window, a timer based re-
transmission leaves cwnd at the size of the path MTU and in slow start again.
Thus cwnd follows usually a zigzag curve in the lifetime of an association. It
has to be calculated for each path separately.
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2.2.6 Flow Control

Flow control like congestion control is a mechanism to influence the amount
of data injected into the network. Whereas congestion control protects the
network from a fast sender, flow control should prevent the receiver from
being overloaded.

To achieve this, the advertised receiver window parameter is used to an-
nounce the amount of data that the receiver is willing to accept. During the
setup of the association the hosts exchange their initial arwnd in the INIT

and INIT ACK chunk. Upon arrival of a DATA chunk, arwnd is decremented by
the message size. After the delivery of the data to the upper layer, arwnd can
be incremented again. When the receiver sends a SACK chunk to acknowledge
data, it includes the actual value of the arwnd. The sender attempts to keep
track of the size of its peer’s arwnd by trying to predict the window size. It
takes the value of the announced arwnd as basis, reduces it by the number
of outstanding bytes, i.e. the data that are assumed to be in flight.

In case of large gaps or a very slow application, the peer’s arwnd might
reach zero. In this situation only one DATA chunk may be sent to probe the
window, which is similar to the Zero Window Probing mechanism in TCP
described in RFC 793 [70]. The intervals between the sending of the probes
are increased exponentially. As soon as the receiver is ready to accept new
data, it will send a SACK chunk stating the updated size of the arwnd.

But before zero is reached the silly window syndrome (SWS) avoidance
algorithm (see RFC 813 [14]) has to be applied. This algorithm uses a thresh-
old, usually 3000 bytes, below which no arwnd is announced. Sending a
window update only when more than 3000 bytes can be accepted prevents
the sending of small messages that would only result in a re-closing of the
window. Research results to the benefit of the SWS avoidance algorithm will
be discussed in Section 8.2.

2.3 Protocol Extensions

Since the basic properties of SCTP were first published in RFC 2960, several
SCTP extensions have been developed and have already been standardized
or are in the process of standardization.

2.3.1 Partial Reliability (PR-SCTP)

The partial reliability extension PR-SCTP, specified in RFC 3758 [84], al-
lows the sender to control the level of reliability. There are different ways
of specifying the reliability: by limiting the time a message is considered
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worth being (re-)transmitted, by specifying a priority, or by just limiting the
number of retransmissions. This provides a service to the user which is not
available when using UDP or TCP. With UDP as an unreliable and TCP as
a reliable transport protocol, the user can benefit from both when applying
PR-SCTP.

2.3.2 Stream Reset

Several groups using SCTP have requested to be able to switch back indi-
vidual SCTP streams to the state they had directly after association setup.
An extension called STREAM-RST has been developed to provide this func-
tionality and is specified in the draft [86].

2.3.3 Dynamic Address Reconfiguration (Add-IP)

Only being able to negotiate the IP addresses of the SCTP endpoint during
the setup of an association is a severe restriction for long term SCTP as-
sociations. Therefore, an extension called ADD-IP has been specified in
RFC 5061 [92]. It allows SCTP endpoints to change the set of IP addresses
being used during the lifetime of an SCTP association. Special chunk types
called ASCONF and ASCONF ACK are sent to ask the destination host to add or
delete an address, or to use it as primary path.

A special rule that will be of importance in Chapter 9 specifies that in
case the address to be added is the wildcard address (0.0.0.0 for IPv4 or ::0
for IPv6), the source address of the packet containing the ASCONF chunk is
added. If the address to be deleted is the wildcard address, all addresses
except the source address of the packet containing the ASCONF chunk are
deleted.

Not only in mobile networks and other scenarios, where a host moves and
changes its addresses over time, Add-IP can be beneficially applied, but also
in the creation of Network Address Translation (NAT) tables, which will be
described in Section 9.4.2.

2.3.4 Authenticating Chunks (AUTH)

As security is of prime importance, the possibility to hijack an association has
to be inhibited. Especially when Add-IP is applied and addresses are trans-
mitted in plain text, the risk to be successfully attacked rises. Therefore, a
security extension called SCTP-AUTH, has been specified in RFC 4895 [101].
It allows the sender to authenticate chunks using shared keys that have been
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exchanged during the association setup. Thus the receiver can verify that
the chunks have been sent by the sender and not by an attacker.

The AUTH chunk that holds the result of the authentication code cal-
culation precedes one or more encrypted chunks. The chunk types to be
encrypted can be chosen by the host, however, ASCONF and ASCONF ACK must
be included in the Chunk-List Parameter of the INIT or INIT ACK chunk.

2.3.5 Packet Drop Reporting (PKTDROP)

The need to deal with lossy links is growing as the number of wireless net-
works increases. Links with high bit error rates lead to spurious retransmis-
sions. In TCP and SCTP, a packet loss is considered a congestion indica-
tion, which leads to reducing the number of transmitted packets and, hence,
the throughput. Packet drop reporting (PKTDROP) [87] is an extension of
SCTP to report packets that have been dropped by middle boxes or the host
due to a false checksum or an exhausted receiver window. If PKTDROP
is supported by both hosts, which they announce in the INIT or INIT ACK

chunk, the host receiving a corrupted packet will send a PKTDROP chunk back.
This chunk includes the complete packet that was corrupted. In case that
the resulting packet is larger than the maximum segment size, the corrupted
message is truncated, which is announced by setting the T-bit and the Trun-
cated Length field in the header. The receiver of the PKTDROP chunk tries to
figure out, which TSNs were included. To identify the TSNs the 4 byte TSN
field and the 2 byte Length field have to be uncorrupted. The retrieved TSNs
have to be marked for retransmission to be re-sent as soon as possible. In
addition to this faster way of retransmission, compared to the three necessary
SACK chunks reporting the TSN missing, the congestion window will not be
decreased and the fast recovery status will not be entered. This is justified
by the fact that the packet was not lost due to congestion but because of a
lossy link.

The impact of the PKTDROP extension on the performance will be ex-
amined in Section 8.5.

2.4 SCTP Implementations

SCTP has gained quite some acceptance since its beginning. As its first goal
was the use as transport protocol for SIGTRAN, it is deployed in signal-
ing networks of telephone network operators and in IP-based signaling for
Universal Mobile Telecommunication System (UMTS) networks.

As an all-purpose transport protocol, it is integrated in the Linux 2.6
kernel, Solaris 10 and FreeBSD release 7. An SCTP kernel implementation
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for 32 bit Windows XP and Vista has recently been developed by a Japanese
research team and can be downloaded from [110].

To provide the user with a uniform interface between the application and
the transport layer, a Socket Application Programming Interface (API) [88]
was developed, which is to a great extent integrated in the kernel implemen-
tations.

Except for Stream Reset and Packet Drop Reporting, which is only avail-
able in FreeBSD, the other extensions are implemented in all operating sys-
tem (OS) kernels.

Very early in the development of the protocol, the userland implementa-
tion sctplib has been realized for UNIX-like platforms. It has been the result
of a cooperation between the Siemens company, the University of Duisburg-
Essen, and Münster University of Applied Sciences. Later is has been ported
to Windows and is available at [44].



Chapter 3

Computer Simulation

The performance analysis and the testing of new features are major issues
in the development and validation of new protocols. As the behavior of real
implementations is not always predictable and the integration of new fea-
tures for testing purposes requires a great effort, simulations are the method
of choice. The advantages of simulations lie in the abstraction from details
which are not relevant, the possibility to easily debug the model and repro-
duce tests because everything can be run in a deterministic way.

3.1 Modeling and Simulation

A simulation is the imitation of the operation of a real-world process or
system over time. To study the behavior of this system, it has to be modeled.
Therefore, assumptions have to be made about the operation of the system,
properties have to be gathered that are suitable to describe the behavior of
the real system. The output data from the simulation should correspond to
the outputs of the real system. Thus the simulation helps to gain a better
understanding of the system.

Reasons to develop and exploit simulations are manifold [4]:

• A simulation study can help to understand how a system works.

• New policies or features can be tested without disrupting the ongoing
operations of the real system.

• New hardware designs can be tested without committing resources for
their acquisition.

• “What if” questions can be answered.

19
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• Insight can be obtained into the interactions of variables and their
importance to the performance of the system.

There is a wide range of possible applications for simulations. Some
examples are [7]:

• Education and training

• Engineering design

• Performance evaluation

• Prototyping and concept evaluation

• Risk/safety assessment

Systems can be characterized as continuous or discrete depending on
whether the state variables change at a discrete set of points in time or
continuously. A queuing system is an example for a discrete system, whereas
the changing level of water behind a dam can be subject to a continuous sys-
tem. The decision, which model is used, is a function of the characteristics
of the system [5]. In the following the main focus will be on discrete-event
simulation.

Discrete-event simulation models are analyzed by numerical methods,
which means that they are not “solved”, but “run”. The operations are
represented by a chronological sequence of events that occur in certain system
states or change them. A scheduler inserts the events into a list where they
are sorted in chronological order according to their execution time. A clock
keeps track of the simulation time and can jump to the start time of the next
event. Thus, simulation runs with rare events can be processed faster than
real time runs. Typical for discrete-event simulators are also random-number
generators which enable the user to apply some randomness to selected input
variables.

3.2 Network Simulators

The diversity in the range of applications is reflected in the number of sim-
ulation programs available. As the main focus is the simulation of network
traffic, a short introduction to three network simulators and their pros and
cons will be given which led to the decision for OMNeT++.
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3.2.1 The OPNET Modeler

The OPNET Modeler [65] is a commercial simulation tool, which was origi-
nally developed at the Massachusetts Institute of Technology (MIT). It pro-
vides discrete-event, hybrid, and analytical simulations, as well as grid com-
puting support for distributed simulations.

The Modeler provides three editors for the user to configure his network
simulation:

• The Project Editor helps to create the topology of a communications
network.

• The Node Editor depicts the flow of data between the functional ele-
ments, which can be protocols or algorithms.

• Protocols, resources, algorithms, and queuing policies are specified in
the Process Editor by assigning states and specific events using a finite
state machine.

OPNET offers a variety of protocol models like TCP, SIP, UMTS, and
VoIP. To analyze the simulation runs, built-in statistics are offered, as well
as tools to visualize the packet routes between source and destination.

Nevertheless, the OPNET Modeler was no option, although SCTP had
been implemented by Andreas Jungmaier as part of his PhD thesis [45]. As
the OPNET Modeler is a commercial tool, licensing was an issue. The avail-
able funds did not allow the renewing of the current license, and therefore,
only a free network simulator came into consideration. Furthermore, a com-
mercial tool normally lacks the possibility to change code in the simulator
itself, which might be of importance in the case of bugs or when features in
the protocol make changes to the modeler necessary.

3.2.2 The Network Simulator 2 (NS-2)

The Network Simulator 2 (NS-2) is an open-source discrete-event simulation
environment developed at the University of California, Berkeley [61]. It
provides support for the simulation of TCP, routing, and multicast protocols
over wired and wireless networks.

NS-2 is an object oriented simulator in C++ with an OTcl [109] inter-
preter as a frontend. OTcl is used for the configuration and setup of simu-
lation scenarios, whereas the detailed protocol implementation is written in
C++. NS-2 supports a class hierarchy in OTcl and C++ with a one-to-one
correspondence between a C++ class and one in the OTcl hierarchy [22].

A simple network with two nodes could be configured as follows [58]:
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1. Define the nodes

set n1 [$ns node]

set n2 [$ns node]

2. Connect them

$ns duplex-link $n1 $n2 100Mb 10ms DropTail

3. Assign an agent to a node

set udp [new Agent/UDP]

$ns attach-agent $n1 $udp

set null [new Agent/Null]

$ns attach-agent $n2 $null

4. Generate traffic

set app [new Application/Traffic/CBR]

$cbr set packetSize_ 1000

$cbr set interval_ 0.005

$cbr attach-agent $udp

5. Connect agents

$ns connect $udp $null

6. Configure events

$ns at 0.5 "$cbr start"

$ns rtmodel-at 1.0 down $n1 $n2

$ns rtmodel-at 1.5 up $n1 $n2

$ns at 2.0 "$cbr stop"

To make the setup of large networks easier, an editor is included which
enables the interactive generation of scenarios. The outcome can be stored
in a script file.

To be able to analyze the simulation results, a trace file can be recorded
in a special format that can be read by the Network Animator (nam). This
file contains information about the topology, the layout, and the traffic. Nam
interprets the file, visualizes the network and replays the simulation.



3.2. Network Simulators 23

There are already a variety of network components available, for instance
several schedulers, queues with different strategies, routing and transport
protocols. TCP is supported with different flavors, and even an SCTP agent
is implemented.

As NS-2 is open-source software, its source code is available, and hence,
new protocols can be added. This might be the reason why is it very popular
in the academic world.

Although the NS-2 SCTP module has been available as a patch since 2003,
and release 3.5 has afterwards been integrated in the NS-2 release, it was
decided to implement an independent solution for SCTP. One disadvantage
of NS-2 was that multihoming was only possible via an agent that consisted
of several nodes, another reason not to opt for NS-2 was that the desired
implementation of the IP-stack was supposed to be closer to reality.

3.2.3 OMNeT++

OMNeT++ [105, 106] encompasses all the properties which are important
and are not present in the other simulators. OMNeT++ is a public-source
discrete event simulation environment, which means that the source-code
is available, but the public cannot participate in submitting updates and
changes to the source code. But as the code can be compiled, it can be
changed for testing purposes, and in case of bugs, patches can be provided to
the author. OMNeT++ is a modular component based architecture written
in C++. Types of components are channels (described by the parameters
delay, bit or packet error rate, and data rate), network definitions, simple and
compound modules. The components can be assembled into more complex
modules via connected gates. Networks are the result of combined module
types that communicate through messages. One message can be encapsulated
into another one, thus being able to simulate the transmission of information
via layered protocol stacks.

The events are ordered according to their start or stop times using a
scheduler. This scheduler was extended to realize the real-time-scheduling
needed for the external interface that will be discussed in Section 5.1.

The network topology is described using a special high-level language
(ned). Parameters can be assigned to modules and easily defined in config-
uration files.

A powerful Graphical User Interface (GUI) is implemented that helps to
follow the simulation process. Each packet is animated and its contents can
be shown just by double-clicking on it. Furthermore, debug output can be
examined for each module individually. Figure 3.1 shows the OMNeT++
GUI. In the left part of the main window the scheduled events are listed,
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Figure 3.1: OMNeT++ simulation environment

which can be found again in the timeline below the menu. Status information
is constantly updated above the timeline. The windows in Figure 3.2 show
only a small collection of the possible ’insides’ of the simulated network.
Clicking on router2 in the network topology of the top window pops up the
right window, which shows the compound module Router. Selecting the
outgoing link of ppp[1] leads to the lower left window showing the gates of
the channel between router2 and srv1. The channel parameters can be seen
and one message just arriving at router2. Further information is available by
selecting other modules.

Different speed rates for the simulation can be selected from the toolbar
(see Figure 3.1). Every movement of a message can be inspected by stepping
through the simulation. The velocities Run and Fast provide a normal and
less detailed animation than the Step mode whereas in the Express mode the
displayed information is updated only in long intervals.

Sometimes the assistance of the GUI is not necessary, especially when a
series of runs with just one varying parameter has to be performed. Then
the simulation can be started from the command line with the command
environment option set. Thus, no GUI output will slow down the activity.

Since version 4.0, OMNeT++ is integrated in the Eclipse Integrated De-
velopment Environment (IDE) [19]. Hence, the complete process from build-
ing new networks, coding and debugging the sources to analyzing the results
is supported in one tool. Figure 3.3 shows the IDE with the tool to set up
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Figure 3.2: Inside the modules

a new network. Via drag-and-drop submodules can be added and connected
with channels, the possible connection points can be selected. Then the
properties of the modules can be set, e.g. name, icon, color, size, gates.

Simulation results are collected for a later analysis in vector (.vec) or
scalar (.sca) files. They can be analyzed in the IDE, too. Figure 3.4 depicts
one of the charts generated from one dataset. In the lower window the dataset
properties including the number, the mean, and the standard deviation are
shown.

3.2.4 INET - an OMNeT++ Framework

As OMNeT++ is a very versatile tool, there are a great number of ready-
made simulation models provided for download. One of those is the INET
framework [104].

The INET framework is ideal for simulating IP-based networks. The dif-
ferent network layers can be distinguished and layer specific protocols are
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Figure 3.4: Analyzing results of a vector file

provided. On the link layer Point-to-Point Protocol (PPP), Ethernet and
wireless Local Area Network (WLAN) interfaces can be configured, the net-
work layer features IPv4 and IPv6, routing protocols like Open Shortest Path
First (OSPF), and IP control protocols like the Internet Control Message
Protocol (ICMPv4 and ICMPv6), and the Resource ReSerVation Protocol
(RSVP). On the transport layer TCP and UDP are implemented. In ad-
dition, a lot of protocol independent modules like routing tables, routers,
switches, and hubs are available. They are all configured as simple modules
and can be combined to form compound modules and networks.

One of those compound modules for instance is the StandardHost (Fig-
ure 3.5) which consists of a complete IP stack with PPP or Ethernet inter-
faces, a network layer, a Ping application, TCP or UDP as transport layer
protocols and corresponding applications. This host has been complemented
with the transport protocol SCTP, a suitable application, a dump module
and external interfaces. These modules will be specified in Section 5.1 and
Chapter 6.

Another important feature of INET is the ability to use real network ad-
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Figure 3.5: Compound Module StandardHost

dresses and do the routing according to rules derived from routing tables.
Although the FlatNetworkConfigurator can be used to automatically dis-
tribute addresses among the hosts of a network, the preferred configuration
mode is setting up routing tables where routes to other hosts or networks
can be configured. Especially for multihomed hosts, where each IP address
has to belong to a different subnet, this feature helps to keep the network
scenarios close to reality.

Together with OMNeT++, INET provides an ideal basis for the imple-
mentation of another transport protocol. Since OMNeT++ is public-source,
it is free for academic institutes, as long as it serves a strictly noncommercial
purpose.



Chapter 4

Analyzing Protocols

Evaluating the functionality of a protocol implies the ability to control
whether the parameters are set properly and the message flow is correct.
Therefore, the packets arriving at the network adapter have to be traced,
i.e. the byte sequence has to be recorded and analyzed according to the pro-
tocol specifications.

In this chapter first methods to filter packets are explained and text-based
network analyzers introduced, before Wireshark is presented in more detail.
Wireshark is the most popular GUI-based network analyzer, which has been
expanded, as part of this thesis, by adding a feature to draw graphs of the
SCTP message flow.

4.1 Packet Capturing

To be able to analyze the network traffic, an application needs access to
the link layer. There are three methods, which are used depending on the
operating system.

The BSD Packet Filter (BPF), also known as Berkeley Packet Filter, was
introduced in [54]. It is supported by most Berkeley-derived implementa-
tions, e.g. FreeBSD. Figure 4.1 shows the mechanism to capture packets
with a BPF device as described in [83]. Each packet that arrives at the link
layer, i.e. which is destined for that computer, is filtered by the BPF device
according to the application’s needs. A filter could be an expression like

sctp and dst host 10.1

which would result in the extraction of packets that have SCTP as transport
layer and are bound to hosts, which belong to the 10.1.0.0 subnet. Thus,
not all of the received packets are copied to the application. In addition,
applications specify a snaplen, which means that only the beginning snaplen

29
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Figure 4.1: Data link access with a BPF device

bytes of a packet are needed, which again reduces the load. A third possibility
to reduce the overhead lies in the organization of the buffer. In fact, there are
two buffers, one of which is filled, while the contents of the other is copied to
the application. As only full buffers are copied, the number of system calls
is decreased. Further information about the configuration of BPF devices is
given in [112].

In the Solaris operating system the Data Link Provider Interface (DLPI)
is integrated, which was designed by AT&T. The access to DLPI is provided
by sending and receiving STREAMS messages. The process of filtering is
similar to the BPF filtering, but the BPF filtering is done before copying
the data, while with DLPI, all packets are copied first. Both devices work
with pseudomachines, BPF with a register machine and DLPI with a stack
machine. Stevens states that BPF is 3-20 times faster [83].

Linux takes a different approach. The user can choose between two kinds
of sockets to create:

1. A socket of type SOCK PACKET

fd = socket(AF_INET, SOCK_PACKET, htons(ETH_P_ALL))

2. A socket of family PF PACKET
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fd = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL))

ETH P ALL specifies the frame type, which could also be ETH P IP (to
get only IPv4 packets) or others. In the second call SOCK RAW could be
substituted by SOCK DGRAM if the application is only interested in the
link layer.

The second kind of call is more advanced than the first one, as the socket
can be bound to a device, and thus a filtering per device is made possible. In
contrast to BPF the number of system calls is much higher, as several frames
cannot be bundled for one call.

To provide the user with an implementation-independent access to the
link layer, the libpcap packet capture library was designed by McCanne and
Van Jacobson in 1994 [103]. It features an API between the packet cap-
ture facility provided by the operating system and the application. It even
includes a filtering mechanism in case it is not supplied by the OS. The
libpcap will be used by the ExtInterface described in Section 5.1.

4.2 Text-based Packet Analyzers

4.2.1 Tcpdump

The same team that designed BPF and the libpcap also implemented the
text-based packet analyzer tcpdump [102]. The user can start the sniffer
from the command line and choose from numerous options to specify the
filter he wants to apply.

tcpdump -i em1 -s 1000 sctp

for instance, starts the capturing of SCTP packets on interface em1 with a
snaplen of 1000 bytes. The result is seen in Figure 4.2. Form feeds have been
added for better readability.

The trace is quite detailed, as the headers with all parameters are listed.
Bundling is supported, listing an entry for each DATA chunk.

Tcpdump also allows to save capture files in the pcap format that can be
read with any analyzer that supports this format.

4.2.2 Snoop

While tcpdump runs on all platforms, snoop [81] is exclusively available for
the Solaris OS. Applying this command line tool is similar to tcpdump. The
capture files are stored in a proprietary format that is RFC1761-compliant
[10]. Yet, the Wireshark packet analyzer that will be introduced in the next
section, can read this format.
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20:11:22.373842 IP 10.4.3.1.65254 > 10.4.4.1.5001: sctp 
(1) [INIT] [init tag: 3493527747] [rwnd: 233016] [OS: 10]  

[MIS: 2048] [init TSN: 3369758830] 
20:11:22.373913 IP 10.4.4.1.5001 > 10.4.3.1.65254: sctp 

(1) [INIT ACK] [init tag: 544448621] [rwnd: 233016] [OS: 10] 
[MIS: 2048] [init TSN: 3924307499] 

20:11:22.374215 IP 10.4.3.1.65254 > 10.4.4.1.5001: sctp 
(1) [COOKIE ECHO] 

20:11:22.374317 IP 10.4.4.1.5001 > 10.4.3.1.65254: sctp 
(1)   [COOKIE ACK] 

20:11:22.374595 IP 10.4.3.1.65254 > 10.4.4.1.5001: sctp 
(1)  [DATA] (B)(E) [TSN: 3369758830] [SID: 0] [SSEQ 0] [PPID 0x0] 

20:11:22.374635 IP 10.4.4.1.5001 > 10.4.3.1.65254: sctp 
(1) [SACK] [cum ack 3369758830] [a_rwnd 232260] [#gap acks 0] 
 [#dup tsns 0] 

20:11:22.374642 IP 10.4.3.1.65254 > 10.4.4.1.5001: sctp 
(1)  [DATA] (B)(E) [TSN: 3369758831] [SID: 0] [SSEQ 1] [PPID 0x0] 
(2)  [DATA] (B)(E) [TSN: 3369758832] [SID: 0] [SSEQ 2] [PPID 0x0] 

20:11:22.374661 IP 10.4.3.1.65254 > 10.4.4.1.5001: sctp 
(1)  [DATA] (B)(E) [TSN: 3369758833] [SID: 0] [SSEQ 3] [PPID 0x0] 
(2)  [DATA] (B)(E) [TSN: 3369758834] [SID: 0] [SSEQ 4] [PPID 0x0] 

20:11:22.374681 IP 10.4.4.1.5001 > 10.4.3.1.65254: sctp 
(1) [SACK] [cum ack 3369758834] [a_rwnd 229992] [#gap acks 0] 
 [#dup tsns 0] 

20:11:22.374840 IP 10.4.3.1.65254 > 10.4.4.1.5001: sctp 
(1)  [SHUTDOWN] 

20:11:22.374856 IP 10.4.4.1.5001 > 10.4.3.1.65254: sctp 
(1)  [SHUTDOWN ACK] 

20:11:22.374965 IP 10.4.3.1.65254 > 10.4.4.1.5001: sctp 
(1)  [SHUTDOWN COMPLETE] 

Figure 4.2: tcpdump output for an SCTP association

4.2.3 TShark

TShark [94] is the command line version of Wireshark, which will be intro-
duced in the next section. Like the other text-based analyzers, capture files
can be printed to stdout or saved to files, previously captured files can be
read. It is noteworthy, that traces can even be saved in human-readable form,
which allows the analysis of the output without special tools, like finding and
counting protocol properties.

4.3 Introduction to Wireshark

The Wireshark [111] packet analyzer was developed in 1998 by Gerald Combs
under the name Ethereal. It changed its name to Wireshark in 2006, because
of a trademark conflict.

Wireshark is licensed under the GNU General Public License (GPL) [28],
which implies that the sources can be downloaded, extended and redis-
tributed again. Wireshark is developed by a community of more than 500
contributing authors.
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Wireshark can capture packets in real-time from devices, including Ether-
net, loopback, wireless LAN or PPP, or read from a trace file. The captured
data is temporarily stored on the hard disk to enable the further examination
of the protocols. The capturing and filtering is supported by the libpcap.

The captured packets are handed to the dissectors that analyze the pro-
tocol headers to display their contents and send the payload to the dissector
responsible for the encapsulated protocol. Michael Tüxen implemented the
dissector for SCTP, some of the protocols of the SS7 and most of the SIG-
TRAN suite.

Figure 4.3 shows the main window of Wireshark. It is divided into three
parts:

• The top window shows the frames, their arrival time, which can be
displayed in different formats, source and destination address, the pro-
tocol type, and an information field. In the case of SCTP, the chunk
types are listed here. Bundling is visualized by itemizing each one.

• The window in the middle allows a look inside the packets. The proto-
col hierarchy is visible, and a click on one of the small triangles opens
a more detailed description of the item. Thus, a complete analysis of
a packet with a thorough explanation of the parameters is possible.

• The frame as seen “on-the-wire” is shown in the bottom window. The
variables are in hexadecimal, whereas the “readable” version in the
middle window is in decimal notation.

In addition, display and coloring filters can be set, and the user can choose
between a variety of protocol specific features.

4.4 Graphical Analysis of SCTP in Wireshark

Large trace files can easily become unmanageable, so that analyzing them
to find faulty behavior is almost impossible. Therefore, a graphical tool to
visualize the data transfer is very helpful. Besides the visualization of the
data flow, statistical data like the number of chunks can lead to a better
understanding, too. Therefore, Wireshark has been extended to provide
these features to the user. The graphical tool is integrated in the publicly
available Wireshark distribution.

After having captured the traffic, there are two possibilities to start the
analysis. To get information about all associations traced, the menu entry
Telephony - SCTP leads to the choices

• Analyse this Association
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• Chunk Counter...

• Show All Associations...

Via the context menu of an SCTP packet the actual association can be
directly analyzed (SCTP - Analyse this Association) or a filter can be pre-
pared (SCTP - Prepare Filter for this Association) that can be applied to
the trace to see only association related frames.

In the following, after a short explanation how packets can be assigned
to associations, the different ways to analyze the traffic will be discussed.

4.4.1 Assigning Packets to Associations

To be able to study the data transfer, the packets have to be assigned to
associations. The usual way to do this is to match source address and source
port with destination address and destination port. As a tool like Wireshark
is also used to develop protocols and detect bugs, the data sent often stem
from testcases, where the same port numbers are chosen for each association.

Figure 4.4 shows a trace, where only INIT chunks were transmitted.
Source and destination ports and addresses are the same in all packets.
Therefore, it is not possible to make a statement concerning the association,
to which they belong, based on the port-address combination.

An SCTP specific variable is the verification tag that is unique for either
side of an association. Thus the combination of local verification tag, source
address to remote verification tag and destination address is a good way to
identify an association.

chunk source local destination remote
type address v tag address v tag
INIT 10.0.0.l 0 10.0.0.2 12345

INIT ACK 10.0.0.l 56789 10.0.0.2 12345

Table 4.1: Assigning addresses and verification tags to associations

The SCTP handshake is the basis for the association. In the INIT chunk
the initiation tag informs the receiver, which verification tag it has to send.
In Table 4.1 an entry reflects the necessary combination of verification tags
and addresses to identify an association. With the arrival of an INIT chunk
already four fields can be filled. The remote verification tag (remote v tag)
is equal to the initiate tag of the INIT chunk. Only the local verification tag
(local v tag) is not known yet. This information is provided by the initiate
tag of the INIT ACK chunk. All other chunks can be easily assigned, as all
necessary values are present.
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The situation is more difficult, when only part of a trace is available or the
handshake is not complete like in the example in Figure 4.4. Assuming two
DATA chunks arriving from opposite directions, the first one provides source
address, local verification tag and destination address. From the second one
the addresses fit, but it is not known whether the verification tag is the right
one. In this case it can be helpful to also compare the port numbers to
exclude the possibility that the chunks belong to different associations. This
heuristic proved to be very useful in real test traces.

When the SCTP graphical analysis is called the trace is dissected once
more. The dissector stores information like ports, addresses, verification
tags, the number of chunks and the chunks themselves in a file, which is then
processed. All information necessary for later analysis, like the maximum
and minimum values for TSNs and time, number of bytes and chunks, etc, is
stored in a structure, which is kept per association. The different associations
are organized in a list that can be accessed within all SCTP functions.

4.4.2 Statistics of the Chunk Types

There are two different chunk statistics implemented for SCTP in Wireshark.
One is reached via the main menu and the other one from the SCTP Analyse
Association window.

Figure 4.5: SCTP Analyse Association window

As the first one was implemented by another author, only the statistics
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that can be reached from the SCTP Analyse Association window will be
described. To open this window, either an association of the entries in the
SCTP Associations window can be chosen (see Figure 4.4), Analyse this
Association can be called from the main menu or the context menu of an
SCTP packet. The first dialog window that appears is the one in Figure 4.5.
It lists some statistical data that are relevant for the association, like errors
and the number of DATA chunks and bytes in either direction.

Figure 4.6: Statistics of the chunk types

For more information, the Chunk Statistics button can be clicked to open
the window of Figure 4.6. For each important chunk type, its number per
endpoint and for the complete association is listed.

4.4.3 Graphical Representation of the Data Transfer

The graphical analysis of the data transfer is performed on a per endpoint
basis. Therefore, the user has to select an endpoint via the tabs in Figure 4.5
to open the window in Figure 4.7 and choose the graphical presentation he
prefers.

4.4.3.1 Analyzing TSNs and SACK chunks

To be able to see the course of the TSNs is very helpful to analyze congestion
control issues. Figure 4.8 shows an example. Besides the TSNs, the Cumu-
lative TSN Acks and the TSNs that have been announced in the Gap Ack
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Figure 4.7: Start window for the graphical analysis of the data transfer
of an endpoint

Blocks are visible, too. To see only the TSNs taken from the DATA chunks or
only those from the SACK chunks, the Show TSNs or Show Sacks button can
be clicked. To zoom into the graph a rectangle must be drawn around the
area to be magnified (see Figure 4.8). With a click on the Zoom in button
or into the rectangle, a detailed figure appears like the one in Figure 4.9.
A series of Cumulative TSN Acks, gap ack blocks and fast retransmissions
are circled in the figure. In this enlarged diagram, the gaps in the course
of the TSNs and retransmissions can easily be pointed out. In the case of
multihomed hosts, timer based retransmissions are not visible, because they
are sent on the second path and therefore traced on another interface.

For convenience, the user can pick out one TSN and see its coordinates
by clicking on it. A double-click selects the corresponding frame in the main
window.

4.4.3.2 Analyzing the Advertised Receiver Window and transmit-
ted Bytes

Another important feature of SCTP besides congestion control is flow control.
To analyze flow control scenarios, the size of the advertised receiver window is
very important. Choosing the button Graph Bytes leads to a window like the
one in Figure 4.10. The course of the DATA chunks can be observed again, but
this time the y-axis shows the accumulated number of bytes instead of the
TSNs. The bottom lines represent the arwnd. As this is the representation
corresponding to the one in Figure 4.8, the relation between the rise and fall
of the arwnd and the data stored at the receiver is well to be seen. The large
gap ack blocks in Figure 4.8, starting at about 15 secs, indicate the number
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of acknowledged TSNs that can not be delivered to the application, because
in-order delivery is not possible due to missing TSNs. Therefore, the data
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has to be cached in the receive queues which reduces the arwnd, as seen
in Figure 4.10. The intermediate rise results from the reception of missing
TSNs that lead to an increase of the Cumulative TSN Ack parameter.
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Chapter 5

Extending the Simulation
Framework

As pointed out in Subsections 3.2.3 and 3.2.4, OMNeT++ together with
INET offers a variety of tools to facilitate the processing of simulations.
However, there were two features missing that were added and will be de-
scribed in this chapter. The first one is the connection of the simulated to
real networks, which can be of great benefit when validating the simulation.
The second one is the possibility to distribute the possibly hundreds of runs
that a test might add up to, if its reliability should be proved, to several
computers without having to change the simulated network itself.

5.1 Connecting the INET Framework with

Real Networks

A simulation is an isolated system, in that it can only run in a self-contained
environment. Yet, there are situations, where a connection between the
simulation and the outside world is desirable.

5.1.1 Simulation - Emulation - Real Network

A problem when dealing with simulations lies in the correct specification of
parameters that might have an influence on the performance. Sometimes it
is very hard to provide reasonable values for some of them or even model
them appropriately. An example is the CPU time needed for handling mes-
sages, because it can be influenced by the cache effects of the CPU, or the
scheduling of threads. The impact of multiple CPU cores working together
is hard to model, too. In general, it is much easier to analyze the generic

43
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protocol performance compared to the performance of a specific protocol
implementation using a simulation.

When using real implementations for performance analysis, the network
between the sender and receiver can be emulated. DUMMYNET (see [75]),
a network emulator of the FreeBSD operating system, can be started on
one node. Thus, packet loss rates, bandwidth limitations, and delays can
be emulated, and with some additional tools also packet duplication and
corruption. Similar tools can be obtained for the Linux operating systems,
for example NIST Net described in [11]. Going one step further, the network
emulation can be replaced by a real network between the nodes. This is done,
for example, in a project called PlanetLab [13], where experiments can use an
almost global network, which is based on the public Internet. This approach
not only provides real endpoint behavior but also incorporates all effects
of real network scenarios. However, it is hard to reproduce experiments,
because of the various impacts on the network which cannot be controlled.
Real systems are also used by Emulab [20]. Here the user first sets up a
network scenario by identifying nodes and configuring the connecting links,
then this configuration is transferred to real nodes. As these hosts are not
arbitrarily distributed, parameters like delay and loss can be controlled.

Having the possibility that nodes within a simulation can interact with
nodes in a real IP based network, combines the advantages of these different
approaches.

The Network Simulator NS-2 [61] has a limited support for interacting
with real nodes, as described in Chapter 46 (Emulation) of the NS-2 man-
ual [22]. An integration of Emulab and NS-2 is outlined in [30], including
the usage of this technique for distributed simulation.

5.1.2 Preliminary Considerations

5.1.2.1 Requirements

The device which was called external interface or ExtInterface had to fit
seamlessly in the INET framework. To achieve this objective, the following
requirements had to be met.

• The ExtInterface was supposed to be usable on all platforms that are
supported by the INET framework, i.e. most Unix based OSs and a
variety of Windows operating system versions.

• The ExtInterface was expected to be easily expandable such that not
only SCTP messages, but packets from all IP-based protocols like UDP
and TCP, and also OSPF and other protocols could pass from the
simulation to a real network and vice versa.
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• As multihoming is an important feature, multiple external interfaces
had to be supported. Thereby it was to be possible, that these in-
terfaces belonged to one host or were distributed among several net-
work components, such that the simulation was connected by multiple
ExtInterfaces to the real network.

• From the simulation’s point of view the interface was supposed to look
like the already supported interfaces for PPP or Ethernet.

• The following scenarios had to be feasible:

– Single simulated host connected to a real host or network.

– A simulated network connected to a real host or network.

– A simulated network connected via multiple ExtInterfaces to dif-
ferent hosts that communicate with each other through the simu-
lation.

5.1.2.2 Receiving and sending real packets

When an IP packet is received by the host running the simulation for a node
being simulated, it must be transformed into an OMNet++ object and in-
jected into the simulated network. The network stack of the host running
the simulation should not process these packets. Therefore, the host can-
not have the IP addresses of the simulated node configured as addresses of
one of its real interfaces. This means that using raw sockets is not an ap-
propriate mechanism for receiving these packets. The packet capture library
libpcap, however, provides an appropriate way of capturing these packets (see
Chapter 4.1).

Figure 5.1 shows the schematic of the sending and receiving process.
When packets arrive at the data link of the host, the libpcap extracts pack-
ets, which are meant for the simulation, by applying a capture filter (here:
ip and dst host 10.0.0.1). Thus, it makes sure that only packets which are
sent to the simulation are captured and not the ones sent by the simulation.
Sending packets from the simulation to nodes in the real network is done
by using raw IP sockets (solid lines). Hereby, the host sends packets whose
source address is the simulated endpoint’s address, i.e they do not belong to
the real network adapter. This is not a problem for the Unix based operating
systems but may not be supported by all versions of the Windows operating
system. In this case the libpcap could also be used to send the packets.

The routing in the real network has to be configured such that the host
running the simulation acts like a router which provides access to the network
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Source address: 10.0.0.1

Figure 5.1: Sending and receiving real packets

being simulated. In the example of Figure 5.1, the real endpoint has to have
a route to 10.0.0.1 with the gateway set to 195.15.16.1.

The regular network traffic to and from the host is not influenced by these
actions.

For sending packets, a method of transforming the simulation’s internal
format to the network format has to be implemented for each protocol. This
is called a serializer. For receiving packets a method called parser will trans-
form the packet in network format into the simulation’s internal format. The
code is structured in a way that these methods are encapsulated on a per
protocol basis.

5.1.2.3 Scheduling Events

A discrete event simulation, which also takes interactions with the real ex-
ternal world into account, has to handle two kinds of events: internal events
which have their origin in the simulation and external events which stem
from the interface to the external world. Also, the simulation time has to
be synchronized to the real time. This is possible assuming that there is
a speedup in the simulation compared to real-time, i.e. the simulated time
runs faster than the real time. As the experiments will show, this is a valid
assumption when using state-of-the art computer hardware and networks
having a limited total packet rate. Time synchronization is basically done
by looking at the time of the next scheduled event. If this time is already
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in the past, this event is processed. Otherwise external events are processed
and the simulation is put to sleep until either the next internal event has to
be processed or another external event arrives. It is important to note that
internal events have to be given a higher priority.

Due to limitations of the libpcap library, the simulation is put to sleep for
a fixed small amount of time, if no external event is present. This results also
in a time granularity for all internal events. Choosing a small value for this
granularity led to good results. It should be noted that operating systems
have a systems based timer granularity for putting processes to sleep, hence
choosing a smaller value for the simulation granularity than the systems
granularity does not provide any benefit.

5.1.3 Realization of the Requirements

To integrate the external interface in the INET framework four new classes
were needed: the link layer module ExtInterface, the scheduler, the serializer,
and a new message type.

Figure 5.2 illustrates in three parts, how they work together. To initialize
the items, the scheduler opens a raw socket. Then the ExtInterface sends a
registration request to the scheduler, which opens a pcap device, compiles
the filter string, sets the filter, and establishes the connection to the data
link.

In the middle part, the message flow leads from the simulation to the real
network. The numbers help to follow the process.

1. The network layer sends an IPDatagram to the ExtInterface. The
IPDatagram is an INET specific message type on the link layer. It is
derived from cMessage, the standard OMNeT++ message class.

2. ExtInterface calls the scheduler to serialize the IPDatagram. The mes-
sage is converted in a network readable format.

3. The serializer returns a buffer with the raw packet and the number of
written bytes.

4. The scheduler is called, and the packet is handed over.

5. The scheduler sends the data via the raw socket to the network.

The opposite direction, from the real network to the simulation, is de-
picted in the lowest part.

1. The scheduler calls select() on the pcap devices.
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Figure 5.2: Message flow between simulation and real network

2. If a device becomes readable, the raw packet is handed to the scheduler.

3. The scheduler encapsulates this packet into an ExtFrame, which is
a cMessage and thus can be handled by the simulation. After the
message’s arrival time is calculated, the ExtFrame is inserted into the
simulation queue.

4. At the set time, the handleMessage() function, which is virtual and
present in all modules, is called with the ExtFrame.

5. The ExtInterface orders the parsing of the data. The serializer decap-
sulates the raw data and converts it in an IPDatagram.

6. The IPDatagram is returned to the ExtInterface.

7. It is sent on to the network layer.
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Checking the requirements shows, that they are all met:

• The libpcap as a platform independent library guarantees, that the
ExtInterface will be operable on all platforms supported by INET.

• There is a serializer for each protocol, that has so far been chosen
to use the ExtInterface. The IPSerializer checks the protocol field of
the IP header and calls the serializer, which is in charge of the payload
protocol. Thus, any IP based protocol can be easily added. To serialize
or parse another link layer protocol, a function has to be added to
the ExtInterface.cc, which makes a decision about the appropriate link
layer.

• When the ExtInterface asks the scheduler to be registered, the created
pcap device is stored in a list. The select call checks all devices for
an incoming message. Thus, several interfaces can be registered and
supervised.

• The ExtInterface looks like the other supported interfaces. The Router
and the StandardHost modules have been expanded to allow the use
of the ExtInterface on a single host and on a router, that forms the
border between a simulated network and the real world.

ExtRouter

notificationBoard interfaceTable routingTable namTrace

ppp[] eth[] ext[]

networkLayer

Figure 5.3: The compound module ExtRouter

The compound module ExtRouter is drawn in Figure 5.3. The circled
module ext on the link layer is organized as a vector, like the other interfaces.
Therefore, it is even possible for a router to have several interfaces of different
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kinds, e.g. two external and three ethernet interfaces. It has to be kept in
mind, that each ExtInterface has to correspond to one real network adapter
on the host, because the pcap device is bound to a real device it captures
packets from.

Some examples for the different required scenarios will be given in the
next section. For more scenarios see [96].

5.1.4 Examples to Connect the ExtInterface with Real
Networks

The easiest case to use the ExtInterface is to simulate one endpoint of type
StandardHost with one ExtInterface, configured to be connected to the out-
side world. From the simulation’s point of view it does not make a difference,
whether the real counterpart consists only of one host or a large network.
Here, only scenarios where a network is simulated will be discussed.

5.1.4.1 Connecting a Simulated with a Real Network

As an application example for this scenario the traceroute command was
chosen, which is supported on all common platforms (tracert on Windows
OS). traceroute is a good tool to teach students routing mechanisms.

Figure 5.4 shows the layout of the network with the corresponding IP ad-
dresses. The part of the network with the dark gray background is simulated,
the other part is real. extRouter belongs to both worlds by connecting them.
Each device, except the switches, needs a routing configuration file to define
the addresses and the static routes. For extRouter it looks like follows:

ifconfig:

name: ppp0 inet_addr: 10.2.0.1 MTU: 1500 Metric: 1

POINTTOPOINT MULTICAST

name: ppp1 inet_addr: 10.3.0.1 MTU: 1500 Metric: 1

POINTTOPOINT MULTICAST

name: ext0 inet_addr: 10.0.1.129 MTU: 1500 Metric: 1

POINTTOPOINT MULTICAST

ifconfigend.

route:

10.2.0.0 10.2.0.2 255.255.0.0 G 0 ppp0

10.3.0.0 10.3.0.2 255.255.0.0 G 0 ppp1

0.0.0.0 * 0.0.0.0 G 0 ext0

routeend.
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Figure 5.4: Using traceroute to traverse a simulated network

Two interfaces are configured as PPP interfaces, one is an ExtInterface.
The routes are set to the subnets 10.2/16 and 10.3/16 with Router5 and
Router6, respectively, as gateways. The default route leads via ext0 to the
real network. Note, that the switches in INET are implemented to only use
Ethernet as link layer protocol. As a consequence, the adjoining devices
(cli1 to cli8 and router1 to router4) have to be configured with one Eth-
ernet interface. The routers also have a PPP adapter. To set up the libpcap
filters and the scheduler, three lines have to be included in the omnetpp.ini
of the example:

scheduler-class = "cSocketRTScheduler"

**.ext[0].filterString = "ip and (dst host 10.2

or dst host 10.3 or dst host 10.0.1.129)"

**.ext[0].device = "eth0"

The first one belongs in the [General] section at the beginning of the file.
As the default scheduler is the cSequentialScheduler, it has to be overwritten
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Figure 5.5: Output of the traceroute command

with cSocketRTScheduler. The next two lines can be placed in the section,
where all other interface parameters are configured. By defining the fil-
terString, the libpcap filter is set to capture all IP traffic destined for the
subnets 10.2/16 and 10.3/16 and extRouter itself. Thus, the connection can
be tested by pinging extRouter. The device has to be set to the name of
the real network adapter, which is typically eth0 on Linux and en0 on Mac
OS X systems, while the name is driver specific on FreeBSD and on Solaris.

As a last step, a static route has to be added from the source endpoint
to the destination via the address of the PC, where the simulation is started
from. The command has to be executed with root privileges on the real PC.
In this example, the route can be set with

route add -net 10.2.0.0 netmask 255.255.0.0 gw 10.0.1.7

depending on the OS.

The route to trace is the one to cli4, indicated by the thick arrows.
Figure 5.5 shows the output. Running the first trace, all links were defined
without delay. On the second run, the links between extRouter and router2

were configured with a delay of 100 ms. The delay can be easily observed, as
the RTT to 10.2.0.2 is more than 200 ms and to 10.2.254.4 more than 400 ms
higher than in the first run. The fourth entry to cli4 does not add much
to the RTT, as the links to the Ethernet interfaces cannot be configured
with delay. Of course, this example also works with any other client of the
simulation as destination.
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5.1.4.2 Capturing on two ExtInterfaces

Multihoming is an important issue in SCTP. Therefore, testing this feature
in conjunction with real implementations should be possible. As pointed
out in Section 5.1.3, the handles to the pcap devices corresponding to the
ExtInterfaces are stored in a vector. By selecting the device that becomes
readable, the different interfaces can be distinguished.

extRouter1

Router1

extRouter2

Router2 Router3 Router4 Router5

PC2PC1

Figure 5.6: Passing through a simulated network connecting real com-
puters

To demonstrate multihoming with a non SCTP protocol, the ping exam-
ple in Figure 5.6 was chosen. There is no host in the simulated network, which
only consists of a sequence of routers. The aim is to send a ping command
from one real computer to another thereby traversing the simulated network,
which starts and ends with an ExtInterface. Each of these corresponds to
a real network adapter of the PC running the simulation. filterString and
device have to be set for each adapter:

**.extRouter1.ext[0].filterString

= "ip dst host 195.37.125.99"

**.extRouter2.ext[0].filterString

= "ip dst host 10.0.1.204"

**.extRouter1.ext[0].device = "en0"

**.extRouter2.ext[0].device = "en1"

The host with the IP address 10.0.1.204 needs a route to 195.37.125.99 and
the other way around. en0 has access over a switch to PC1 (10.0.1.204), while
en1 is directly reachable from PC2 (195.37.125.99). The sender is an Apple
Dual PowerPC G5 2.5 GHz and the receiver an Intel Pentium-4 2.6 GHz.

The ping command is applied with the -f option, which causes the source
to send packets as fast as they come back or one hundred times per second,
whichever is more. For every reply sent a dot is printed, for every request
arriving a backspace. Figure 5.7 shows the output, after the application had
run for 60 secs. The dots stand for the replies that did not arrive in time,
which means in this case that only 26 out of 213708 replies arrived too late,
which results in a packet loss rate of 0.01 %. The average RTT was 5.691
ms, the maximum RTT of 26.069 ms resulted in the late arrival. By letting
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Figure 5.7: Output of the ping command

the simulation run longer than ping it was verified that no packets were lost
but just arrived too late. The additional packets were still in queues and left
the simulation after having been processed.

In this example two ExtRouters with one ExtInterface each were config-
ured. Of course, in another scenario, it is possible to have two ExtInterfaces
on one host for ’real’ multihoming. In this case filterString and device would
have to be configured for ext[0] and ext[1].

5.2 Using Xgrid to Parallelize Simulations

Since the release of OMNeT++ version 4.0 it is possible to iterate over a
series of parameters, like configuring runs with user message sizes from 10 to
1450 bytes in 10 byte intervals, and to easily repeat runs with different seeds
to confirm the reliability of the results. Thus, hundreds of runs can be set up
in just one configuration. Yet, performing these tasks on one machine takes
hours or even days. Hence, it is obvious that parallelizing the jobs would
improve the situation. In its Eclipse GUI, OMNeT++ offers the feature to
use several CPUs, which is not sufficient for the intended purposes. With
the parallel discrete event simulation (PDES) [62] included in OMNeT++,
the distribution on different hosts or processors is possible, but the partition-
ing of the simulation model into several logical processes is required, which
makes an adaption of the model necessary. The same is true for Akaroa [1],
an architecture designed for parallel computation of quantitative stochastic
simulations. Each simulation has to be changed to include calls for the com-
munication with Akaroa. Finally the tool-chain [17] based on the Reliable
Server Pooling architecture [16] can be used to distribute simulation runs on
multiple hosts.

Despite the just described alternatives, it was decided to use Xgrid for
the parallelizing of runs, because it is available for Mac OS X and can be
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controlled with a powerful GUI.

5.2.1 Overview of Xgrid

Xgrid [113] allows the execution of multiple programs on multiple hosts in
parallel. There are three main components working together: the client, the
controller and one or more agents.
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Figure 5.8: The three Xgrid components

They are shown in Figure 5.8. Although, in the picture, the roles are
assigned to separate hosts, they can be combined on one computer. The
client generates the job and transmits it to the controller, that divides it
into tasks. They are distributed among the agents, which can be dedicated,
i.e. always available for Xgrid, or so-called screensaver agents, that are only
occupied, when idle. Each CPU can handle one task and return the results
to the controller, where they can be retrieved by the client.

The progress of submitted jobs can be watched with the administration
tool of Figure 5.9. Jobs, that cannot be serviced yet, can still be submitted.
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Their status is shown and more information is provided by double-clicking
on them.

Figure 5.9: The Xgrid administration tool

Jobs can be started with one task, or several tasks can be combined in a
batch job. All commands are entered via the command line.

To run a simple job, e.g. to print a calendar of March 2009,

xgrid -h server -p password run /usr/bin/cal 3 2009

has to be typed.

5.2.2 Generating Batch Jobs with OMNeT++

Starting an OMNeT++ simulation with just one run in Xgrid can be done
without any alterations to OMNeT++. But as simulations normally consist
of several runs which correspond to tasks in Xgrid, a batch file is needed to
provide the command and the necessary parameters for each task, so that
the controller can distribute them. After a job has been started, a job id is
returned, that can be used to retrieve the job specification.

xgrid -job specification -id n

This batch file is in XML format, and therefore its generation can be auto-
mated. A simple batch job has the following structure:
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jobSpecification =

{

applicationIdentifier

= "com.apple.xgrid.cli";

inputFiles = {};

name = "/usr/bin/cal";

taskSpecifications =

{

0 =

{

arguments = (3, 2009);

command = "/usr/bin/cal";

};

};

}

The section inputFiles consists of a list of files that are needed by each agent.
For OMNeT++ simulations, this is usually the binary, the ned-files, the con-
figuration file, routing files and so on. If the agents do not have a shared
medium, all input files have to be written in ASCII coded hexadecimal rep-
resentation in the XML file. The taskSpecifications specify the different runs
in OMNeT++. All necessary arguments, e.g. the name of the configuration,
the number of the run, and the command are listed. Without the integration
of the generation of the complete file in OMNeT++, the job specification
could be written manually by retrieving the specification file for one run and
adding the task specifications for all the others. As this is a very tedious
work, when it has to be done for hundreds of runs, the aim is to automate
the whole process.

To generate the job specification file automatically, two prerequisites have
to be fulfilled:

• It has to be figured out, which files have to be included.

• The possible number of runs has to be known.

• Each file has to be converted letter by letter into the ASCII coded
hexadecimal representation.

Looking at small examples in OMNeT++, for instance FIFO, the neces-
sary files are all included in the working directory of the example. But with
the growing complexity of the frameworks, the input files can be distributed
among different directories. To start, for instance, an example of the INET
framework [104], about 170 ned-files in 50 different directories are loaded in
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addition to the example related files. To solve this problem, all directories
are searched recursively, and the positions of found files are set relative to a
base directory.
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Figure 5.10: Mapping of the original files to the Xgrid hierarchy

Figure 5.10 illustrates the mapping of the original files to the ones in the
batch file for the following -n switch

-n ../..:../../../src
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starting from the working directory
INET/examples/sctp/fair.

The most important task is to map the ned-files. The two paths, sep-
arated by a colon, refer to the two “base directories” INET/examples and
INET/src/. Each base directory contains a file called package.ned, that
includes the root package, i.e. the name of the package, from which the hi-
erarchy of all the other ned-files below this directory stems. If the files in
the ellipses on the left hand side were just copied, the second package file
would overwrite the first one, which would result in errors when matching
the expected to the package names provided in the ned-files. Therefore, each
base directory has to be given an individual name, from which the relative
paths can start. The directories were just named temp1 and temp2. Thus
the hierarchy of the files is kept and can be copied to the agents.

Hence, an entry for one input file has the following layout:

"temp1/transport/sctp/SCTP.ned"=

{

fileData = <7061636b 61676520 696e6574 ....>;

}

In addition to the ned-files, there are example dependent files, that are
needed to run the simulation. In INET, these could be routing files or files to
be interpreted by the scenario manager. Assuming, that the necessary files
are usually kept in the example’s directory where the simulation is started,
all files from this directory were included. They are not set relative to temp2,
but stored in the top directory. It is advisable to provide a subdirectory for
the specification files to prevent older files from being included in the actual
specification.

The configuration files can be specified with the -f-switch. If no file is
defined, omnetpp.ini from the working directory is taken by default. In the
ini-files, the network to use is set and the parameters for the modules the
network consists of. As it is expected, that the ini-file and the network’s
ned-file reside in the same directory, the location of the ini-files must also
be transferred to the relative hierarchy of the base directories. An alterna-
tive would be to store the ini-file in the working directory and provide the
complete package path for the network.

The aim was to change as little in OMNeT++ as possible. Therefore,
already existing features were taken advantage of, that provided the number
of runs, which could be used to write the task specifications. Each task
includes the paths for the ned-files and the configuration files, that have to
be adjusted to the new hierarchy. In this example, one task specification
looks as follows:
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taskSpecifications =

{

0 =

{

arguments = (

"-n",

"temp1:temp2",

"-f",

"temp2/sctp/fair/config.ini",

"-c",

"testconfig",

"-r",

0

);

command = "/home/user/INET/src/inet";

};

}

In the first stage only one new command line switch was added to set
the name of the job specification file. The creation of a specification file is
started from the example’s directory. For a complex framework like INET
the command can be as follows:

../../../src/inet -n ../..:../../../src -u Cmdenv \

-f config.ini -c testconfig -s specfile.xml

In addition to the parameters for the normal run, that is the location of
the ned and configuration files, the command environment has to be cho-
sen (-u Cmdenv), the configuration with the flag -c and the name of the
specification file. The job can then be started with

xgrid -h server -p password -job batch specfile.xml

As mentioned before, also the executable belongs to the input files. This
file can easily have a size of several megabytes, which will lead to a very
large specification file that has to be transferred to the agents. Xgrid is very
inefficient in transferring large files [79], because it repeats the entire file
transfer for every task submitted to an agent. To improve the performance,
it is advisable to keep the batch file as small as possible. Therefore, usually
the executable is left out and stored on a shared medium or copied to the
same location on each agent in advance.
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Using a shared medium for all the input files can reduce the size of the
specification file further. Therefore, the command line switch -t was intro-
duced to give the user the opportunity to decide against a self-contained job
and to exclude the input files from the batch file and call them from the
shared medium. As a consequence, the job specification is altered to contain
only absolute paths to the files of the working directory in the inputFiles
section and to the ned and configuration files in the task specifications.

To take advantage of as many processors as possible, a universal binary
for INET is usually generated, that will work for Intel and PowerPC machines
alike, and stored on a shared medium. The omnetpp.ini file contains a path
to a result directory, that can also be accessed by all agents. Thus, it is not
necessary to retrieve the results after finishing the job, but they are written
continuously to the specified location.

Measurements [79] have shown, that the execution time of a job can be
decreased proportional to the number of CPUs provided, assuming equal
clock rates.
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Chapter 6

Integration of SCTP in INET

6.1 Extensions to the INET Framework

In Subsection 3.2.4 the features of the INET framework were outlined with
respect to its ability to closely imitate the layers of the OSI reference model.
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interfaceTable
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namTrace ppp eth ext

tcpdump

networkLayer

pingApp

sctp

sctpApp

tcpApp

tcp

udpApp

udp

Figure 6.1: Extensions to the StandardHost module

The most interesting module was the StandardHost, which already pro-
vides a TCP/IP suite. Therefore, is was obvious to extend this compound
module, which then resulted in the structure depicted in Figure 6.1. All cir-
cled modules were either added or extended, of which the ExtInterface as an

63
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additional interface to connect to real implementations was already described
in Section 5.1.3. The simple module sctp is the main item of the simulation
as it features the complete SCTP protocol. Invaluable information regarding
the realization of this module was provided by Andreas Jungmaier’s SCTP
implementation in the OPNET Modeler [45]. In addition, applications (sct-
pApp) were needed to provide the transport layer with the necessary infor-
mation and messages using a basic socket API. The dump module (tcpdump)
helped to test the implementation. These modules will be discussed in the
next sections.

6.2 Simulation Architecture

SCTP is a complex protocol combining features from TCP and UDP plus
realizing new concepts like streams, multihoming, and bundling. All these
characteristics had to be realized in the simple module sctp (see Figure 6.1).

Figure 6.2 shows a schematic overview of the different parts of sctp. The
major blocks that have to be distinguished specify the behavior of the data
sender, the reaction of the data receiver, and the control messages includ-
ing the handshakes to setup and take down an association. As SCTP is a
transport protocol, it has interfaces to the network layer and its upper layer.
On the right hand side the primitives connect the transport layer with the
upper layer by sending notifications, for instance, that data has arrived, or
requests, e.g. that an association should be started. The control messages
are passed to the network layer and sent on to the peer. On the left hand
side the data sender is depicted including the congestion control mechanism
and bundling, in the middle the data receiver influenced by flow control.

In the following sections a detailed description of the main parts of the
implementation will be given.

6.2.1 Messages

The means of communication in OMNeT++ are messages. For each simple
module the virtual function handleMessage() should be redefined to handle
incoming messages. This function is called from the simulation kernel when
the next message in the simulation queue is bound for that module and its
scheduled time is up.

OMNeT++ provides two main message classes, cMessage and cPacket
with cPacket being derived from cMessage. They can be superclasses for cus-
tomized message classes. In the cMessage class attributes and corresponding
methods are declared for sending and receiving messages, like the sending
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Figure 6.2: Simulation Architecture of the simple module sctp

and arrival gate, the creation time, and a control info. cPacket contains ad-
ditional attributes, which make this class more suitable for the transmission
of protocol data, like the message length, a flag to indicate bit errors, and a
method to encapsulate other messages.

To realize the different kinds of communication in Figure 6.2, three main
types of messages were needed:

• Messages containing the SCTP packets.

• Commands to send primitives.

• Timers to trigger events.

Figure 6.3 shows the principal hierarchy of the messages that form an
SCTP packet. As an example an attribute and a method are added to each
class diagram. SCTPMessage contains the SCTP message common header
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+getByteLength() : long

-byteLength : long

cPacket

+getSrcPort() : ushort

-srcPort : ushort

SCTPMessage

+getChunkType() : char

-chunkType : char

SCTPChunk

+getParameterType() : ushort

-parameterType : ushort

SCTPParameter

+setInitTag()

-initTag : uint

SCTPInitChunk

+setTsn()

-tsn : uint

SCTPDataChunk

+setErrorCauseType()

-errorCauseType : uint

SCTPErrorCauseParameter

. . .

Figure 6.3: Hierarchy of the SCTP messages

and a dynamic array of pointers, one to each chunk. To be able to eas-
ily identify the chunk types, the classes for the different chunks are derived
from SCTPChunk, which contains the chunk type. Some chunk classes just
consist of the header like the COOKIE ACK chunk, some contain several pa-
rameters which can be mandatory or optional. This is the case for the INIT

or INIT ACK chunk. Each parameter has to be derived from SCTPParame-
ter, consisting of a header with the type and length information and a body
containing the value.

The definition of new message classes is specified in a message declaration
file (.msg). Only the data members are introduced like e.g. in the following
declaration of SCTPMessage.

message SCTPMessage extends cPacket

{

@customize(true);

uint16 srcPort;

uint16 destPort;

uint32 tag;

bool checksumOk;

abstract cPacketPtr chunks[];

}
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At compile time corresponding C++ and header files are generated that
include the methods to set and get the attributes. In case simple methods to
get or set parameters are not sufficient, the @customize property can be set
and the methods redefined. This has to be done for SCTPMessage, because
the handling of dynamic arrays is not automatically supported. If a single
parameter message has to be included in another message, encapsulation is
used, but multiple parameters have to be stored in an array.

The command messages are exchanged between the transport layer and
its upper layer. They are also derived from cPacket and carry information
specific to the command type. An SCTPConnectInfo, for example, contains
information that is needed to set up a new association, like the number of
streams and the port to bind to. In the other direction indications are sent to
inform the upper layer about events. Commands and indications are distin-
guishable by a number, the SCTPCommandCode and the SCTPStatusIndi-
cation, respectively. They are transported as controlInfo in a cPacket.

The third category, the timers, are cMessages, as their length is not rele-
vant and they do not carry encapsulated information. In OMNeT++ timers
are realized by sending so-called self-messages. They get a certain arrival
time and are inserted in the list of scheduled events. After their expira-
tion time they are handed by the simulation kernel to the handleMessage()
method. Thus, they are handled like other messages and can even carry in-
formation. Timers are very important throughout the simulation to trigger
events. Besides the ones mentioned in Figure 6.4, a lot more are needed to
trigger the retransmission of DATA chunks, to send SACK chunks or HEARTBEAT
chunks.

6.2.2 Association Setup and Take-down

A four way handshake starts an SCTP association (see Figure 2.4). It consists
of the control chunks INIT, INIT ACK, COOKIE ECHO, and COOKIE ACK chunk
and is initiated by sending the primitive SCTP-ASSOCIATE from the upper
layer to the transport layer. The receiving side must have sent an SCTP-
OPEN-PASSIVE before, so that a listening socket has been created. The
handshake is normally started by a client wishing to set up a connection
with a server, but a peer-to-peer communication is also possible with both
peers opening listening sockets and starting the setup combining their control
data to one association. Both alternatives are realized in the simulation and
will be referred to in Section 6.4.1.

As OMNeT++ is a discrete event simulation environment, it uses state
machines and provides methods to react to occurring events. In Figure 6.4 the
different possible states of the simulation are shown with the corresponding
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Figure 6.4: Simulation State Machine

events and the necessary actions to transit from one state to another. The
upper half of the figure presents the setup, the lower half the take down. DATA
chunks are only accepted in the states ESTABLISHED and SHUTDOWN-
PENDING.

Besides the transition from one state to another, Figure 6.4 depicts events
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that result in staying in a state, indicated by a circled arrow. These events
occur when timers expire before the acknowledgment for a control message
has arrived. This is the case, for example, in the COOKIE-WAIT state.
When the client sends an INIT chunk, it starts an INIT-Timer to expire
after the default 3 seconds or another configured time. When the INIT ACK

chunk arrives during that time, the timer is stopped, a COOKIE ECHO chunk
is sent and the COOKIE-ECHOED state is entered. If the timer expires,
the INIT chunk has to be retransmitted and the state is not left. The same
behavior is true for the COOKIE-ECHOED, the SHUTDOWN-SENT and
the SHUTDOWN-ACK-SENT states.

6.2.3 Data Sender

After the upper layer has received the information that an association had
been established, it can start sending data (see the events in the ESTAB-
LISHED state of Figure 6.4). SCTP provides the use of several streams for
incoming and outgoing connections whose number is negotiated in the setup
process. Each stream can carry data messages, which can be either unordered
or ordered. As the use of the streams is application dependent, the upper
layer has to provide the number of streams and also the information which
stream each data message belongs to and an indication whether it should be
delivered ordered or unordered.

The raw data, which can be a message from an upper layer protocol, are
stored in an array of characters in an SCTPSimpleMessage. The message
specific information that the application provides is set in an SCTPSend-
Command. A cPacket is created with the SCTPSendCommand as control
info. After the SCTPSimpleMessage has been encapsulated, cPacket is sent
to the gate leading to the sctp module.

Arriving at the transport layer (see Figure 6.2), the data messages are
sorted into the appropriate send stream queues provided by the SCTPSend-
Command. The overall send queue size can be unlimited or limited with
configurable size. This has the advantage that in a bulk transfer not all
messages to be sent are scheduled at the beginning of the simulation, but in
smaller entities. Thus, the number of messages is not limited by the mem-
ory any more. Whenever the limited queue is emptied to half its size, a
notification is sent to the upper layer to order more data.

The sequence in which the stream queues are emptied is controlled by
the stream scheduler. The scheduling strategy to be used is not specified by
the RFC 4960 [85]. At present only the Round Robin queuing strategy is
realized, but in a current project (see Section 1.1) different strategies will be
implemented and compared.
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The amount of data that may be sent is influenced by many factors.
It has to be calculated from the number of outstanding bytes, the conges-
tion window, the advertised receiver window and, of course, the amount of
data provided in the send streams. This calculation will be discussed in
Section 6.2.5. If the user has configured the sender to consider the Nagle al-
gorithm to reduce the number of small packets (see [59] for details) and there
are still messages in flight, every packet is bundled with DATA chunks up to
the (configurable) Nagle point. Before inserting the chunks in the packet, a
TSN has to be assigned for each chunk to have a unique means of identifica-
tion. The data messages that are sent to the peer are stored in the backup
queue, until they can be finally removed. A second queue, the transmission
queue, is provided for the temporary storage of messages that have to be re-
transmitted. The information on which path retransmissions occurred, their
number, whether the data has been acknowledged or counts as outstanding,
and many more attributes characterize a data message and have to be stored
with the data. When assembling a packet, the messages scheduled for re-
transmission have to be considered first and only the remaining space can be
filled with new data.

An arriving SACK chunk influences the transmission of data as it an-
nounces the Cumulative TSN Ack (CumTSNAck). All TSNs up to this
number can be finally removed from the backup queue, i.e. they can not be
revoked any more (see 6.2.6). Present gap reports lead to an increase in the
gap report count of the missing TSNs if a TSN higher than the highest in
the last SACK chunk has been acknowledged. If the user defined gap report
limit has been exceeded, the chunk is copied from the backup queue to the
transmission queue to be fast retransmitted as soon as possible.

6.2.4 Data Receiver

The data receiver is featured on the right hand side of Figure 6.2. The
reception of the data messages is influenced by the flow control mechanism
that will be discussed in Section 6.2.6. As the TSNs have to be in sequence,
the missing ones are announced in the gap reports that are sent back to
the sender for information. The acknowledged data messages are stored
in the receive streams. Again each stream consists of two queues, one for
unordered and one for ordered data. The order is provided by the SSNs
that are maintained for each stream. If data with the appropriate SSN is
found, it is stored in the delivery queue, and an SCTP-DATA-ARRIVED-
NOTIFICATION is sent to the upper layer, that in turn asks to deliver the
data.

The SACK chunk summarizes the results of the TSN analysis and reports
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the actual CumTSNAck and the information about the gap reports and pos-
sible duplicate TSNs back to the data sender. Only the first and the last
TSN in a gap acknowledgment block is included. In contrast to RFC 4960,
the sendSack() routine in the simulation includes the absolute values of the
start and end TSNs in the gap acknowledgment blocks. Thus, they have to
be transformed to their value relative to the CumTSNAck if a connection to
a real network is established.

In addition, the size of the updated advertised receiver window (see Sec-
tion 6.2.6) is added to the SACK chunk.

6.2.5 Congestion Control

The congestion control mechanism that SCTP uses is in most parts derived
from TCP. Yet some important differences are due to special SCTP features.

As SCTP allows a host to be multihomed, the congestion control mech-
anism has to be applied to each path separately. This means that a path
has its own congestion window, slow-start threshold (ssthresh), counter of
outstanding bytes, and retransmission timeout calculation.

As mentioned before, congestion control influences the amount of data to
be sent separately for each path in that not more than the difference between
cwnd and the number of outstanding bytes may be transmitted, if permitted
by the receiver’s arwnd.

Figure 6.5 shows a flowchart for the calculation of the congestion window
for each path. The event that has the greatest influence on updating the cwnd
is the arrival of a SACK chunk. An increase is only allowed if acknowledged
data has led to an advance of the CumTSNAck (ctsnaAdvanced) and the
cwnd is fully utilized (osb ≥ cwnd). When in slow start, the only additional
requirement is that fast recovery must not be active. This status is entered,
when a fast retransmission has occured, and left again, when the cumTSNAck
has reached the TSN that has been the highest at the time, when fast recovery
has started. During that time no cwnd update will be performed. The
behavior in congestion avoidance differs from the one in slow start in that
the updates are not as frequent. The variable partialBytesAcked counts the
number of acknowledged bytes, and only if they reach the size of cwnd, may
an MTU be added.

All other cases lead to a decrease of cwnd. When a fast retransmission
is necessary, the window is halved or set to 4 · MTU , in case of a timer
based retransmission it is even left at one MTU. The cwnd timer expires if
the cwnd has not been updated for a set time indicating that the path has
been idle. Therefore, the condition of the path is not known, and the cwnd is
decreased to the value at initialization time. The cwnd may not grow beyond
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the number of outstanding bytes plus maxBurst times the MTU. maxBurst
is set to 4 by default and limits the number of packets that may be sent at
once.

While TCP is bytes stream oriented, SCTP is message based, and thus,
the overhead of many chunks bundled in one packet can lead to a discrepancy
between the transmitted bytes and the sent user data, which can have an
impact on the fairness on the link. This topic will be further investigated in
Section 8.3.

6.2.6 Flow Control

Flow control, as adopted from TCP, shall protect a receiver from a fast
sender. Therefore, the receiver announces the maximum size of the arwnd in
the INIT or INIT ACK chunk and the amount of empty space in the receive
buffer by sending the arwnd attribute in the SACK chunks. The simulation
follows this approach by reducing the arwnd with every arriving data chunk
and increasing it when data is delivered to the upper layer. If the window
is reduced to zero, the data sender may only send one chunk to probe the
window. Only if a suitable TSN arrives, i.e. one that fills a gap or advances
the CumTSNAck, it is accepted. All others are dropped. As the window
is full at that time, room has to be made for the new TSN. Therefore, the
highest TSN accepted so far is deleted from the receive queue and the new
TSN is inserted instead. Thus the former TSN is unacknowledged again.
Announcing this change in the SACK chunk by adjusting the gap reports
leads to a change in the attributes of the affected TSNs in the backup queue.
Therefore, even TSNs that have been accepted and acknowledged have to
be kept in the queue in case they are revoked and have to be marked as
unacknowledged again.

The sender always tries to keep track of its peer’s arwnd (peerRwnd).
Figure 6.6 shows the flowchart for the calculation. The initial value is the
arwnd that was advertised in the INIT or INIT ACK chunk. Then the window
is reduced by the user message size (UMS), when data is sent and there is
enough space left. A reason to increase the peerRwnd is given, when the
retransmission timer expires. Then it is assumed that the DATA chunk has
not reached the peer, and thus, its arwnd has not been reduced. The TSN
does not count as outstanding any more, and the peerRwnd can be increased
by the UMS of the lost DATA chunk. Even before the peer announces an
arwnd of zero, the sender predicts this value and starts sending zero window
probes to prevent the receiver from being overloaded. As the calculation is
not accurate and just an estimation of the peer’s behavior, the peerRwnd is
updated each time a SACK chunk arrives. It is set to the arwnd minus the
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Figure 6.6: Flowchart for the calculation of the peer’s advertised receiver
window

data in flight which the peer could not include in its calculation, yet. Further
information about the flow control mechanism in message based in contrast
to bytes stream oriented protocols is given in Section 8.2.

6.2.7 Simulation Structure

As OMNeT++ and INET are written in C++, the structure of the sctp
module must be object-oriented. Figure 6.7 shows an overview of the most
important classes. The hierarchy of the message types has already been
introduced in Subsection 6.2.1 and is left out here, as well as the various
container classes like maps, vectors, and lists.

All arriving messages, whether from the lower or from the upper layer,
or whether they are self-messges, are handled by the SCTP class. Here, the
creation of a new SCTPAssociation is initiated, when the upper layer sends
an SCTP-ASSOCIATE or an SCTP-PASSIVE-OPEN command. To keep
track of the associations, the IDs and important information are organized
in maps.

SCTPAssociation with all its implemented methods is a very important
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Figure 6.7: Class diagram of the simulation

class. Sending and receiving SCTP messages, the expiration of timers and
the realization of the congestion and flow control are handled in this class.
To store the numerous flags, counters, chunks for retransmission, and other
parameters that change over time, an instance of the SCTPStateVariables is
needed. Each path has its own characteristics, like IP address, cwnd, path
MTU, RTO and so on. SCTPAssociation manages them in a map, containing
the IP address and an instance of the SCTPPathVariables class.

As already shown in Figure 6.2, send and receive streams are needed
to organize the queueing of messages. The data coming directly from the
upper layer are converted into SCTPDataMsg objects and inserted in the
ordered or unordered send queues. They are realized as cQueues in an ob-
ject of type SCTPSendStreams. The backup and the transmission queue
are SCTPQueues, which can contain SCTPDataVariables. This is the class
whose attributes represent the properties of a DATA chunk, like its TSN, the
stream identifier and sequence number, its destination, number of retrans-
missions, and flags to indicate whether it has been acknowledged or counts
as outstanding. The same queuing type is used for the delivery of data to
the upper layer in the unordered and ordered queue of each receive stream
of type SCTPReceiveStream.
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6.3 Implemented Protocol Extensions

All the extensions that are described in Section 2.3 are also implemented in
the simulation.

6.3.1 Partial Reliability (PR-SCTP)

Partial Reliability is initiated by the upper layer. The SCTPSendCommand
has a variable prMethod that is set to a value greater than zero if PR-SCTP
should be applied. The two methods “timed reliability” and “limiting the
number of retransmissions”, introduced in RFC 3758 [84], were realized. The
lifetime parameter of the SCTPCommand is used to carry the information
about the lifetime or the number of retransmissions for this specific message,
depending on the method defined. Instead of a Forward TSN Supported
parameter just a flag was added to the INIT and INIT ACK chunk to indi-
cate that the host supports PR-SCTP. In the case of the lifetime method,
an expiration time is set in the SCTPDataVariables and checked against the
simulation time. Whenever a message is sent, it is checked first whether it has
to be abandoned. Is this true, the upper layer is informed and a Forward TSN

chunk is sent with the peer’s CumTSNAck set to the new value. As a con-
sequence, the receiver has to adjust its own CumTSNAck and consider all
TSNs up to this point as received. The second method is handled in the same
way, only the requirements to abandon a TSN are changed to the number of
retransmissions already performed.

6.3.2 Stream Reset

To simulate the Stream Reset behavior, the peer has to be informed that
Stream Reset is supported. This is done during the handshake. For testing
purposes the user can configure a timer to start one of the three Stream Reset
request types Outgoing SSN Reset Request, Incoming SSN Reset Request or
SSN/TSN Reset Request. It is also possible to request the reset of the incom-
ing and outgoing streams at the same time. Of course, a new SCTPChunk
type and SCTPParameters for the request, as well as for the response, had
to be added. Furthermore, new primitives had to be defined to inform the
user about the outcome of the request.

6.3.3 Dynamic Address Reconfiguration (Add-IP)

Whereas PR-SCTP and Stream Reset are features initialized by the appli-
cation, ADD-IP is initiated by the transport layer. To add an address, the
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time, the ADD-IP type (SET PRIMARY ADDRESS, ADD IP ADDRESS,
DELETE IP ADDRESS), and the affected address have to be configured in
the omnetpp.ini file of the example. At the designated time an ASCONF chunk
is sent with the appropriate parameter. After the arrival of the ASCONF ACK

chunk, the new address can be used, or, if it was deleted, not used any more.

This extension will be needed for the realization of the SCTP NAT in
Chapter 9.

6.3.4 Authenticating Chunks (AUTH)

Authenticating chunks in a simulation is not really worthwhile, as the mes-
sages do not go over the wire and there is no buffer to apply the encryption
algorithm on. But with the implementation of the ExtInterface and the
testing against real networks, AUTH had to be implemented to meet the
requirements for ADD-IP [92]. With every new feature also the serializer
and the parser had to be adjusted and the new chunk types and parameters
added. Flags in the INIT chunk had to be transformed into complete param-
eters and added to the chunks. To realize AUTH meant to create real keys,
serialize all chunks first, compute the Hash Message Authentication Code
(HMAC) and insert it in the AUTH chunk. On the way back, the actions had
to be performed in the reverse order, before the chunks could be converted
in the simulation format.

As AUTH always has to be applied if an ASCONF or ASCONF ACK chunk is
sent, this feature is also needed in SCTP NATs (Chapter 9).

6.3.5 Packet Drop Reporting (PKTDROP)

PKTDROP, too, is an extension concerning the transport layer. Except for
the flag to switch PKTDROP on or off, no additional parameters have to
be configured. As the usual behavior of an IP stack is to drop packets that
have a bit error, this is also the case in INET. Therefore, all packets on the
link layer, whether they have a bit error or not, have to be sent up to the
network layer. If the transport protocol is SCTP, the packet is delivered
further, while all others are deleted. Thus, SCTP can handle packets, even
if they have an error, and report them in a PKTDROP chunk.
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6.4 Additional Modules

6.4.1 SCTP Applications

The SCTP module (Figure 3.5) has interfaces to the network layer and the
application layer. The interoperability between the transport and its upper
layer is realized by sending notifications and primitives (Figure 6.2) as speci-
fied in RFC 4960 [85]. In the simulation both a callback and a socket API are
realized to provide the upper layer with calls to bind(), listen(), connect(),
send() or receive(). Thus, the application layer takes the initiative to start
an association. SCTP answers by either sending notifications, indicating for
instance that the ESTABLISHED state (Figure 6.4) has been entered, the
peer has closed the connection, or data are waiting in the receive queue to
be picked up.

sctpapp represents the highest layer in the ExtStandardHost module in
Figure 6.1. The easiest way to write an application is a simple module, that
acts as a client or server. To test more complex applications, like complete
protocols or a layer to adjust messages between different protocol stacks,
sctpapp must be realized as a compound module. As examples for simple
modules, the simulation provides three different applications which work as
traffic generators and/or collectors. One is a client with a callback API, one
a server with a socket API and the third is a peer that combines both client
and server functionality.

The client as a sender can be either configured to send a predefined num-
ber of data chunks of a certain length or to start at a certain time and stop
at a set time independent from the number of packets. If the packets shall
not be sent as fast as possible, a sending interval can be defined. When send-
ing a very large number of messages, the client uses limited send queues, as
described in Subsection 6.2.3. To allow for a very large number of messages,
a send queue size can be configured to fill the send queue in smaller portions
instead of scheduling all required messages at once. The client can also work
as a receiver being able to discard or echo the messages.

The server can send or receive data. As it is implemented as a combined
server, incoming packets can be discarded or echoed. But the server can also
generate data, just like the client, representing a peer-to-peer network. The
server keeps a record of the amounts of all the sent or received data for each
association, thus providing statistical data for further use.

To support multihoming, the function sctp bindx() is realized. The user
can either set the IP addresses that should be bound explicitly or just leave
the default value (empty string) if all available addresses should be used.
The bound addresses are included in the INIT or INIT ACK chunk.
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When the peer is initialized, it starts by calling bind() and listen(), thus
being configured as a server. When a certain start time is set, the peer sends
a request to SCTP to associate. The peer application is useful, when testing
the so-called initialization collisions i.e. when both parties try to set up an
association at the same time.

More applications for special purposes are implemented. One is adjusted
for performing the rendezvous of the Network Address Translation (NAT)
feature, which will be explained in Chapter 9.

6.4.2 Dump Module

Although the GUI of OMNeT++ helps to observe the flow of data, it did not
provide a satisfying overview of the packets that were sent to and from the
hosts. A dump module for TCP with one input and one output gate already
existed, which could have been placed between the network and the transport
layer. As it was important to distinguish between the interfaces the message
passes through, the layout of the module was changed to support a vector of
gates. Therefore, the dump module was placed between the link layer and
the network layer (Figure 3.5). To be able to analyze the traffic, methods
were included to examine all chunks and their important parameters.

Figure 6.8: Output of the dump module

The incoming packets are examined by decapsulating the messages and
analyzing their contents. Afterwards they are transferred unchanged to
the next layer. Figure 6.8 shows part of the four way handshake and two
HEARTBEAT chunks to different destinations on the client side of the commu-
nication. The different IP addresses of the client, to which the HEARTBEAT

chunks are sent, and the corresponding source addresses of the server are
underlined.
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The dump module has one drawback, in that it can only be used in Run
or Fast mode. When the simulation runs take longer, this is very inefficient.
After the realization of the ExtInterface (see Section 5.1), the dump module
can be also used to trace the traffic at any speed and save the result in a
pcap file. When a name for a dump file is given in the omnetpp.ini, this file
is opened and writing is started with the pcap file header. When passing
through the module, each packet is handed to the serializer, where it is
converted to the external format, and together with the pcap packet header
written to the file, which can then be analyzed with Wireshark.

6.5 Validating the Simulation

As a simulation is self-contained, the question arises how it can be tested to
evaluate its correctness.

The obvious way is to configure scenarios, test them and see whether the
results are plausible. As the most important and most complicated features
in SCTP are congestion and flow control, they were validated first.

6.5.1 Testing Flow Control

To test the implementation of the flow control algorithm, the bandwidth-
delay product was inspected. It states that the maximum amount of data
in flight is limited by the achievable link bandwidth BW multiplied by the
RTT . This limit is given by the advertised receiver window W .

BW ·RTT = W (6.1)

Taking W and replacing RTT by the twofold of the link delay LD leads to
an equation for the throughput:

Throughput =
W

2 · LD
(6.2)

In Figure 6.9 the maximum theoretical throughput according to the above
equation is plotted. The straight black horizontal line gives the maximum
theoretical throughput for the given link with a data rate of 100 Mbps, an
MTU of 1500 bytes, and messages of 1452 bytes length. The simulation runs
have been repeated 10 times. The outcome is shown in the light solid line.
The 95% confidence intervals are so small that they are only recognizable as
black dots. For small values for the delay the throughput is limited by the
arwnd, for higher values it follows the course of the theoretical result.
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Figure 6.9: Verifying the bandwidth-delay product

6.5.2 Testing Congestion Control

6.5.2.1 SCTP fairness

One indication for the correctness of the congestion control algorithm is the
verification that different SCTP clients are fair towards each other, meaning
that they share the bandwidth evenly independent from their start times.

Figure 6.10 shows a scenario, where five clients are connected with the
same server over a bottleneck link with a data rate of 5 Mbps. Their start
and stop times were configured so that every 60 seconds an event occurred,
meaning that either a new client joined or one stopped transmitting.

Figure 6.11 shows the throughput of the first client, that sends data start-
ing at 1 s and stopping at 360 s. The start and stop times of the other clients
are marked in the graph. Up to now, the throughput of an association was
always obtained by dividing the total number of received bytes by the time
it took to receive the data. In this example the goal was to measure the
throughput over time and show that it is decreased, when the link has to be
shared and increased again if another host stopped sending. To achieve this,
the accumulated number of received bytes was counted for C1 every time, a
message arrived at the server. Before calculating the moving median of the
difference quotient of consecutive values, the amount of measuring points
was reduced to one per second. The average of five runs leads to the graph,
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Figure 6.10: Network with five clients sharing a limited link
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Figure 6.11: Five clients sharing a limited link

which depicts the expected results. The light bars represent the 95% confi-
dence interval. The delayed adjustment of the graph, after a client stopped
transmitting, is due to the shutdown process of an association. When the ap-
plication requests a shutdown from SCTP, all remaining messages have to be
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processed and acknowledged, before the association can finally be removed.

6.5.2.2 Testing Congestion Control on Lossy Links

Packet loss has a significant impact on the congestion control, as fast retrans-
missions and timer based retransmissions lead to a decrease of the congestion
window. If packet loss does not only result from exhausted router queues but
error-prone links, the throughput is affected.

In Chapter 7 a formula for the throughput of SCTP associations will be
derived, when error rates and delays influence the quality of the link. To get
a further indication for the correctness of the congestion control algorithm
of the simulation, it was tested against Equations 7.10 and 7.12. The results
are described in Section 7.4.5.

6.5.3 Analyzing Trace Files

Testing a program is not a straight forward process but requires many iter-
ations as bugs are suspected and finally found and eliminated. The dump
module (see Subsection 6.4.2) and the graphical analysis of trace files in
Wireshark, which were discussed in detail in Section 4.4, turned out to be
of great benefit. The first tool helped to find errors that were due to the
wrong choice of parameters or a misunderstanding of the protocol features.
The latter assisted in detecting suspicious variations in the message flow,
especially those that were related to congestion or flow control, which then
could be localized and corrected.

6.5.4 Validating the Simulation by Using External
Sources

A more systematic approach for the validation is the use of testcases. Af-
ter the implementation of the external interface, it was possible to connect
to an external computer. An SCTP testtool and the corresponding ETSI
(European Telecommunications Standards Institute) conformance tests are
provided in [93]. The testtool ran on the external computer and used the
simulation as an SUT (System under test). After the simulation had passed
the tests it was proved that the most important features of the protocol were
implemented correctly.

But still the RFCs leave the possibility to interpret some specifications in
different ways. Therefore, interoperability events bring developers of various
implementations together to test their products against each other. In 2006,
the 8th SCTP InterOp in Vancouver, Canada, and in 2007, the 9th SCTP
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InterOp in Kyoto, Japan, were attended. Each time bugs were found and
corrected, which would not have been found just by testing the simulation
itself. Thus, the simulation could be improved, its correctness and robustness
increased.

6.5.5 Measuring the Throughput against Real Imple-
mentations

One aspect that always matters is the performance of an implementation. Of
course, a simulation cannot be as efficient as a real implementation, because
a lot of additional information is stored, other data structures are used,
and performance is normally not the most important issue when designing a
simulation model.

Client2

Router2

extRouter

Router3

Server

Client1

Router1

external server

Simulated 
network

Real network

Figure 6.12: Client1 sends data via extRouter to a real PC while in-
ternal traffic from Client2 to Server1 is passing through
extRouter

Nevertheless, to show the limits of the simulation, it was tested against a
real implementation. Figure 6.12 shows the setup, where the simulated parts
are marked by a gray background. The external interface can be considered
as part of both worlds. Here Client1 is linked via a router with the external
interface, which is connected to a real server. The channel between the
client and the router is limited to a data rate of 10 Mbps. First 200,000
data chunks of increasing sizes between 10 and 1400 bytes were sent and the
throughput was measured. In Figure 6.13 the red graph in the middle shows
the result. As a comparison, the maximum theoretical throughput according
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Figure 6.13: Throughput of the SCTP association between Client1 and
a real PC

to Equation 7.5 is represented by the darker red graph. The zigzagging of the
graph and the pronounced steps are typical for SCTP and will be explained
in Section 7.3. The figure shows that the simulation is able to fully utilize a
link of 10 Mbps.

A second series of measurements was performed to find out whether ad-
ditional traffic passing through the router has an impact on the throughput,
meaning that the processing of the events from the external router could not
keep up with the packets arriving. Therefore, Client2 was to start earlier
than Client1 and had to run longer than the external association. The
route, the traffic took, led from Client2 over extRouter to the Server. It
is marked by the dashed arrows in Figure 6.12. The throughput is shown by
the lowest dashed graph in Figure 6.13. It is obvious that the internal traffic
has no significant influence on the external traffic.

Another point of interest was the time it takes for a router to process
a packet. Therefore, the throughput was measured without internal traffic
but with 0, 1, 2, and 3 routers between the client and the external router.
The data rate was not limited. From Figure 6.14, the conclusion can be
drawn that the time a router needs to handle the packets is nearly constant.
Subtracting the measured times for the particular user message sizes from
one router to another and dividing the difference by the number of packets
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Figure 6.14: Throughput of the SCTP association between Client1 and
a real PC with varying number of routers

that passed through the routers, an average process time of about 11 µs per
packet can be assumed.



Chapter 7

Calculating the Theoretical
Throughput of SCTP
Associations

7.1 Term Definitions

The performance of a network is a measure for its quality. However, it is not
always clear, what the term comprises. In this thesis the terms bandwidth,
throughput, and goodput are used as measures for the performance of an
association. In the following these terms will be defined and distinguished
from each other.

Bandwidth is the theoretical data-carrying capacity of a network or data
transmission link. When used in formulae to compare simulation results, it
is the data rate that can be set for a channel in a simulation. In real network
scenarios, it is the minimum speed of all the network adapters which are
involved in the transmission of the data.

The term throughput has to be differentiated from goodput. The through-
put specifies, how much actual data can be sent per unit of time across a
network, channel or interface. The throughput is limited by the bandwidth.

The goodput is the throughput on the application level. Throughput is the
more general term. It depends on the protocol layer where the calculation is
performed. Looking at the transport layer, which is the main focus of interest,
the throughput includes all the data transmitted, including retransmissions.
If the network adapter does not drop packets with incorrect checksums, even
they would be included. However, measuring the goodput only regards the
data that arrive at the application.

Throughout this thesis the more common term throughput will be used,
even though generally the application throughput is measured. Only in sit-

87
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uations, when both have to be distinguished, they will be used in the sense
described here.

7.2 Message Orientation versus Byte Stream

Orientation

As just mentioned, the calculation of the throughput leads to different re-
sults depending on the layer. Looking at TCP, apart from retransmissions,
the maximum throughput on the transport and the application layer only
differ by about 2.7 % if full packets are assumed. An Ethernet frame has a
maximum payload of 1500 bytes, which includes the headers of the network
and the transport layer1. This leads to a maximum user message size of 1460
bytes if no IP or TCP options are included.

With SCTP as a message oriented protocol, the situation is different.
Each chunk has its own header, which is 16 bytes in the case of a DATA

chunk. When full size packets with a payload of 1452 bytes2 are sent, the
calculation of the throughput for SCTP and TCP are alike. But when smaller
user message sizes are needed, the throughput depends to a great extent on
the payload size, because each chunk adds 16 bytes to the overhead.

As this results in a different maximum throughput for the message ori-
ented protocol SCTP, two formulae will be developed, one under ideal con-
ditions and one taking error rates and round trip times into account.

7.3 Calculating the Maximum Throughput

under Ideal Conditions

To be able to compare and validate the simulation results, a formula is needed
for the maximum throughput. Assuming ideal conditions, no error rate or
delay is considered.

The theoretical throughput for SCTP is calculated as follows

Throughput = CPP · UMS · PPS (7.1)

with the average user message size per packet UMS , the number of packets
per second PPS , and the number of chunks per packet CPP , which is again
calculated as

1IP header HIP = 20 bytes, TCP header HTCP = 20 bytes
2With SCTP header HSCTP = 12 bytes and DATA chunk header HChunk = 16 bytes the

maximum SCTP user message size is 1500 bytes−HIP −HSCTP −HChunk = 1452 bytes
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CPP =
⌊

MTU −HIP −HSCTP

SizeChunk

⌋
(7.2)

with the IP header length HIP , the SCTP common header length HSCTP

and the chunk size SizeChunk adding up to

SizeChunk = UMS + PUMS +HChunk (7.3)

where HChunk denotes the length of the DATA chunk header, and PUMS is
the number of padding bytes.

The number of packets per second PPS can be computed as

PPS =
bandwidth

HIP +HSCTP + CPP · SizeChunk

(7.4)

Using equation (7.2), (7.3), and (7.4) results in

Throughput =
⌊

MTU −HIP −HSCTP

UMS + PUMS +HChunk

⌋
· UMS

· bandwidth

HIP +HSCTP +
⌊
MTU−HIP−HSCTP

SizeChunk

⌋
· (UMS + PUMS +HChunk)

(7.5)
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Figure 7.1: Maximum throughput for two different data rates
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Figure 7.1 shows the maximum throughput according to Equation 7.5
for SCTP associations for channel data rates of 50 Mbps and 100 Mbps,
considering an MTU of 1500 bytes, 7 bytes for the PPP header, and 1 byte
interframe gap, which are the values used in the simulation. The user message
size ranges from 10 to 1450 bytes in 10 byte intervals. As a comparison the
throughput for TCP connections is drawn. It is well to be seen, that the
throughput for SCTP messages with smaller payload sizes is much less than
the throughput that can be achieved with full packets, which is equal to
the TCP throughput. Noticeable is also the zigzagging of the graphs, which
is caused by the padding bytes, that have to be added to get the UMS 32
bit aligned. The pronounced steps are caused by the bundling boundaries,
meaning that k DATA chunks with a UMS of N bytes can be assembled into
one packet but only k−1 or less of size N+1 bytes. This leads to a reduction
of the cumulated payload of the packet of N −k+ 1 bytes. The vertical lines
show these bundling boundaries. The rightmost line indicates the step from
two chunks to only one fitting into one packet.

7.4 A Rule of Thumb for the Calculation of

the Throughput

The link that connects the communicating hosts is supposed to provide a
certain rate. In the case of ideal conditions, when the link is free of errors
and the delay is insignificant, the link can almost be fully utilized by one
connection, provided the network adapter and the CPU can handle the data.
However, the available bandwidth, i.e. the throughput, is influenced by the
error rate and the delay of the channel. Therefore, it is of interest to find
out which throughput can be expected in a specific scenario.

As the throughput is the amount of data delivered from one node to
another in a certain time, it is important to look at the mechanism that
influences the data transfer. The amount of data released from the sender
depends to a great extent on the congestion control algorithm (see Subsec-
tion 2.2.5).

Figure 7.2 illustrates the evolution of the congestion window (cwnd) in
congestion avoidance during a simulation over time. First the congestion
window rises for a few seconds. Then an event occurs that causes the window
to be halved, before it can rise again. This event is a packet loss, that might
be caused by a bit error or a full router queue and results in a retransmission.
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Figure 7.2: Evolution of the congestion window during a simulation

7.4.1 Mathis’ Formula to Calculate the Throughput
for TCP

In [53] Mathis generalized the behavior of the congestion window evolution
and introduced a model to predict the throughput of a TCP connection when
the packet loss rate PP and the round trip time RTT were given.

Throughput =
MSS · C

RTT ·
√
PP

(7.6)

The parameter C is the constant of proportionality, that combines several
terms that are typically constant for a given TCP implementation. As TCP
is byte stream oriented, all data are transmitted in packets of the maximum
segment size (MSS), which is the MTU reduced by the headers preceding
the TCP payload. SCTP is message oriented, and therefore, the packet size
depends on the message length. For payload sizes which fill up the packets,
Equation (7.6) can be used for SCTP, too (see Section 7.2). But for smaller
user message sizes, Mathis’ model is not applicable. Another important
difference to TCP is, that small messages can be bundled in SCTP. Each
DATA chunk consists of its header of 16 bytes and the user message. Especially
for small user message sizes, where the overhead takes a great proportion of
the packet, the difference between MSS and the payload cannot be neglected.
Therefore, Mathis’ model must be adapted to the needs of SCTP.
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7.4.2 Model Assumptions

The model that is used for the following calculations can be characterized as
follows. One client is connected to one server, which runs as a discard server.
The throughput is not limited by the bandwidth of the link, i.e. there is no
bottleneck link. The server’s receiver window is sufficiently big to read all
incoming data, hence flow control is not a limiting factor. The connection
is already established and the state of congestion avoidance is reached. All
errors can be corrected by sending fast retransmissions. Thus no timer based
retransmissions will cause the connection to leave congestion avoidance and
go into slow start again.

In Subsection 2.2.5 it was pointed out that the congestion window controls
the amount of data in flight. Looking at TCP, where congestion control was
first introduced, the data in flight are the user messages without the headers.
In SCTP, where the messages can be bundled and thus the headers can use
a great proportion of the transferred data, the question arises whether the
data in flight should be calculated with or without taking the headers into
account. RFC 4960 defining SCTP does not specify whether the message
specific headers have to be considered when updating the parameters for
congestion control. Therefore, in the following subsection, a formula will be
derived for the throughput without taking the headers into account, and in
Subsection 7.4.4 the headers will be included and the differences to the first
formula will be pointed out.

7.4.3 Calculating the Throughput without Consider-
ing the Headers

Figure 7.3 shows the evolution of the SCTP congestion window in the status
of congestion avoidance. In contrast to Mathis’ model, cwnd is measured
in bytes instead of packets. The maximum cwnd is assumed to be X bytes.
For each arriving SACK chunk the window grows by 1MTU. Thus in X

2·MTU

roundtrip times half the window is filled. The growth of the congestion
window is stopped when a fast retransmission is triggered by the arrival of
three successive SACK chunks announcing a gap in the list of TSNs.

During this time

X

2
· X

2 ·MTU
+
X

2
· X

2 ·MTU
· 1

2
=

3 ·X2

8 ·MTU
(7.7)

bytes, which is equivalent to the area below the dotted polygon, are trans-
mitted.

Assuming a packet loss rate of PP , 1
PP

packets will be transmitted, before
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an error occurs. As bytes and not packets are important here, the probability
for a byte error can be calculated to be

PB '
PP

D
(7.8)

with D corresponding to the payload of the packet.
Hence the number of error-free transmitted bytes in one cycle is D

PP
.

Equating (7.7) and D
PP

and solving for X
2

leads to

X

2
=

√
2 ·D ·MTU

3 · PP

(7.9)

The throughput is calculated as the ratio of the data per cycle to the
time per cycle. The data comprises the actual payload without counting the
headers, the time per cycle equals RTT · X

2·MTU
.
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Throughput =
data per cycle

time per cycle

=
D · 1

PP

RTT · X
2·MTU

=
D · 1

PP

RTT · 1
MTU

·
√

2·D·MTU
3·PP

=

√
D ·MTU ·

√
3
2

RTT ·
√
PP

(7.10)

7.4.4 Including the Headers in the Calculation of the
Data in Flight

In congestion avoidance the congestion window increases linearly by one MSS
in the case of TCP, which corresponds to one MTU for SCTP. This amount
is independent from the user message size. Therefore, the cwnd in Figure 7.4
is the same as in Figure 7.3. The amount of data transferred in one RTT is
dependent on the size of the headers, which results in the factor H. H is the
ratio of the user message size plus the chunk header to the user message size.

H = 1 +
HChunk

UMS
(7.11)

with HChunk meaning the size of the DATA chunk header and UMS the average
payload of a DATA chunk in a packet.

Following the same conclusions as in Subsection 7.4.3 results in Equa-
tion (7.12)

Throughput =

√
D ·MTU ·

√
3
2

RTT ·
√
PP ·H

(7.12)

Figure 7.5 shows a detailed comparison between Equation 7.10 and Equa-
tion 7.12 for a packet loss rate of 1 % and a link delay of 200 ms. For message
sizes less than 300 bytes the throughput drops by 38 % for 10 bytes, 13 %
for 50 bytes and 7 % for 100 bytes, when the headers are taken into account.

7.4.5 Verifying the Rule of Thumb for the Calculation
of the Throughput

The rule of thumb of Equation 7.10 was verified by comparing it to the sim-
ulation. Figure 7.6 shows four different tests, each consisting of two graphs
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Figure 7.5: Comparison between Equation 7.10 with Equation 7.12

representing the theoretical (dashed lines) and the simulated values (solid
lines). As the throughput is dependent on the payload, user message sizes
from 10 to 1450 bytes in steps of 10 bytes were chosen, and each run was
performed 10 times. The figure shows the mean of these runs and the corre-
sponding 95 % confidence intervals. The second lowest graph with an MTU
of 1500 bytes, an RTT of 200 ms and a packet loss rate of 1% can be looked
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Figure 7.6: Comparison between simulation and theory for varying pa-
rameters

upon as the base run. The configuration of the others differ in just one pa-
rameter. It is well to be seen, that the simulated curves follow the theoretical
ones almost exactly.

The same correspondence was obtained, when the results were compared
and thereby the headers taken into account.



Chapter 8

Validating and Improving the
Protocol

In the last chapters all the necessary tools were introduced, that were de-
signed and implemented as a prerequisite to validate the behavior of SCTP,
the influence of parameters and the impact of new features. In the next
sections protocol specific properties will be examined and solutions will be
presented for improving the protocol behavior. Thereby, the choice of sub-
jects to investigate was for the most part motivated by observing the real
implementations and their characteristics.

8.1 Comparing Kernel Implementations

8.1.1 The Test Scenario

Comparing different implementations can only lead to significant results,
when the measurements are not dependent on the hardware. Therefore, six
identical PCs were used with Intel Pentium-4 2.6 GHz CPU, 1 GB RAM and
2 additional Intel Pro/1000 MT Server Adapters and one PC to function as
a router. Figure 8.1 shows the outline of the test scenario.

The onboard network adapters connect the PCs via a Catalyst 2950 with
the rest of the lab network and then via a gateway with the internet. With
the help of the two extra cards two subnetworks are established. In one they
are all directly connected over a Cisco Catalyst 2970 switch. In the other
they are separated by virtual Local Area Networks (VLANs). Each VLAN
consists of one of these six PCs and the router, which can be configured to
run Dummynet [75] to emulate the data rate, the delay, or the packet drop
rate.
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As test application a discard server and a corresponding client were pro-
grammed, that can send messages of given sizes to the server. Either the
number of messages has to be specified or the time, that the association
should exist, before it is gracefully closed. Furthermore, parameters can be
set to switch the Nagle algorithm off, define the IP address to bind to, which
is always done in a multihomed scenario, configure the send and receive buffer
size, and many more. Batch files help to organize a series of runs.

8.1.2 Measuring the Throughput

The first interest was directed towards the throughput. The test application
writes the results of the runs to the command line, which can be redirected
to a file. One entry consists of the message size, the number of messages,
start and stop time, the lifetime, and the throughput.

In Figures 8.2 to 8.4 the same measurements are presented which were
made over a period of three years, starting in spring 2006 with the graphs
in Figure 8.2. For each curve the message size varied from 10 to 1450 bytes,
a run took 60 seconds. In the lower right hand corner sender and receiver
run the same operating system, but on different hosts, whereas in the other
diagrams the sender stays the same and the receiver changes.

In Figure 8.2 the poor performance of the Linux implementation is strik-
ing. Especially when FreeBSD is the sender and Linux the receiver, the
throughput only rises for messages greater than 1050 bytes. When Linux is
the sender, the graphs do not exceed 40 MBps, whereas the values for Solaris
to Linux are in most parts double as high. The Solaris implementation is
very unstable, the worst oscillations occur for Solaris to Solaris.

After these measurements had been interpreted, the persons who are re-
sponsible for the implementation were informed about the speculation con-
cerning the reasons for the behavior.

The results of the next performance tests are the ones in Figure 8.3 with
later kernel versions installed. The improvement is considerable. Even for
small user message sizes Linux delivered good results. The Solaris implemen-
tation gained stability and performance.

The latest tests are seen in Figure 8.4. Meanwhile, new features have
been added, that have a bad impact on the performance. Again FreeBSD
performs the best. There seems to be a bug in the Linux implementation
that causes the slight rise in the curves for messages between 700 and 1100
bytes, when Linux is the sender. The zigzagging of the Solaris graphs could
result from a CPU limitation when preparing the messages for sending. The
higher values are achieved, when the payload does not require padding. All
measurements of Figure 8.4 were performed 10 times, the 95% confidence
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intervals are represented by the black bars. Most of them are so small that
only a black dot is visible. The graphs of the older versions lack the confidence
intervals, as they were only used to detect anomalies and differences, and to
get an impression of the performance of the various implementations. But as
one graph represents 145 runs, the continuity of the curves makes a statement
about the plausibility of the results.

The rise and fall of the curves at certain points is noticeable in almost all
graphs. In Figure 8.5 the graph with the highest throughput (FreeBSD to
FreeBSD in Figure 8.4) is drawn with additional vertical lines. They mark
the bundling boundaries, i.e. the user message sizes, at which the number
of chunks per packet is reduced. Furthermore, the number of chunks per
packet is plotted, which varies from 1 to 52 chunks for user message sizes in
the displayed range. Every time the payload is increased so that a smaller
number of chunks fit in a packet, the throughput drops and slowly rises
again until the next change happens. The most pronounced decrease is the
one from 716 to 717 bytes. Whereas a full packet holds 1496 bytes with 1432
bytes of user messages in the first case, the 717 bytes result in packets with
a total size of 768 bytes in the second case. This reduces the throughput
considerably. As a comparison, the optimal throughput for a 1 Gbps link
is added to the diagram. The link cannot be fully utilized, which is due to
the small MTU of 1500 bytes and the low CPU speed. But more important
is the difference in the slope for small user message sizes. It shows that the
bundling of many DATA chunks into one packet overloads the processor, such
that the time needed for bundling adds to the lifetime of the association,
whereas the actual payload is small, because the headers do not count. This
leads to a further reduction of the throughput.

8.1.3 Identifying Path Failures

As pointed out in Section 2.2 multihoming is a very important feature of
SCTP. In RFC 4960 one path is marked as primary, while the second and all
other paths are used for redundancy or for timer-based retransmissions. To
make sure that the paths can be used when needed, each endpoint supervises
their reachability. If an endpoint has recently sent a message successfully on
a path the state is Active, in the other case Inactive.

If a path has not been used recently for user message transfer, it is called
an idle path. Idle paths are supervised by sending SCTP messages containing
HEARTBEAT chunks. The time between sending these SCTP messages is the
retransmission timeout (RTO) plus the heartbeat interval (HB Interval) which
is usually 30 seconds. If no SCTP message containing a HEARTBEAT ACK chunk
is received within RTO , a path specific error counter RTX (P) is incremented.
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Figure 8.5: Comparison between the performance of the real implemen-
tation and the optimal throughput

It is cleared whenever a HEARTBEAT chunk is answered by a HEARTBEAT ACK

chunk. The SCTP specification [85] states in one place, that a path is con-

sidered Inactive, if RTX (P) >= RTX
(P)
Max , and in another one, that this

happens if RTX (P) > RTX
(P)
Max , where RTX

(P)
Max is the maximum number

of retransmissions per path with the default value of 5. The difference is
one additional testing with a HEARTBEAT chunk. In the following the case
will be considered where the path becomes Inactive, when RTX (P) exceeds
RTX

(P)
Max because this is what [85] intends and which has in the meantime

been clarified by Errata 1440 [95].

Taking exponential backoff into account the time T
(P)
failure between a failure

of an Active path and the path becoming Inactive can be computed as

T
(P)
failure = RTX

(P)
Max · HB Interval +

RTX
(P)
Max∑

i=0

RTO i (8.1)

with

RTO i+1 = min(RTOMax , 2 · RTO i) (8.2)

for i ≥ 0 and

RTO0 = RTOMin (8.3)

if a round trip time measurement has been performed and resulted in a value
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smaller or equal to RTOMin or

RTO0 = RTO Initial (8.4)

if no measurement has been performed.

It should be mentioned that RFC 4960 requires the replacement of RTOi

by Ci ·RTOi with a randomly chosen 0.5 ≤ Ci ≤ 1.5 to avoid synchronization
effects. Ci is not regarded in the above formulae.

Therefore, the parameters RTOMin , RTOMax , HB Interval and RTX
(P)
Max

determine T
(P)
failure . In SS7 networks requirements for TP

failure exist and are
used in network dimensioning to find values for the parameters to be used.
All of these parameters can be configured via the SCTP socket API defined
in [88] by setting fields named srto min, srto max, spp hbinterval and
spp pathmaxrxt in C-structures.

For the measurements the test scenario of Figure 8.1 was used and the
path supervision of Solaris, Linux and FreeBSD compared. The test ap-
plication was altered not to send data, so that only the association had
to be set up and the paths supervised. For all test runs the parameter
spp hbinterval was set to 1000 ms, srto min to 20 ms, srto max to 200 ms
and spp pathmaxrxt to 5. The tests revealed that the three kernel imple-
mentations not only differ in the way they measure the heartbeat intervals,
but also in the algorithm they use to detect the failure.

The first difference lies in the calculation of the HB Interval . When a value
for spp hbinterval is set in the socket API of FreeBSD, HB Interval is the
product of the number of paths and the given value. All other values could
be set as expected. When using a dual-homed setup, the HB Interval is twice
as large as would be expected.

To measure the time to detect a path failure the network connections for
the second path at the receiver side were interrupted. Figure 8.6 shows the
behavior of the three operating systems. For a better comparison the times
were normalized, so that the first HEARTBEAT chunk was sent at the same time
in all test runs. The interruption happened some time between the reception
of the last HEARTBEAT ACK chunk and the next HEARTBEAT chunk that was
not acknowledged any more, indicated by the long vertical line. The short
black bars indicate the time when the kernel informed the upper layer that
the peer was not reachable any more on that path.

The Linux implementation behaved as expected and the path became
Inactive after 5.7 seconds, which is what TP

failure gives for the considered
parameters.

FreeBSD takes much longer. One reason is that HB Interval is 2000 ms.
Another reason is that it does not add a jitter to RTO of ±50%, but always
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Figure 8.6: Path failure detection on FreeBSD, Linux and Solaris

adds a random delay of 0 ms to 255 ms. So this could be described as

T
(P)
failure,FreeBSD = RTX

(P )
Max ·N · HB Interval +

RTX
(P)
Max∑

i=0

(RTO i + 128) (8.5)

where N is the number of paths. FreeBSD took 11.2 seconds, whereas the
formula adds up to 11.5 seconds, which is reasonably close since random
numbers are involved.

The shortest time is needed by Solaris. After the first timeout, the re-
transmissions are performed every RTOi. This can be described by

T
(P)
failure,Solaris = HB Interval +

RTX
(P)
MAX∑

i=0

RTO i (8.6)

which leads to a much faster detection of a path failure than in the case of
the other OSs. This formula yields 1.95 seconds, whereas the measurement
resulted in 2 seconds. It should be noted that Solaris uses an RTO Initial of
50 ms instead of a measured RTT .

As a result it is clear that the path supervision and thus the detection of
path failure is to a high degree implementation dependent. Especially in the
case of FreeBSD in a multihomed environment the user has to know exactly



8.1. Comparing Kernel Implementations 107

which heartbeat interval times to set in order to prevent the application from
a delayed failure detection.

8.1.4 Detecting Association Failures

In addition to a path specific error counter RTX (P) there is also an association
specific error counter RTX (A) which is incremented whenever a path specific
one is incremented. An association fails, when RTX (A) exceeds an association
limit RTX

(A)
Max which has a default of 10.

In [85] it is recommended that the value for RTX (A) should not exceed

the summation of RTX
(P)
Max of all the destination addresses for the remote

endpoint. If this condition is not met, it can happen that all paths become
Inactive, but the association has not failed. Then this association is called
to be in a dormant state.

As the default value for RTX
(A)
Max is 10 and for RTX

(P)
Max 5 this is not the

case in a single homed scenario, using the default values of the parameters.

The behavior of the three implementations was tested by sending data
and then causing a path failure on the only path. Solaris continued sending
retransmissions until the RTX

(P)
Max was exceeded and the transport layer had

announced the loss of the communication.

Before the association was finally aborted, FreeBSD continued sending
packets containing DATA chunks or HEARTBEAT chunks, but waited until the
error count for RTX

(A)
Max was exceeded.

The behavior of Linux could not be judged meaningfully because a bug
in the used kernel release led to unexpected retransmission behavior.

As a conclusion it is important to set the value for the RTX
(A)
Max according

to RFC 4960 to avoid unpredictable behavior.

8.1.5 Handling Flow Control

As flow control is a major feature of SCTP, it is supported in all available im-
plementations. The advertised receiver window corresponds to the important
resource receiver window, but the sizes are not necessarily the same. Upon
arrival of a packet, the kernel has to provide memory for the storage of each
chunk. Besides the actual user message, information has to be stored, like
the stream sequence number, the TSN and so on. The amount of memory
needed depends on the operating system.

To examine the change of the advertised receiver window in the test
scenario of Subsection 8.1.1, a slow receiver was needed, that did not read
arriving data immediately. Two scenarios were distinguished to see whether
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the implementations behaved in a different way, when gaps were reported or
not.

1. The application at the receiver was completely precluded from reading.

2. The first TSN was left out. Thus a gap was created preventing SCTP
from pushing data to the upper layer.

The experiment was performed by using the SCTP testtool [93] to gen-
erate SCTP packets. Test scripts were programmed with the Guile scheme
implementation [29] to create the desired message flow on the sending side.

FreeBSD behaved differently in the two scenarios. In the first one, the
arwnd was reduced by the payload size plus an overhead of 256 bytes, which
is equal to the memory that the kernel allocates for a chunk. In the second
case the arwnd was only decremented by the payload size. For small message
sizes a limit of the maximum number of chunks that were accepted was
observed. When this limit of 3200 chunks was reached, the arwnd was not
reduced any more, and newly arrived packets were dropped. This limit is
a means for the kernel to protect resources. It can be configured by the
network administrator, if necessary. Hence, the number of chunks accepted
by FreeBSD can be computed by

n = max(3200 ,

⌈
arwnd

256 + UMS

⌉
) (8.7)

In Figure 8.7 the reduction of the arwnd is illustrated for user message
sizes of 10 and 30 bytes. As the maximum chunk limit is not reached for
30 bytes chunks, the window is reduced further. It is worthwhile noting
that the graph “30 bytes, if a gap report is present” drops short to 1 once
the arwnd falls below 3000 bytes. This is an indication that silly window
syndrome avoidance is realized.

Linux showed the same behavior in both scenarios. The arwnd is always
reduced by the user message size. For messages smaller than 176 bytes, only

n =

⌈
arwnd · 2

176 + UMS

⌉
(8.8)

chunks are accepted. Then the arwnd is not reduced any more.
Solaris decrements the arwnd by the UMS until the next message does

not fit any more. Thus the window is reduced to a value smaller than UMS
and the number of accepted messages equals

n =

⌊
arwnd

UMS

⌋
(8.9)
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Neither in the Linux nor in the Solaris SCTP kernel the silly window
syndrome avoidance principle is implemented.
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Figure 8.8 shows the number of chunks that are accepted by the transport
layer for the three operating systems. For Linux the 176 bytes limit is well
to be seen. It results in a very low number of accepted chunks below this
value. For bigger sizes the graph of Solaris is joined. For FreeBSD the two
different scenarios are shown. The limit of the number of accepted chunks is
clearly recognizable. When the user message size increases, so that less than
3200 chunks fill the complete arwnd, the graph follows the one from Solaris.
When FreeBSD reduces the window by the amount of bytes that it really
needs for one chunk, the arwnd is exhausted very fast.

The tests reveal that in all three cases the requirements of the protocol
are not met if packets with small user message sizes are sent and flow control
has to be applied. Either the receiver window exhausts before the arwnd
reaches zero, or a chunk number limit is reached, which is the same from
the sender’s point of view: Via the SACK chunk, the sender receives the
information that the receiver is still willing to accept data, while in reality,
all arriving packages are dropped.

In the next section the behavior of the implementation will be simulated
to find a solution to the observed problem.

8.2 Reducing the Network Load by Adjust-

ing the Advertised Receiver Window

8.2.1 Simulating the Behavior of the Implementations

The behavior of the implementations, especially Linux, can lead to undesir-
able reactions on the side of the sender. As the receiver stops acknowledging
data and does not set its receiver window to zero, the sender will keep on
sending data. It will supervise the path by sending HEARTBEAT chunks, that
will be answered with a HEARTBEAT ACK chunk, thus indicating that the path
is active.

Keeping in mind that all implementations need extra memory to store the
received user data, and that the arwnd is coupled with the receiver window, it
was obvious to examine the effects of the different implementation dependent
algorithms and their impact on interoperability. Therefore, the simulation
was extended by a parameter for the additional memory needed per incoming
chunk. The peer, trying to follow the receiver’s arwnd, can apply another
new parameter for the number of bytes it assumes the receiver needs for the
data. A third parameter was added that was to limit the number of accepted
chunks, but this concept was not further followed, because it only applied to
FreeBSD.
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The interoperability of the peers was tested in a simple scenario with just
a client and a server that were connected via an unlimited link.

8.2.2 Simulation Results

As seen in Linux and partly in FreeBSD, the receiver reduces its receiver
window by the UMS plus the additional memory, but announces an arwnd,
that is only decremented by the UMS. The sender, not knowing that the
arwnd does not report the true value, tries to keep track of its peer’s window
and adjusts the value every time a SACK chunk arrives.
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Figure 8.9: Ratio of retransmitted to delivered bytes for a varying
amount of additional memory

To simulate this behavior and examine its impact on the network load, a
slow receiver was configured by distributing the reading intervals exponen-
tially with a mean of UMS

5000
s. After each interval, one message was read, so

that approximately 5000 bytes were read per second independent from the
UMS. Figure 8.9 shows the results for 50 to 250 bytes for the additional mem-
ory. Here and in the next simulations, each run was repeated 10 times. The
black dots represent the 95% confidence intervals. To visualize the amount of
retransmissions, the ratio of the retransmitted bytes to the data that reached
the upper layer was calculated. For an overhead of 250 bytes, which is even
less than the memory needed by FreeBSD, almost every chunk is retransmit-
ted. The other graphs show that the number of retransmissions is less for
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larger message sizes. Nevertheless, the ideal ratio of 0 is never reached. Note-
worthy is also the slight inclination of the lowest graph for larger message
sizes. This can be explained as follows. When an arwnd of 0 is announced,
the sender is allowed to send zero window probes in the absence of outstand-
ing data. Zero window probes consist of one DATA chunk. The method that
was chosen to simulate a slow receiver implies that the reading intervals are
much smaller for small message sizes than for bigger ones. Thus the proba-
bility that data has been pushed and a new chunk can be accepted is higher
for smaller messages. As a consequence the larger messages are more likely
to be dropped.

Another difference between the operating systems is the implementation
of the silly window syndrome avoidance algorithm. Of the three operating
systems only FreeBSD has integrated this feature. In the following, the
impact of its availability will be examined.
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Figure 8.10: Ratio of retransmitted to delivered bytes in the absence or
presence of the SWS avoidance algorithm

The presence of SWS avoidance for receiver and sender was varied by
setting the SWS limit to 0 if the algorithm was not implemented, and to
3000 if it was, assuming that the endpoint acted according to the algorithm
if the arwnd fell short of the threshold. Again, the ratio of retransmitted to
delivered bytes was plotted. An additional memory of 50 bytes was chosen,
because the graphs representing the measurements with the more realistic
memory size of 250 bytes were so close together, that a graphical judgment
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was almost impossible. Figure 8.10 shows the results for this scenario. As
the measurements of Figure 8.9 were taken with SWS enabled for sender
and receiver, the lowest graph of Figure 8.10 is equal to the 50 bytes graph
of Figure 8.9. It is well to be seen, that the complete absence of the SWS
avoidance algorithm can lead to more than two retransmissions per chunk.
The two graphs in the middle show that the implementation of the SWS
avoidance algorithm on the receiving side is more important than on the
sending side.

Although the confidence intervals reveal that the measured values are
not far apart the graphs show an unsteady course. The following Figure 8.11
should clarify the reason for the run of the curves. The darker graph shows
the same simulation results as the top graph of Figure 8.10. This time the
UMS varied in 10 byte intervals. The lighter graph shows the number of
packets that can still fit in the arwnd that is the last to be announced when
the receiver starts dropping packets. If for example the receiver announces
an arwnd of 5000 bytes although it is actually 0, the sender will send data
nonetheless.

The lower graph is calculated according to Equation 8.10. arwnd initial is
the arwnd that is announced in the INIT or INIT ACK chunk, CPP the num-
ber of chunks per packet as in Equation 7.2, and M the additional memory
needed by the receiver. The numerator calculates the number of chunks that
are left by reducing the number of announced chunks by the ones that really
fit in the arwnd.

Number of packets =


arwnd initial

UMS
−
⌈
arwnd initial

UMS+M

⌉
CPP

 (8.10)

It is well to be seen that for values higher than 450 bytes the two graphs
rise and fall synchronously. For smaller values than 400 bytes the amount of
data to be sent is bound by the congestion window, which normally rises in
these scenarios not higher than 7000 bytes. So, although the arwnd might
be more than 10000 bytes, the sender may send at most 7000 bytes.

As the payload to header ratio is even worse for small messages if they are
sent individually, bundling achieves better results. The Nagle algorithm [59]
is a feature, first introduced in TCP by John Nagle, to improve the efficiency
of IP based networks by preventing the sending of small packets if there are
still data in flight. For SCTP this means that chunks have to be bundled,
until the next chunk does not fit in the packet any more, unless there are no
bytes outstanding. Applying this algorithm can lead to delaying the sending
of data. To examine the impact of the Nagle algorithm on the network load,
the same runs as in Figure 8.10 were carried out and the execution of the
Nagle algorithm was disabled. The results showed that the application of the
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Figure 8.11: Comparison of the course of the ratio of retransmitted to
delivered bytes to the number of packets fitting in the arwnd

Nagle algorithm had no influence on the retransmission behavior. Further
studies showed that the Nagle algorithm has no impact on the network load
if the sender is sending constantly, thus being always able to fill a complete
packet. In Subsection 8.4.2 a scenario will be discussed where the use of the
Nagle algorithm has a negative impact.

8.2.3 Solutions

The first idea to solve the problem of undesirable retransmissions was to
notify the sender about the amount of additional memory needed. Thus, the
sender was to be able to predict the reduction of the arwnd more exactly.
However, simulation runs with this feature did not lead to significantly better
results.

The best outcomes were achieved by “telling the truth”. Just like in
FreeBSD, when the receiver did not read, the arwnd was reduced by the
payload and the additional memory. Even if the sender cannot follow the
peer window closely, the regular updates are enough to guide the sender.

Figure 8.12 shows the retransmitted to delivered bytes ratio for an addi-
tional memory of 250 bytes when SWS avoidance is present on both sender
and receiver or on none. It is well to be seen that there are almost no re-
transmissions needed, if SWS avoidance is applied. Even for the worst case
that SWS avoidance is not present the results are much better. The reason
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Figure 8.12: Ratio of retransmitted to delivered bytes, if the size of the
real receiver window is announced

for the increase of the graph for larger user message sizes has been explained
in the last subsection.

As a consequence, the strategy for implementors to avoid retransmissions
in case of flow control is to set the size of the advertised receiver window to
the size of the real receiver window. Thus, it is not possible that the receiver
window runs out of memory before the arwnd reaches zero.

RFC 4960 [85] states that the receiver decrements the arwnd by the num-
ber of bytes received and buffered. As this is not a MUST, the implementa-
tions can be altered in accordance with the RFC.

8.3 The Influence of Byte-Counting on the

Network Load

8.3.1 Counting Outstanding Bytes

In Subsection 7.4.4 it was pointed out that for message oriented protocols
the throughput can depend on the way the outstanding bytes are calculated.
Especially for small UMS the share of the DATA chunk headers in the complete
message cannot be neglected. Therefore, the way the outstanding bytes that
limit cwnd are counted should be examined.



116 Validating and Improving the Protocol

Looking at an SCTP packet containing several DATA chunks, the sum of
user data in a packet can vary significantly with the size of the individual
payloads assuming the same packet length.
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(a) One chunk with 1436 bytes of user data
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(b) 33 chunks, each containing 28 bytes of user data
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Figure 8.13: IP Datagrams containing SCTP DATA chunks

In Figure 8.13(b) the packet contains 33 DATA chunks with 28 bytes of
user data each, adding up to 924 bytes of user data compared to 1436 bytes in
the packet in Figure 8.13(a). Both packets have an overall size of 1484 bytes.
Whereas the overhead is just 3% in (a) the headers add up to 37% in (b)
and can be more than 60% for even smaller user message sizes.

Therefore, it has to be distinguished between the amount of data that
is injected into the network and the user data that arrive at the application
layer. Whereas the first has a direct impact on the network load, the second
results in the goodput. Both depend on the number of packets (8.11), that
are allowed by the cwnd.

NoOfPackets =

⌈
cwnd −OSB

CPP · SizeChunk

⌉
(8.11)

The number of the chunks per packet (CPP) is calculated (see also (7.2)
and (7.3)) as

CPP =
⌊

MTU − HIP − HSCTP

UMS + PUMS + HChunk

⌋
(8.12)

The average user message size (UMS ) per packet and the corresponding
padding bytes (PUMS ) feature the variable parts of the packets.

The outstanding bytes (OSB) depend on the number of outstanding
chunks (OC ) and the average UMS with or without including the headers.

OSB+ = OC · Size+
Chunk (8.13)
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OSB− = OC · Size−
Chunk (8.14)

The size of the bundled chunks can be calculated with header

Size+
Chunk = UMS + PUMS + HChunk (8.15)

and without header.
Size−

Chunk = UMS (8.16)

Calculating the size of a packet (SizeP), the headers for IP (HIP) and
SCTP (HSCTP) and the size of the DATA chunks (Size+

Chunk) including the
overhead have to be considered.

SizeP = HIP + HSCTP + CPP · Size+
Chunk (8.17)

To compute the number of bytes that are induced into the network and
which arrive at the receiver, four different cases are possible:

• Network load taking the header into account

Bytes+
SCTP =

⌈
cwnd −OSB+

CPP · Size+
Chunk

⌉
· SizeP (8.18)

• Bytes at the application layer if the header had been taken into account

Bytes+
App =

⌈
cwnd −OSB+

CPP · Size+
Chunk

⌉
· CPP · Size−

Chunk (8.19)

• Network load without taking the header into account

Bytes−
SCTP =

⌈
cwnd −OSB−

CPP · Size−
Chunk

⌉
· SizeP (8.20)

• Bytes at the application layer if the header had not been taken into
account

Bytes−
App =

⌈
cwnd −OSB−

CPP · Size−
Chunk

⌉
· CPP · Size−

Chunk (8.21)

The following example should illustrate the significance of the different
ways of calculating the amount of data to be sent. Assuming a cwnd of
20,000 bytes and 8 packets to be outstanding, Table 8.1 shows the different
values for the byte counting on the transport and the application layer for
user message sizes of 30 and 60 bytes.
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UMS=30 bytes UMS=60 bytes
+ - + -

SCTP 8832 22080 8856 14760
APP 5400 13500 6840 11400

Table 8.1: Amount of bytes on the transport and application layer, when
calculating the outstanding bytes with and without header for
user message sizes of 30 and 60 bytes

The difference between the scenarios with and without header is signifi-
cant. For the same cwnd and a user message size of 30 bytes the amount of
data on the link is increased by 150%, if the header is not taken into account.
For 60 bytes the increase is still 67%. As cwnd grows, even more data may
be transmitted if the header is not taken into account.

As one property of fairness is the evenly distribution of the link band-
width, the behavior of associations with and without header inclusion will
be examined in more detail.

8.3.2 TCP-friendliness

When SCTP was designed, one of the major goals was to guarantee TCP-
friendliness. In RFC 2309 [8] a TCP-friendly or TCP-compatible flow is
defined as follows:

A TCP-compatible flow is responsive to congestion notifica-
tion, and in steady state it uses no more bandwidth than a con-
forming TCP running under comparable conditions.

Since TCP is a byte stream oriented protocol, all packets are filled with
enough user data to result in full sized link layer frames if sufficient data are
provided in the send queue. The overhead consists of the IP header and the
TCP header, which is independent from the user message size.

Although SCTP and TCP implementations, which were inspected for the
differences in the handling of header bytes, are readily available, the solutions
will be based on simulation results. Since some implementations have bugs
that substantially influence the measurement results, it was decided to use
a simulation for the measurements instead of waiting for the bugfixes to be
included in the implementations.
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8.3.3 Simulation Scenario

Although TCP is integrated in the INET framework [104], not all optional
TCP features that are common nowadays, like Appropriate Byte Counting
(ABC) [2] or delayed acknowledgments [3], are implemented. However, some
of these features are mandatory for SCTP and are, therefore, implemented
in the INET SCTP model. Hence, a meaningful comparison between SCTP
and TCP is not possible with INET. Nevertheless, TCP-friendliness for flows
with and without counting the header bytes should be examined. Therefore,
an SCTP association transporting user data messages of 1452 bytes length
was used to mimic the behavior of a state-of-the-art TCP connection. From
a congestion control perspective, such an SCTP association behaves identical
to a TCP connection. When talking about including or excluding the header,
the DATA chunk header of 16 bytes is always referred to.

Figure 8.14 shows the scenario for the simulation. The SCTP client sends
data with configurable user message sizes from 12 to 204 bytes to the SCTP
server. As the impact of the header bytes is only significant for small message
sizes, longer messages are not regarded. To exclude effects resulting from
padding, i.e. a zigzagging of the graph, multiples of 4 were chosen as UMS.
The TCP-like client only sends full packets with a payload of 1452 bytes,
the headers are not included. Including them does not change the result,
since the difference is neglectable for large user messages. The connections
have to share a bottleneck link with a data rate of 1 Mbps. The router
queues behave according to the Random Early Detection (RED) queuing
discipline. This strategy, which drops packets randomly, was recommended
by Floyd and Jacobson [25] to mitigate ‘phase effects’, which can result in
the discrimination of one connection.

SCTP Server

TCP-like ServerTCP-like Client

Router 1

SCTP Client 
Router 2

Figure 8.14: Testbed

To test the behavior with and without counting the header bytes, the
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SCTP simulation has been extended by two parameters, osbWithHeader and
padding. They are boolean variables that can be set to true, if the header and
the padding bytes should be taken into account for the congestion control
calculations. Tests showed that the influence of the padding bytes is not
significant. Therefore, all described simulations were run with either both
variables true or false.

8.3.4 Fairness on the Transport Layer

The SCTP association and the “TCP-like” association have to share the
bandwidth equally. This means that all bytes that have been sent over the
network have to be counted, including the retransmitted bytes. To assure
that the same time interval is chosen and the associations have reached a
steady state, a start and stop time can be configured for counting the bytes
that have arrived at the server. The timers were set for the measurement
to start after 50 s and continue for 400 s. As the ratio of additional header
bytes to the user message size is only significant for small payload sizes, user
messages from 12 to 204 bytes length in 12 byte intervals were chosen. Each
simulation run was repeated 100 times with different seeds for the random
numbers to ensure validity. Figure 8.15 shows the throughput on the trans-
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port layer. The short vertical bars represent the 95% confidence intervals.
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The graphs are symmetrical to the theoretical bandwidth, which implies that
together they fully utilize the link. It is obvious that the associations that
calculate the outstanding bytes with header share the link, symbolized by the
straight black line, equally. Yet, it is noticeable that the graphs perform an
axis-symmetric wave movement. The reason are the bundling boundaries,
mentioned in 7.3, that result in a temporary decrease of the throughput.
As the TCP-like client only sends full packets it is not affected by bundling.
Hence, whenever the throughput of the SCTP client is decreased due to pass-
ing a bundling boundary, the TCP-like client takes over the link bandwidth
and thus increases its throughput.

The outer pair of graphs show the throughput, if the header is not taken
into account. The SCTP client is not fair towards the TCP-like client. It
utilizes the link much more intensively than the TCP-like client, thus taking
bandwidth from the other connection.

8.3.5 Fairness on the Application Layer

The behavior on the transport layer has an influence on the throughput on
the application layer (goodput). Therefore, the same setup as in the last
section was chosen and the bytes were counted that arrived at the user level
of the servers during a predefined time period. Figure 8.16 shows the graphs
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when the header is not taken into account. Although the TCP-like client
achieves a higher goodput than the SCTP client using the different message
sizes, the goodput is much lower than it should be. As Figure 8.15 indicated,
the SCTP client takes over so much bandwidth that the TCP goodput is
considerably reduced. The two theoretical graphs show the ideal case, where
the SCTP client (lowest graph) and the TCP-like client (top graph) share
the link equally.
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Figure 8.17: Goodput, if the header is taken into account

The graphs in Figure 8.17 illustrate the results if the header is taken into
account. Now the curves show the desired behavior and fit the theoretical
graphs.

As a result it can be postulated that all implementations of message
oriented protocols with bundling should take the headers into account, when
calculating the outstanding bytes, in order to be TCP-compliant.

8.4 Improving the Handling of Acknowledg-

ments

In Section 2.2 it was mentioned that only after every second packet a SACK

chunk is sent to acknowledge the data. To increase efficiency, it is recom-
mended in the RFCs 1122 and 2581 [3, 9], that acknowledgments should be
sent for every second full-sized segment within 500 ms of the arrival of the
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first unacknowledged packet. This feature has been introduced in RFC 813
[14] and is known as “delayed ACK”. It is integrated in all TCP implemen-
tations. The time to delay the acknowledgments can be tuned by changing
a kernel parameter.

This concept has been adopted by SCTP, too, but not in all cases it is
beneficial to send SACK chunks only after every second packet. Therefore,
SCTP does not delay the acknowledgment for the first received packet con-
taining a DATA chunk, and in cases where gap ack blocks or duplicate TSNs
are present, or the receiver has initiated the shutdown of the association. It
is important to note, that all these exceptions are defined for the receiver of
the DATA chunks.

However, there is no way a sender can signal the receiver that it needs the
reception of a SACK chunk as soon as possible. Therefore, a flag was intro-
duced in the DATA chunk to indicate, that this chunk has to be acknowledged
right away at arrival. This extension was called SACK-IMMEDIATELY and
the corresponding flag I-Bit [97]. The sender of a DATA chunk sets a bit in
the flags field of the DATA chunk header with the intension that the receiver
of this chunk does not delay the sending of the corresponding SACK chunk.

In the following sections, it will be pointed out how applications can
benefit from this extension and describe several scenarios and the impact, the
use of the I-Bit can have on throughput and resources. It will be distinguished
between scenarios where the kernel triggers the use of the I-Bit and those
where the application is solely responsible.

8.4.1 Kernel Initiates the Use of the I-Bit

8.4.1.1 Fairness Considerations

To show the influence of the delayed ack timer on the throughput on the
application layer, the simulation network in Figure 8.18 was set up.

Client 1 is connected to Server 1 and Client 2 to Server 2. Both
clients send full packets with a payload of 1452 bytes. Client 1 is config-
ured to send delayed SACK chunks for every second packet, but the timer is
varied from 0 to 500 ms in 10 ms intervals. Client 2 sends selective acknowl-
edgments for each packet, so no delayed ack timer is set. The connections
share a bottleneck link with a data rate of 100 Mbps. No delay or bit error
rates are configured.

The solid graphs of Figure 8.19 show the performance results of the runs.
Each run was repeated 100 times. The vertical bars show the 95% confidence
intervals. It is obvious that the associations without delayed SACK chunks
have a 10% higher throughput than the ones without delayed SACK chunks.
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Client 1

Client 2

Router 1 Router 2

Server 1

Server 2

100 Mbps
20 ms delay

Figure 8.18: Scenario with bottleneck link
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From 100 ms on there is no increase any more. Associations, which are
configured with the default delay time of 200 ms, fall in this category.

To find out the reason for this difference in performance, the RTT of
the DATA chunks was measured. Whenever the delayed SACK-timer expired,
meaning that in the last, e.g. 200 ms only one packet arrived, the congestion
window suddenly dropped, leaving the competitor the possibility to send
more data. Further investigation showed that the reason for the delay was
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a lost packet that was the last in a flight of at least two packets that were
allowed by cwnd. A loss of consecutive packets led to an even longer phase
to recover.

For the tests the simulation was changed to send the DATA chunk, that
was the last in the group of packets before cwnd was exhausted, with the
I-Bit set.

The results are reflected by the dashed pair of graphs in Figure 8.19. The
difference in throughput between the connections with and without delayed
SACKs has decreased to 4%.

This strategy to set the I-Bit for the last DATA chunk before the cwnd
forbids the sending of more data, can also be beneficially used on error-prone
links.
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Figure 8.20: Delayed SACKs with and without I-Bit on error-prone link

Figure 8.20 compares the results for links with a packet error rate of 1%
and 0.5%. The gain in throughput is up to 10%, if the I-Bit is set in the last
packet, before the cwnd is exhausted.

8.4.1.2 The sender has reduced its RTO

As mentioned in Section 2.2, SCTP was designed as transport protocol for
signaling networks. These networks have a high demand concerning avail-
ability and fault tolerance. A packet should not need more than 800 ms to
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reach the receiver including necessary retransmissions [38]. Therefore, RTO
and the heartbeat timer have to be configured according to the measurement
results in [48], for instance 10 ms for RTOMin and 1 s for the Heartbeat
Interval Timer. As a consequence, timer based retransmissions will be sent
already after 10 ms if the sender has not received an acknowledgment for the
message. If the sender has no influence on the configuration of the parame-
ters on the receiver side, the fact that the delayed acknowledgment timer is
still set to the default value of 200 ms can lead to the graph in Figure 8.21.
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Figure 8.21: Retransmission behavior when parameters on sender and
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Every 400 ms a DATA chunk is sent. After RTO milliseconds the timer
expires and a timer based retransmission is initiated on the second path.
If the sender has no influence on the configuration of the parameters on
the receiver side and the receiver has not changed the default values, timer
based retransmissions will be initiated on the second path after 10 ms. On
the reception of the second packet, a SACK chunk will be sent immediately.
The value for RTO is doubled, until the next HEARTBEAT chunk is sent and
acknowledged to prove the activity of the path, which results in the resetting
of the path failure counter and the value for RTO .

A solution for this unnecessary sending of timer based retransmissions is
the setting of the I-Bit in the DATA chunk to prompt the receiver to send a
SACK chunk without delay. Every time the sender has reduced its RTO to a
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value less than the default delay acknowledgment time, the I-Bit should be
set.

8.4.1.3 Short-term associations

Another issue that can force an association to be delayed is the shutting down
of an association. When the application hands its last message down to the
transport layer, the SCTP status changes to SHUTDOWN-PENDING. Then
SCTP waits until all messages are sent and acknowledged, until a SHUTDOWN

chunk is sent. This time it might be the acknowledgment of the last chunk
that can cause the delay.

Thinking of short-term associations that occur, for instance, when DNS
requests are sent over SCTP, a delay of 200 ms would allocate resources
much longer than necessary. Assuming that a server has to answer DNS
requests with a rate of λ, then, according to Little’s Law, the long-term
average number of requests in the system is

E[N ] = E[V ] ∗ λ (8.22)

where E[V ] is the average time a job stays in the system. When this time
can be reduced by 200 ms, then either the number of requests are reduced,
too, and the resources are saved, or the arrival rate can be increased. As an
association without delayed acknowledgment lasts only 1 or 2 ms, the benefit
would be significant.

8.4.2 Application Initiates the Use of the I-Bit

8.4.2.1 Sending is prevented due to the Nagle algorithm

Sending small messages in packets of their own increases the network load
because of the transmission of unnecessary header bytes. The Nagle al-
gorithm [59] forbids the sending of packets that could be filled with more
messages if there are still data in flight. This situation can occur, when the
sender has to deliver a message that fills more than one packet, but not quite
two, and has to wait for an acknowledgment before issuing more data, or
the send queue is exhausted. Then the Nagle algorithm does not allow the
sending of the second part of the message, because it does not fill a com-
plete packet and there are still unacknowledged data, i.e. the first part of the
message.

An example is the handshake of the Datagram Transport Layer Secu-
rity (DTLS) protocol (see [72, 99]), which is outlined in Figure 8.22. The
handshake messages are handled like normal DATA chunks, i.e. the Nagle al-
gorithm might prevent the sending of successive data, even if they belong to
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SACK
Delayed
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Figure 8.22: DTLS handshake

one flight. On the other hand, SACK chunks are only sent immediately after
the first DATA chunk or if the SACK chunk can be bundled with a DATA chunk.
In all other cases delayed acknowledgments are sent after 200 ms. As shown
in the example, two SACK chunks are delayed due to the Nagle algorithm,
which amounts to a delay of 400 ms.

The other delays are caused by DRY events, which will be discussed in
the next subsection.

8.4.2.2 Sending is prevented due to DRY events

The SCTP socket API provides a DRY event which is issued when all out-
standing user data have been acknowledged by the peer. If protocols on top
of SCTP wait for such an event, delaying the SACK chunk limits the through-
put. In the DTLS handshake (Figure 8.22) the DRY event is needed to
synchronize all streams, i.e. the sender has to wait for the acknowledgment
of all data in all streams, before the next message of the handshake may be
sent. This event occurs three times during a DTLS handshake. Together
with the two cases, where the Nagle algorithm prevents the sending of the
next message, the application of the I-Bit reduces the duration of a typical
handshake by 1 second.
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8.4.2.3 API and Implementation Considerations

The scenarios for the I-Bit in the last subsections show, that the use of this
bit has to be either triggered by the user application or the kernel.

To enable the application programmer to set the I-Bit, the SCTP socket
API specified in [88] has to be extended by introducing the flag called
SCTP SACK IMMEDIATELY. The programmer can then set the bit in the
sendmsg() call to indicate that the corresponding DATA chunks should have
the I-Bit set. This use of the I-Bit is application dependent, and it can be
set on a per message basis.

In the kernel on the sending side, the handling of the shutdown procedure
and the inclusion of the I-Bit in the last DATA chunk before the congestion
window is exhausted has to be implemented. The receiving side only has to
interpret the I-Bit correctly.

With the exception of the supervision of the congestion window, this
feature is already implemented in the FreeBSD 8.0 Version i.e. the application
programmer can set the I-Bit and the last DATA chunk before the SHUTDOWN

chunk is sent will be acknowledged immediately.

8.5 Benefitting from Packet Drop Reporting

on Lossy Links

In Section 2.3 the PKTDROP feature was introduced, that is implemented
in the FreeBSD kernel. A problem when trying to handle link errors on
the transport layer lies in the fact that corrupt packets that are discovered
because of their false IP checksum are in most cases dropped by the network
adapter. Therefore, there is normally no chance for the transport layer to
react according to that event. Ongoing research projects [107,108] show that
there is a great demand for passing erroneous packets from the link layer
to the transport layer, where measurements can be taken according to the
protocol and the application needs. In the next subsections simulation results
will be shown that demonstrate that the negative impact of the lossy link on
the goodput can be fully compensated by applying the PKTDROP feature.
In order to interpret packet drop reports properly, it is necessary that the
host receiving them is able to retrieve the information, which TSN has to be
retransmitted.
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8.5.1 One Association over a Lossy Link

In Figure 8.23 a simple scenario was tested with one client and one server con-
nected over a lossy link with a packet error rate of 1% and an RTT of 20 ms.
The throughput of an association with packet drop reporting is compared
to one without it. The lower dashed graph shows the theoretical through-
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Figure 8.23: Comparison of an association with and without packet drop
reporting

put according to Equation 7.10. As before the simulated results match the
theoretical ones. The graph with packet drop reporting is compared to the
highest theoretical throughput on an error-free and delay-free link according
to Equation 7.5.

It is obvious, that by using packet drop reporting, the negative effect of
packet loss caused by corrupted packets can be almost fully compensated.

8.5.2 Applying PKTDROP in a fairness scenario

For the next simulations the network of Figure 8.18 is used. This time the
bottleneck link between Router 1 and Router2 is configured with a packet
error rate of 1% and a delay of 20 ms.

In the first case no endpoints are configured to use packet drop reporting.
The results are shown in the second lowest lines of Figure 8.24. Both as-
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sociations achieve the same throughput, which is also equal to the theorical
results according to Equation 7.10 of Chapter 7.
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Figure 8.24: Throughput on a lossy bottleneck link

In the second case Client 2 and Server 2 apply PKTDROP. Sharing
the link with an association that has to cope with many retransmissions
lets the association with PKTDROP gain even more bandwidth. Thus the
throughput of the association between Client 1 and Server 1 is reduced
compared to the previous example, whereas the association with PKTDROP
obtains the rest of the link, which is depicted in the lowest and the sec-
ond highest graph of Figure 8.24. This is acceptable since Client 1 is still
misinterpreting packet loss as congestion indication.

8.5.3 Fairness when Lossy Link is not the Bottleneck

Sometimes one link of a path is faulty, whereas the rest is error-free. When
packet drop reporting is provided, the connection could be more aggressive
because the retransmission behavior of a connection applying PKTDROP
reporting is different from one without this feature.

A scenario for this situation is shown in Figure 8.25. The link between
Client 2 and Router 1 is configured with a packet error rate of 1%. The
other links are error-free. The packet drop reports sent from Server 2 to
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Client 2 and the resulting retransmissions can lead to an unfair utilisation
of the bottleneck link between Router 1 and Router 2 towards the associa-
tion between Client 1 and Server 1. The graphs in Figure 8.26 show the

Client 1

Client 2

Router 1 Router 2

Server 1

Server 2

100 Mbps
20 ms delay

Packet error rate 1%
PKTDROP enabled

Figure 8.25: Lossy link is not the bottleneck

simulation results, the throughput on the application layer. Each simulation
run was repeated 100 times with different seeds for the random numbers to
ensure validity. The vertical bars represent the 95% confidence intervals. It
is obvious that both connections share the bandwidth equally. They are fair
towards each other. Hence, the application of packet drop reporting has no
negative impact on other associations when sharing a bottleneck link.

8.6 Decreasing Duplicates by Reducing the

Number of Fast Retransmissions

Multihoming and the ability to add new IP addresses make SCTP an ideal
transport protocol in scenarios where handover becomes necessary. This can
be the case in wireless LANs, when moving from one cell to the next, or when
one path fails and the second one has to take over the load.

If the old and the new path have the same link properties, the handover
performs as expected according to Equation 8.1. If the links are asymmetric,
especially if the handover is carried out from a link with a long delay to one
with a short delay, undesirable side effects might occur.

The test network consisted of a multihomed client and a multihomed
server. The link delay of the primary path was 100 ms, of the second 20 ms.
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Figure 8.26: Throughput on a bottleneck link, if a tunnel link is config-
ured with an error rate
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The handover was simulated by sending a packet containing an ASCONF chunk
from the server to the client requesting to change the primary path. On recep-
tion of this packet, the client answers with an ASCONF ACK chunk and starts
sending new messages on the secondary path. As this path is faster, the new
messages arrive ahead of the ones on the slow path. A gap ack block accumu-
lates, which causes the sending of SACK chunks after each packet containing
a DATA chunk. Therefore, fast retransmissions are sent. RFC 4960 [85] is not
precise in stating, how often fast retransmissions should be sent. Therefore,
two possibilities were chosen. At first, the sending of fast retransmissions was
allowed always after the arrival of 3 SACK chunks indicating, that a specific
TSN was still missing. Then only one fast retransmission per TSN was per-
mitted. Figure 8.27 shows the two alternatives traced at the server side. On
the left hand side of the figure, the DATA chunks (black) and the correspond-
ing SACK chunks below are well to be seen. The region above the slope show
the gap reports which resulted in the sending of fast retransmissions at about
71.55 seconds. So far the behavior in both scenarios is the same, indicated
by the fact that the points of the second scenario cover those of the first one.
Only the circled dots show that the sending of fast retransmissions always
after 3 SACK chunks leads to the transmission of spurious duplicate TSNs
and their corresponding acknowledgments. These extra messages not only
have a negative influence on the network load but also on the congestion win-
dow since the window is always halved when a series of fast retransmissions
occurs.

As a consequence, fast retransmissions should be sent at most once. This
guarantees that a reaction from the receiver can occur, before the TSN is
retransmitted, if necessary.



Chapter 9

Supporting Deployment
through Network Address
Translation for SCTP

The last chapter focused on the validation and improvement of SCTP. Yet,
wide distribution of a protocol can only be achieved, if it can be used for a
variety of applications. One obstacle on the way to a world-wide deployment
is the fact, that SCTP messages, especially those from multihomed hosts,
cannot pass through NAT middleboxes.

In this chapter NAT will be introduced, and it will be explained, why
the existing algorithms are not suitable for SCTP. The approach to develop
NAT middleboxes for SCTP in a multihomed environment will be described.

9.1 Introduction to NAT

Network Address Translation [82] is a common method for separating private
networks from global networks by translating private IP addresses to public
IP addresses. One reason is the shortage of public IPv4 addresses. By using
NAT middleboxes the computers inside a LAN can have private IP addresses
while only one public IP address is needed. Another reason is the wish to
hide and protect the computers inside a LAN from direct access from the
outside.

On passing through the NAT, the local computer’s private IP address is
substituted by one of the NAT’s public IP addresses. To keep track of this
address mapping a translation table is used, so that on the way back the
responses can be mapped back to the originating address (see Figure 9.1).
Thus, the address ‘visible’ to the remote endpoint of an association is only
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100.4.5.1:8080

10.1.0.1:52001

10.1.0.2:52002

10.1.0.3:52003

Internet

120.10.2.1

120.10.2.1:52001 => 100.4.5.1:8080
120.10.2.1:52002 => 100.4.5.1:8080
120.10.2.1:52003 => 100.4.5.1:8080

Figure 9.1: Using basic NAT

the public IP address that has been substituted for the real private IP address
of the local endpoint.

This is a feasible method as long as the source ports of the clients con-
necting to the same server are different. The source port numbers are chosen
dynamically from operating system dependent ranges. Some operating sys-
tems use the port numbers between 49152 and 65535. Since many clients can
be located behind the same NAT middlebox and these clients might access a
very popular server at about the same time, the chance that two clients get
the same port is non-negligible. Therefore, the transport layer port number
is also modified. This method is called Network Address and Port Number
Translation (NAPT). NAT and NAPT have been in use for TCP and UDP
for a long time, but SCTP as a fairly new transport protocol is not yet sup-
ported. Applying this method also to SCTP does not work for multihomed
associations.

9.2 NAT for other Transport Protocols

9.2.1 NAT for TCP and UDP

Normally, TCP or UDP sessions are translated by changing the private
IP address and additionally the private port number to a global IP address
and port number in the TCP or UDP header, respectively. Thereby, the
NAT middlebox chooses the port numbers from a pool and makes sure that
two connections to the same server do not get the same port numbers.
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As the transport layer checksum of the TCP and UDP packets covers
the transport header which includes the port numbers, it has to be modified
according to the port number change. However, the checksum used for TCP
or UDP has the property that the change of the checksum can be computed
from the change of the port numbers only. As a consequence, this can be
done very efficiently by a simple set of additions and subtractions.

It should be noted that the behavior of NAT middleboxes varies dramat-
ically because there were no standards describing how to build them. The
Behavior Engineering for Hindrance Avoidance (BEHAVE) working group of
the IETF develops Best Current Practice (BCP) documents giving require-
ments for NAT middlebox behavior and protocols to help applications to run
over networks with NAT middleboxes.

9.2.2 Using Common NAT Middleboxes for Process-
ing SCTP Associations

Considering only single homed SCTP clients and servers, it is possible to
use this NAPT concept also for SCTP, since it has the same port number
concept as TCP and UDP. However, the transport layer checksum used by
SCTP is different from the one used by UDP and TCP. This checksum does
not allow to compute the checksum change based only on the port number
change. Therefore, the NAT middlebox has to compute the new SCTP check-
sum again based on the complete SCTP packet. This requires a substantial
amount of computing power, which might be reduced when the computation
is directly performed by hardware1.

For multihomed SCTP clients and servers, reusing the techniques from
TCP and UDP becomes much harder. Multihomed hosts can be attached
to multiple networks. Therefore, the traffic of one SCTP association, in
general, passes through different NAT middleboxes on different paths. Since
each SCTP endpoint can only use one SCTP port number on all paths, the
NAT middleboxes cannot change the port number independently. In order
to apply the existing NAT concept, the NAT middleboxes involved would
have to synchronize the port numbers in order to assign a common number
for the association. This is very hard to achieve.

Based on this discussion it seems desirable to use a NAT mechanism for
SCTP not requiring to change the SCTP header at all, and hence the port
numbers, which avoids the synchronization among NAT middleboxes and the
recomputation of the SCTP checksum.

Currently most NAT middleboxes only support protocols running on top

1Meanwhile, network adapters that provide checksum offloading are available
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of TCP or UDP. A standard technique for all other protocols is to encapsulate
these packets into UDP instead of IP. Since both UDP and IP provide an
unreliable packet delivery service, this is feasible. This also works for SCTP,
as described in the draft [100], and is currently implemented in the SCTP
kernel extension for Mac OS X.

It should be noted that NAT middleboxes on different paths are not
synchronized, and therefore, the UDP port number might be different on
different paths.

One drawback of using UDP encapsulation is that ICMP messages might
not contain enough information to be processed by the SCTP layer. Ac-
cording to RFC 4960 SCTP has to react on ICMP messages like ”Parameter
Problem” or ”Fragmentation needed”. In order to interpret these messages
correctly, the corresponding association has to be found. An ICMP message
containing an IP packet has to include at least the IP header and the first 8
bytes of the payload. If SCTP is directly encapsulated, 8 bytes are enough
to identify the association, since the port numbers and the verification tag
are provided. If SCTP is running over UDP, this is not possible.

Another drawback is that the simple peer-to-peer solution described in
Sections 9.6 and 9.6.2 does not work, since the UDP port numbers might be
changed by NAT middleboxes.

Tunneling SCTP over UDP has to handle the same problems as any
other UDP based communication for NAT traversal. However, this is the
only possibility for SCTP based communication through a NAT middlebox
without modifying it to add SCTP support.

9.3 Specific NAT for SCTP

9.3.1 State of the Art

Currently, first NAT implementations are being developed that support SCTP
in a way similar to TCP or UDP. Although this works fine for single homed
SCTP associations, it does not work for multihomed SCTP associations.
Therefore, these solutions are non-applicable for typical SCTP applications
which require multihoming. However, also in these cases, some vendors and
operators want to use NAT middleboxes for various reasons. Therefore, it
is important to have NAT middleboxes which not only support SCTP in a
limited way, but with all features, especially multihoming.

In [114] the authors describe an approach to integrate SCTP in network
address translators for single homed client-server communication. A group
of the Center for Advanced Internet Architecture at Swinburne University
has implemented this method for the FreeBSD operating system [32]. After
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the single homed case is working, this project, SCTP over NAT Adaptation
(SONATA), will now focus on the integration of the other scenarios provided
in [90] and [98] to provide a fully functional SCTP NAT implementation.

In the remainder of this section the special needs for an SCTP NAT
will be described and examples will be shown for single homed scenarios.
The next sections will focus on the support of multihoming, transport layer
mobility, and routing changes.

9.3.2 Using Verification Tags instead of Ports

In Subsection 2.2.2 the setup procedure of an association was described fol-
lowing the four way handshake shown on the left hand side of Figure 2.4.

For SCTP NAT the exchange of the verification tags in the handshake is
of great importance. The verification tag in the common header is always
the initiate tag sent by the peer in the INIT or INIT ACK chunk during the
association setup. Except for the initiation tag in the common header of
the packet containing the INIT chunk, all others have to be a non-zero 32-
bit number. It is noteworthy that most SCTP implementations use the
verification tag for looking up the association when a packet is received.
In Subsection 4.4.1 this method was already used when packets had to be
assigned to associations and the combination of port number and address
was not distinctive enough.

In the NAPT method described above, the NAT middlebox controls the
16-bit source port number of outgoing TCP connections in order to be able to
distinguish multiple TCP connections of all clients behind the NAT middle-
box to the same server. The basic idea for the SCTP specific method is to use
the combination of the source port number and the verification tag instead.
For single homed hosts this method is described in [90].

If NAT middleboxes use the verification tags together with the addresses
and the port numbers to identify an association, the probability that two
hosts end up with the same combination decreases to a tolerable level.

9.3.3 Creating and Modifying the NAT Table

The main task of a NAT middlebox is to substitute the source address of
each packet with the public address used by the NAT middlebox and to keep
the corresponding IP addresses in a table.

This NAT table consists of several entries. Each entry is a tuple compris-
ing:

1. Local-Address
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2. Global-Address

3. Local-Port

4. Global-Port

5. Local verification tag (Local-VTag)

6. Global verification tag (Global-VTag)

Client
10.1.0.1:52001 NAT

120.10.2.1

Server
100.4.5.1:8080INIT: 10.1.0.1:52001=>100.4.5.1:8080

VTag=0, initTag=12345
INIT: 120.10.2.1:52001=>100.4.5.1:8080

VTag=0, initTag=12345

INIT-ACK: 100.4.5.1:8080=>10.1.0.1:52001
VTag=12345, initTag=45678

INIT-ACK: 100.4.5.1:8080=>120.10.2.1:52001
VTag=12345, initTag=45678

COOKIE-ECHO: 10.1.0.1:52001=>100.4.5.1:8080
VTag=45678

COOKIE-ECHO: 120.10.2.1:52001=>100.4.5.1:8080
VTag=45678

COOKIE-ACK: 100.4.5.1:8080=>10.1.0.1:52001
VTag=12345

COOKIE-ACK: 100.4.5.1:8080=>120.10.2.1:52001
VTag=12345

Chunk type Local-Address Global-Address Local-Port Global-Port  Local-VTag   Global-VTag
INIT       10.1.0.1      100.4.5.1      52001      8080               12345 -

INIT-ACK 10.1.0.1 100.4.5.1 52001 8080 12345 45678

Figure 9.2: Setting up the NAT table during SCTP association setup

The message flow that leads to the initial entry during the handshake is
shown in Figure 9.2. In the first message of the handshake, the verification
tag in the common header must be set to 0, but the initiate tag (initTag)
in the INIT chunk holds a 32-bit random number that is supposed to be the
verification tag (VTag) of the incoming packets. Hence, at the beginning of
the handshake, only one verification tag is known. The NAT middlebox keeps
track of this information and takes the local private address (Local-Address)
and the officially registered destination IP address (Global-Address) from the
IP header of the SCTP packet and saves them in the NAT table. The local
source port (Local-Port) and the destination port (Global-Port) are obtained
in the same way.

The initiate tag of the INIT chunk, which the client has chosen for its
communication, is also extracted from the INIT chunk header and saved as
Local-VTag. The Global-VTag that eventually will be chosen by the commu-
nication partner is not known yet. Before forwarding the packet, the NAT
middlebox exchanges the source address of the IP header with the NAT ad-
dress (here: 120.10.2.1) and sends the packet toward the other endpoint. The
other SCTP endpoint receiving the packet containing the INIT chunk answers



9.3. Specific NAT for SCTP 141

the request with a message containing the INIT ACK chunk. This message is
addressed to the global address of the NAT middlebox and the Local-Port.
Its verification tag in the common header must be identical to the initiate
tag of the INIT chunk. The initiate tag of the INIT ACK chunk will be used
as the verification tag for all packets that are sent by the initiating endpoint
(here: client 10.1.0.1) of the association. For an incoming INIT ACK chunk,
the NAT middlebox searches the table entries for the corresponding combi-
nation of Local-Port, Global-Address, Global-Port, and the Local-VTag and
adds the Global-VTag. Thus, after the reception of the INIT ACK chunk,
both verification tags are known. Now the NAT middlebox sets the destina-
tion address to the Local-Address found in the table entry and delivers the
packet. To complete the handshake, a packet with a COOKIE ECHO chunk is
sent that is acknowledged with a message containing a COOKIE ACK chunk.

If the endpoints are single homed, the INIT and INIT ACK chunk do not
contain additional address parameters. If they are multihomed, they might
announce all their addresses. In this case, an entry for each address will
be added to the table. If an ASCONF chunk is received to add the wildcard
address, an entry to the NAT table is made for that address. As both ver-
ification tags must be added, a parameter must be included in the ASCONF

chunk that contains the verification tag that is not present in the common
header.

In addition to rules to insert and modify entries, a timer has to be used to
trigger the removal of entries that have not been used for a certain amount
of time. This time should be long enough such that the SCTP path super-
vision procedure prevents the table entries from timing out, i.e. the timeout
must be longer than twice the heartbeat interval timer to allow at least one
retransmission of a HEARTBEAT chunk.

9.3.4 Code of Behavior for the Endpoints

As multiple clients behind the NAT middlebox might choose the same local
port when connecting to the same server, it is possible that two different
associations are started with the same address port combination. If a server
receives an INIT chunk with the same address port combination as an already
existing association, it assumes that the association has been restarted (see
Subsection 2.2.2). To prevent such a misinterpretation, the INIT chunk sent
by the clients should contain a parameter indicating that the server should
not follow the restart procedure. Instead it should use the verification tag
to distinguish between the associations. This is what most SCTP imple-
mentations already do. Furthermore, the SCTP endpoints must not include
non-global addresses in the INIT or INIT ACK chunk, because the peer can-
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not use these addresses which are not unique as destination addresses. If an
SCTP endpoint is multihomed and has non-global addresses, it should set
up the association single homed and then add the other addresses after the
association has been established by sending an SCTP packet containing an
ASCONF chunk for each address. To add such an address, the ASCONF chunk
should contain only the wildcard address and the parameter providing the
required verification tag. The source address of the packet containing the
ASCONF chunk will be added to the association. To remove an address, an
ASCONF chunk is sent with the wildcard address. Then, all addresses except
the source address of the packet containing the ASCONF chunk are deleted
from the association.

9.3.5 Code of Behavior for the NAT Middleboxes

If a NAT middlebox receives an INIT chunk that would result in adding
an entry to the NAT table that conflicts with an already existing entry, it
should not insert this entry and may send an ABORT chunk back to the SCTP
endpoint. In the ABORT chunk, an M-Bit should be set that indicates that
it has been generated by a middlebox. This happens if two different clients
choose the same local port number and initiate tag and try to connect to
the same server. On reception of such an ABORT chunk, the endpoint can try
to choose a different initiate tag and try setting up the association again.
If the NAT middlebox receives an SCTP packet that cannot be processed
because it neither contains an INIT or ASCONF chunk nor is there an entry in
the NAT table, the NAT middlebox should discard the packet and can send
an ERROR chunk back. An M-Bit must be set to indicate that the chunk is
generated by a middlebox, and an error cause should indicate that the NAT
middlebox does not have the required information to process the packet. On
reception of such an ERROR chunk, the endpoint should use an ASCONF chunk
to provide the required information to the NAT middlebox.

9.3.6 New SCTP Protocol Elements

Clients require a new parameter to be included in the INIT chunk to indicate
that they will use the procedures described in this chapter. This parameter
is also included in the INIT ACK chunk to indicate that the receiver also sup-
ports it. Another new parameter is required that can contain a verification
tag and is included in an ASCONF chunk.

Both the ERROR chunk and the ABORT chunk must have an M-Bit indicat-
ing that the packet containing the chunk is generated by a middlebox instead
of the peer. Two additional error causes are introduced, one to be included
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in the ERROR chunk to indicate that the NAT middlebox misses some state,
and one to be included in the ABORT chunk to indicate a conflict in the NAT
table.

After the structure and functioning of SCTP NAT has been outlined,
example scenarios for different routing conditions will be described in the
next sections, respecting single and multihomed hosts.

9.4 Associations with Stable Routing Condi-

tions

In this section it is assumed that the routing conditions do not change during
the lifetime of an association, i.e. neither a NAT middlebox nor a router is
substituted by another one or changes its address.

9.4.1 Single homed Client to Multihomed Server

Most of the communication in the Internet happens between a client and
a server in a way that the client requests a service that is provided by the
server. To be able to contact the server, its address and port have to be
known.

Internet

Client
10.1.0.1:52001

Server
100.4.5.1:8080
100.5.5.1:8080Router 1

Router 2

Chunk type Local-Address Global-Address Local-Port Global-Port Local-VTag Global-VTag

INIT       10.1.0.1      100.4.5.1      52001      8080         12345
INIT-ACK 10.1.0.1 100.4.5.1 52001 8080 12345 45678
INIT-ACK 10.1.0.1 100.5.5.1 52001 8080 12345 45678

NAT

Figure 9.3: Building the NAT table for the single homed client with a
multihomed server

In Figure 9.3 the client initiates the association by sending a packet con-
taining an INIT chunk to 100.4.5.1:8080. The NAT middlebox inserts an
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entry with all information except the Global-VTag in its table. The mul-
tihomed server announces all its global addresses in address parameters in-
cluded in the INIT ACK chunk. The packet crosses the NAT middlebox, which
completes its first entry and adds a new one for each additional path. As a
result, there will be a separate entry for each server address although there
is only one association. When the client receives the chunk, it adds these
addresses to its list of destination addresses.

9.4.2 Multihomed Client and Server

The client sends an INIT chunk without a list of addresses to the server
which responds with an INIT ACK chunk including a list of all its addresses.
As shown in Figure 9.4, this initial handshake uses the path via NAT 1.

INIT

INIT-ACK
COOKIE-ECHO
COOKIE-ACK

ASCONF, ADD-IP

ASCONF-ACK

1

3

2

4

5

6

NAT 1

NAT 2
Client Server

Figure 9.4: Multihoming through NAT middleboxes

After the association is established, the client adds its second address
by sending an ASCONF chunk. If the packet containing this chunk is sent
via the path containing NAT 2, both NAT middleboxes have the necessary
state. If this packet is sent on the path via NAT 1, any packet sent from
the client on the path via NAT 2 will result in an ERROR chunk being sent
back, and this will trigger the sending of an ASCONF chunk on the second
path with the wildcard set. This chunk provides the necessary information
to the NAT middlebox NAT 2.
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9.5 Client-Server Communication with

Changing Routing Conditions

9.5.1 Adding New NAT Middleboxes

After having set up an association, data can be exchanged between client
and server. The packets are routed through the Internet. It cannot be
disregarded that the routes are not stable and can change during the lifetime
of an association, in particular if it has a long life span as expected for
major SCTP application scenarios. Therefore, it may happen that a new
NAT middlebox gets involved that has no knowledge of the properties of this
association as depicted in Figure 9.5.

Passing through a new NAT middlebox also means, that the server will
receive a packet with a new source address, which appears as if the client has
got an additional IP address.

Client
10.1.0.1:52001

Server
100.4.5.1:8080

new NAT

NAT
Router

120.10.2.1

140.1.1.1

Internet

Packets  arriving at the server

120.10.2.1:52001 => 100.4.5.1:8080
140.1.1.1:52001 => 100.4.5.1:8080

DATA: 120.10.2.1:52001=>100.4.5.1:8080

ERROR: 100.4.5.1:8080=>120.10.2.1:52001
Cause: NAT state missing

ASCONF: 120.10.2.1:52001=>100.4.5.1:8080
VTag: 12345

10.1.0.1=>100.4.5.1

100.4.5.1=>10.1.0.1

10.1.0.1=>100.4.5.1 140.1.1.1=>100.4.5.1

100.4.5.1=>140.1.1.1
ASCONF-ACK: 

100.4.5.1:8080=>120.10.2.1:52001100.4.5.1=>10.1.0.1

Figure 9.5: After a route change a new NAT middlebox appears

In Figure 9.5 the upper route shows the path where the association was
set up initially. After the route was changed the packets travel on the lower
route. An example for the address/port combination for both routes is shown
below the server.

If the new NAT middlebox receives the first packet from the client, it will
send back a packet containing an ERROR chunk indicating that it misses the
necessary NAT table entry. Therefore, upon reception of the ERROR chunk the
client sends an ASCONF chunk on the new path with the necessary information,
which prompts the new NAT middlebox to add a complete entry to its table.
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This message can pass through the NAT middlebox and can be acknowl-
edged by the server with an ASCONF ACK message. Afterwards the communi-
cation can proceed as usual.

9.5.2 Client using Transport Layer Mobility

SCTP with its functionality of dynamic address configuration is well suited
to be employed in an environment with host mobility. While all other pa-
rameters remain the same, the moving client will receive a new address. This
not only results in a new source address for the packet, but also in a chang-
ing route, such that eventually another NAT middlebox has to be traversed
which, again, initially has no knowledge of the association. As the situation
is similar to the one described in the last subsection, the same actions should
be taken. For more information on transport layer mobility see [73].

9.5.3 Multihomed Transport Layer Mobility

In the last subsection a scenario was discussed where a client moves and
hence changes its source address and, as a consequence, the corresponding
NAT middlebox as well. During the transition from one cell to another in a
host mobility scenario, there is likely to be a zone where both cells are active
and thus two addresses can be in use. Adding the new address results in a
temporarily multihomed client. This situation can be handled similar to the
case explained in the last section. The new address will be added via the
sending of a message containing an ASCONF chunk. But as the old address
will be completely replaced by the new one as soon as the previous cell is
left, another parameter has to be added that indicates that the primary path
should be set to the new address. This causes the server to send the next
packets to the new address.

9.6 Peer-to-Peer Communication

With the introduction of file-sharing services peer-to-peer communication in
the Internet increases. In contrast to the client-server model, the initiating
host does not normally know the peer’s ‘real’ address, because it is a private
IP address, and thus, like the other host, hidden behind a NAT middlebox.
The two peers need an agent to help them find their communication partner.
This agent is usually called a rendezvous server. A detailed description for
UDP and TCP handling peer-to-peer communication is given in [26].
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9.6.1 Single homed Peer-to-Peer Communication

Rendezvous 
Server

Peer 1

NAT 1

Peer 2

Peer 3

Peer 4

NAT 2

Router

Figure 9.6: Peer-to-Peer communication with rendezvous server

In the first scenario both peers are single homed. The corresponding
network setup is shown in Figure 9.6. The communication process in this
case consists of two phases. First, associations are initialized between the
peers and the rendezvous server, then after retrieving the required informa-
tion from the rendezvous server the peers can communicate with each other
independent from the server.

Once both peers have retrieved the required information, the actual com-
munication between the peers can start. As there is no server, both hosts
have to be able to act as client and server. Thus both will start an as-
sociation. If the message containing the INIT chunk of Peer 1 reaches the
NAT middlebox NAT 2, before Peer 3’s message could get through, it will
be discarded. The retransmission of the INIT chunk will get through, if in
the meantime Peer 3 has sent an INIT chunk and thus has triggered the
NAT middlebox to set up a table entry. NAT 2 will find the entry and will
allow the Peer 1’s INIT chunk to pass. The best results for this ’hole punch-
ing’ can be achieved, if the associations are started at the same time. From
the perspective of SCTP the simultaneous sending of INIT chunks features a
special case, because the INIT chunk is not followed directly by an INIT ACK
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chunk, but by another INIT chunk. The SCTP collision handling procedure
(compare Figure 2.4) will make sure that exactly one association between
the peers will be established.

9.6.2 Multihoming with Rendezvous Server

The last step in increasing complexity of the NAT scenario is the communi-
cation between two multihomed peers that are behind different NAT middle-
boxes.

Just like in the single homed case, the rendezvous server has to gather
the peers’ information to fill its table. This time the table has to be enlarged
by the additional addresses. The peers first set up an association with the
rendezvous server. Using this server the peers can get each other’s addresses
and port numbers.

At this point, the peers have to set up an association via initialization col-
lision to provide a path by using hole punching. In order to be able to also use
the second path, the NAT middleboxes on the way have to get the necessary
information. By sending messages containing ASCONF chunks almost simul-
taneously, the NAT middleboxes are notified to let packets arriving from the
opposite direction pass through. Unfortunately, the mechanism described
in Section 9.5.1 to ask for information by sending a message containing an
ERROR chunk does not work when coming from the global side of the network,
because only the host behind the NAT middlebox can provide the data to
fill the NAT table. So when the message containing an ASCONF chunk arrives
at the opposite NAT middlebox before an entry in the NAT table is present,
the packet is discarded, but its retransmission might be successful. After
both NAT tables got the appropriate entries the secondary paths can also be
used.

9.7 Implementation of NAT for SCTP in

INET

As pointed out in Subsection 3.2.4, INET supports the configuration of IP ad-
dresses and routing tables. Therefore, it is possible to simulate different sub-
networks by applying public and private IP addresses to hosts and routers.
Thereby, the distinction between different address levels like loopback, pri-
vate, link-local, and global is necessary. Suitable routines according to [89]
have already been implemented, when handling address parameters in the
INIT and INIT ACK chunk. Thus, important preconditions were already met.
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9.7.1 Simulation of the NAT Middlebox

A NAT middlebox comprises features that are typical for routers like the for-
warding of messages and the decision, on which path a packet has to be sent.
Therefore, the routines that are the same in routers and NAT middleboxes
can be taken from the already implemented modules.

New was the handling of the NAT table, the routines to create, modify
and look up entries. In addition, SCTP messages had to be analyzed to
retrieve information about the chunk type and relevant parameters therein.

interfaceTable

routingTable

natTable

natNetworkLayer

tcpDump

ppp eth

NatDumpRouter

Figure 9.7: Components of the NAT module

To achieve this, the classes NatTable, NatEntry, NatNetworkLayer, and
NAT were introduced. They were all combined in the compound module
NatDumpRouter, which simulates a NAT middlebox (see Figure 9.7). In
addition, a dump module was inserted between the link layer and the network
layer to trace the traffic passing through the NAT middlebox. NatTable holds
all the instances of the NatEntries together with methods to insert, search,
and remove entries, and print the table. Methods to retrieve and set the
contents of an entry belong to NatEntry.

NAT, which is part of the NatNetworkLayer, is the core module. It con-
trols the traffic by analyzing the packets and taking actions according to
chunk types. It initiates table look-ups and triggers the transformation from
local to global addresses and vice versa. Then it routes the packets to the
right destination. Upon expiration of a timer, the timestamps of all the en-
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tries are controlled, and the entries that have not been in use for a sufficiently
long time are removed. This time must be long enough that packets con-
taining HEARTBEAT chunks that are important to confirm the paths are not
rejected, even if they have already been retransmitted. As HEARTBEAT chunks
are sent in intervals of HBInterval + RTO the timer was set to an expiration
time of 63 seconds.

9.7.2 Changes on the Application Layer

On the application layer new modules for the peer-to-peer scenarios were
needed. A simple protocol had to be introduced for the communication
between the peers and the rendezvous server. The server needed a table to
store the names of the communication partners, their global addresses and
ports.

Rendezvous 
Server

Peer 1 NAT 1 Peer 2
NAT 2

Router 1

NAT 3 NAT 4

Router 2

Figure 9.8: Communication with the rendezvous server in a multihomed
scenario

Figure 9.8 shows the multihomed version of Figure 9.6. To obtain both
addresses of the other peer, both peers have to set up an association to the
Rendezvous Server. They send a message with the name of the peer, they want
to connect to, and the information, whether they are multihomed or not, to
the server. By passing through NAT 1 or NAT 2, respectively, the addresses
are changed to the global addresses of the NAT middleboxes. The server
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enters the information in a table. After the establishment of the association,
the peers send packets with ASCONF chunks via NAT 3 or NAT 4, respectively,
to the server to inform it about their second addresses. Upon arrival of these
messages, the server updates the table and answers with an ASCONF ACK

chunk. If it has gathered all the necessary data, it sends messages to both
peers with the global addresses and ports of their communication partners.
Then the server shuts down the association. Afterwards the peers set up a
connection with the other peer as described in Subsection 9.6.2.

At the time, when the new NAT modules in the simulation were tested,
there was no other implementation available. Therefore, the main target was
to see whether the concept concerning the message flow, especially in the
case of multihoming, could be verified.

It was started with the simplest scenario to set up the NAT table and
the corresponding methods, and then the multihoming case was tested. The
peer-to-peer networks were again more complex and had the testing of the
INIT collision as main focus. At some points aspects of the concept had to
be corrected, until finally the concept could be verified by the simulation.
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Chapter 10

Conclusion and Outlook

10.1 Achieved Results

In this thesis the main concern was the evaluation, improvement, and ex-
tension of the Stream Control Transmission Protocol. To provide a re-
search basis, the INET framework of the OMNeT++ simulation environ-
ment was extended [76] and the SCTP protocol was implemented according
to RFC 4960. To enhance the simulation’s functionality, the main protocol
extensions, like Dynamic Address Reconfiguration (RFC 5061), Authenticat-
ing Chunks (RFC 4895), Partial Reliability Extension (RFC 3758), Packet
Drop Reporting, and Stream Reset, the last two specified in internet drafts,
were provided, too. For more realistic testing scenarios and to generate the
necessary data, applications were added that operate as client, server, or
peer (Chapter 6). The SCTP extension of the INET framework is publicly
available and can be downloaded from the github website [34].

The validation of the simulation was improved and facilitated, after its
features had been expanded by the ExtInterface [96] that enabled the com-
munication between the simulation and real networks. The crucial module
for the success of the connection was the real time scheduler, that had to
synchronize the wall clock time of the real network with the simulation time
(Section 5.1).

To analyze traces and make debugging easier, the network analyzer Wire-
shark was extended with a graphical tool that visualizes the data transfer of
SCTP associations by plotting either TSNs, Cumulative TSN Acks, and gap
ack blocks, or the advertised receiver window and received bytes. Statistical
values concerning the association can be obtained, too. Together with the
ExtInterface, whose methods to convert the messages from the simulation
format into the network format can be used to generate traces in the pcap
format, a powerful tool for testing and analyzing (Section 4.3) was provided.

153
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It is included in the latest Wireshark distribution.

To confirm the reliability of the simulation results, often hundreds or even
thousands of runs are needed. The automation of the generation of Xgrid
specification files and its integration in the OMNeT++ framework reduced
the processing time linearly with the number of CPUs used [79] (Section 5.2).

One important value for judging the performance is the throughput. As
SCTP is a message oriented protocol, where the bundling of DATA chunks can
result in a high percentage of header bytes compared to user data, it can-
not be handled like the byte stream oriented TCP. Therefore, SCTP specific
formulae were needed. To obtain an upper bound for the throughput, one
formula was developed for the throughput for associations under ideal con-
ditions and one, when error-prone links with delays are present [78]. These
equations could be verified by comparing them to simulation results (Chap-
ter 7). Applying them to real associations showed that they are valid also in
this environment.

Although SCTP adopted the algorithms for congestion control and flow
control from TCP, SCTP’s message orientation calls for a different treatment.
Investigations revealed that the calculation of the outstanding bytes, which
influences the size of the congestion window and thus the amount of data
allowed to transmit, leads to unfairness towards TCP, if the DATA chunk
header is not taken into account [77] (Section 8.3).

In the case of flow control the message orientation revealed unexpected
problems, too. For the temporary storage of user messages the receiver has
to allocate extra memory. This can lead to an exhaustion of the receive
buffer before the advertised receiver window hits zero. In addition, a large
number of unnecessary retransmissions is performed. To solve this problem,
the arwnd should reflect the size of the receive buffer, and it should be
reduced by the amount of data really needed by the receiver instead of just
the user data [77] (Section 8.2).

A reliable transport protocol like SCTP requires the acknowledgment of
received data. To increase the efficiency SACK-chunks are normally only sent
for every other packet. It was shown that there are situations, like a DTLS
handshake, short term associations, or a misconfiguration of parameters,
when a delayed acknowledgment leads to an unnecessary extension of the
processing time. Therefore, an additional flag was introduced in the DATA

chunk header, called I-Bit, that informs the receiver that the acknowledg-
ment should not be delayed, but sent immediately [97]. This flag leads to
a reduction in the lifetime of short term associations and an increase of the
throughput in long term connections (Section 8.4).

Lossy links, that play an important role in wireless LANs, lead to spurious
retransmissions and a considerable decrease of the throughput. The SCTP
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extension PKTDROP overcomes this deficiency by informing the sender
which messages have been corrupted. Simulations reveal that the other-
wise negative impact of packet loss can be almost fully compensated when
applying PKTDROP [78] (Section 8.5).

The possibility to change addresses in a wireless LAN is a common re-
quirement. It was found out that handover from one destination address to
another can lead to undesirable duplicate TSNs, if the delay on the second
link is less than on the first one. A reduction of the duplicates can be ob-
tained by decreasing the number of fast retransmissions to only one instead
of retransmitting always after three gap reports (Section 8.6).

Deploying a new transport protocol is only possible, if it can be applied
on all common operating systems and in any environment. As SCTP is im-
plemented in all UNIX derivatives and a prototype for the Windows OS is
available, the first prerequisite is almost met. For the second one it is nec-
essary, that SCTP associations can be set up regardless of the network the
peers are in. To achieve this, the traversal through NAT middleboxes must
be guaranteed. As the common techniques for UDP and TCP cannot be
applied for SCTP, an SCTP specific NAT had to be developed [90]. Mul-
tihoming required a special treatment, because messages belonging to the
same associations have to pass through NAT middleboxes in different sub-
nets. The Add-IP extension enables the addition of addresses in multihoming
scenarios. In peer-to-peer networks INIT collisions are the typical variant of
the four way handshake to set up an association. A rendezvous server has
to provide the necessary information about the peer’s connection data [98]
(Chapter 9).

10.2 Future Work

The simulation described in this thesis establishes a basis for future research
work. Currently two projects at Münster University of Applied Sciences and
the University of Duisburg-Essen funded by the DFG deal with the analysis
of SCTP features (see Section 1.1). To be able to conduct experiments they
rely on the simulation. On the other hand, the simulation is an ongoing
project as it will be enhanced by new features to meet the research demands.

The goal of a project with the University of British Columbia is the
connection of the simulation with Message Passing Interface (MPI) applica-
tions. Therefore, the real time scheduler has been extended to also accept
Inter-process Communication (IPC) sockets. Until then the simulation only
supported one-to-one style sockets, one-to-many style sockets had to be re-
alized to meet the needs of the application. A time factor was introduced
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to adapt the real time to the simulation time. After the feasibility has been
shown [68], the next work concentrates on performance issues, scalability and
different topologies.

A new approach for Wireshark will be the support for the dump file
format pcapng [15], that, among other features, enables the capturing on
multiple interfaces, which is of great interest for SCTP. The extension of the
SCTP dissector and the graphical tool will be a future project.

The integration of SCTP NAT in the Linux kernel is a current project.
To test parts of the implementation, the real network will be connected
to the simulation to take advantage of the peer-to-peer functionality and
the rendezvous server. As soon as an application is provided on the real
computer, the NAT middlebox in the simulation can be tested against the
real application, too.

Another research result of the University of British Columbia is the user-
land implementation of SCTP (see Section 1.1). A current project at Münster
University of Applied Sciences is to port this stack to other operating sys-
tems that do not allow the implementation of kernel extensions, for instance
the OS X iPhone. After the successful completion of the project, future work
will focus on testing SCTP applications on mobile devices.
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end-to-end transport over SCTP. JCP, 2(4):31–40, 2007.



170 BIBLIOGRAPHY

[34] github social coding - inet-framework.
Available at: http://github.com/inet-framework/inet.

[35] ITU-T Recommendation Q.2210:. Message Transfer Part Level 3 func-
tions and messages using the services of ITU Recommendation Q.2140.
International Telecommunication Union, Geneva, July 1996.

[36] ITU-T Recommendation Q.700:. Introduction to CCITT Signalling
System No. 7. International Telecommunication Union, Geneva, March
1993.

[37] ITU-T Recommendation Q.701-Q.705:. Signalling System No. 7 (SS7)
- Message Transfer Part (MTP). International Telecommunication
Union, Geneva, March 1993.

[38] ITU-T Recommendation Q.706:. Signalling System No. 7 - Message
Transfer Part Signalling Performance. International Telecommunica-
tion Union, Geneva, March 1993.

[39] ITU-T Recommendation Q.711-Q.715:. Signalling System No. 7 (SS7)
- Signalling Connection Control Part (SCCP). International Telecom-
munication Union, Geneva, July 1996.

[40] ITU-T Recommendation Q.731:. Digital Subscriber Signalling System
No. 1 (DSS 1) - ISDN user-network interface layer 3 - General aspects.
International Telecommunication Union, Geneva, May 1998.

[41] ITU-T Recommendation Q.761-Q.767:. Signalling System No. 7 (SS7)
- ISDN User Part (ISUP). International Telecommunication Union,
Geneva, July 1996.

[42] J. Iyengar, P. Amer, and R. Stewart. Concurrent multipath trans-
fer using SCTP multihoming over independent end-to-end paths.
IEEE/ACM Transactions on Networking (TON), 14(5):951–964, 2006.

[43] J. Iyengar, K. Shah, P. Amer, and R. Stewart. Concurrent Multipath
Transfer Using SCTP Multihoming. SPECTS 2004, 2004.

[44] A. Jungmaier. sctplib Implementation.
Available at: http://www.sctp.de/sctp-download.html.

[45] A. Jungmaier. Das Transportprotokoll SCTP–Leistungsbewertung und
Optimierung eines neuen Transportprotokolls. PhD thesis, University
of Duisburg-Essen, August 2005.



BIBLIOGRAPHY 171

[46] A. Jungmaier and E. Rathgeb. A Novel Method for SCTP Load Shar-
ing. Lecture notes in computer science, pages 1453–1456, 2005.

[47] A. Jungmaier and E. Rathgeb. On SCTP multi-homing performance.
Telecommunication Systems, 31(2):141–161, 2006.

[48] A. Jungmaier, E. Rathgeb, and M. Tüxen. On the Use of SCTP in
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Appendix A

Configurable Parameters of the
Simulation

In order to be able to test the network under different conditions numerous
protocol specific parameters are provided. The user can easily configure them
by editing a text file, which is omnetpp.ini by default. The parameters are
divided into those concerning the transport layer and those specifying the
applications.

A.1 Protocol Parameters

A.1.1 Parameters for the basic SCTP functionality ac-
cording to RFC 4960

The parameters concerning the transport layer can be configured for each
host’s SCTP stack individually. In RFC 4960 a number of parameters with
their default values are listed, that can be set by the user. They have their
equivalents in the following alphabetically ordered list.

• assocMaxRetrans: Maximum number of consecutive unacknowledged
heartbeats and retransmissions, before the peer is considered to be
unreachable (default: 10).

• hbInterval: Interval between two heartbeats (default: 30 s).

• maxInitRetrans: Maximum number of retransmissions for an INIT

chunk (default: 8).

• pathMaxRetrans: Maximum number of consecutive unacknowledged
heartbeats and retransmissions on a certain path, before the path is
set inactive default: 5).
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• rtoAlpha: Needed to calculate RTO (default: 0.125).

• rtoBeta: Needed to calculate RTO (default: 0.250).

• rtoInitial: Initial retransmission timeout (default: 3 s).

• rtoMin: Minimum of the retransmission timeout (default: 1 s)

• rtoMax: Maximum of the retransmission timeout (default: 60 s)

• validCookieLifetime: Lifespan of the State Cookie (default: 10 s).

Most implementations provide the user with additional SCTP kernel param-
eters. We made the following attributes configurable.

• sctpAlgorithmClass: Subclassed from SCTP Algorithm (default:
“SCTPAlg”).

• arwnd: Advertised receiver window to be announced in the INIT or
INIT ACK chunk (default: 65535).

• maxBurst: Maximum number of packets that may be sent at once
(default: 4).

• nagleEnabled: Indicates whether the Nagle algorithm is used or not
(default: true).

• naglePoint: Number of bytes when a packet is considered to be full and
can be sent, when the Nagle algorithm is enabled (default: 1468). The
value should be adjusted to configured MTU.

• numGapReports: Number of SACK chunks that have to report this TSN
to be missing before it is fast retransmitted (default: 3)

• reactivatePrimaryPath: Indicates whether the original primary path
should be activated after it has lost its status and has come up again
(default: false).

• sackFrequency: Number of chunks to arrive before a SACK chunk is sent
(default: 2).

• sackPeriod: Time after which the Sack-timer expires and a SACK chunk
has to be sent (default: 200 ms).

• ccModule: Indicates which congestion control model should be used
(default: 0 means that the algorithm suggested in RFC4960 is taken).
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• ssModule: Indicates which stream scheduling model should be used
(default: 0 means that the ROUND ROBIN scheduling is used).

• swsLimit: Silly window syndrome avoidance limit. For advertised re-
ceiver windows smaller than swsLimit, a window of 1 is announced
(default: 3000).

• sendQueueLimit: Maximum size of the send queue (default: 0).

A.1.2 Parameters for special purposes

Parameters that can be used with any extension

• osbWithHeader: Indicates whether the outstanding bytes should be
counted including the header (default: false).

• padding: Indicates whether the outstanding bytes should be counted
including the padding bytes (default: false).

• RTXMethod: Method how often fast retransmission can occur (default:
0).

0 once after 3 gap reports

1 once per RTT

2 once per RTO

3 always after 3 gap reports

• fairStart: Start time, if the throughput for a predefined time interval
should be computed (default: 0).

• fairStop: Stop time, if the throughput for a predefined time interval
should be computed by counting the data being delivered to the upper
layer and dividing them by the difference between fairStop and fairStart
(default: 0).

• sackNow: Flag to use the I-Bit in the last DATA chunk of the cwnd
(default: false).

• natFriendly: Indicates that the sender is behind a NAT middlebox
and, therefore, no private addresses should be included in the INIT or
INIT ACK chunk (default: false).

Parameters to test flow control
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• bytesToAddPerRcvdChunk: Memory needed by the OS for an incom-
ing chunk (default: 0).

• bytesToAddPerPeerChunk: Memory needed by the peer for an incom-
ing chunk (default: 0). This is the number of bytes that is additionally
subtracted from the peer a rwnd.

• tellArwnd: Indicates, that the sender of the SACK chunk should set the
arwnd parameter to the real value (default: false).

• messageAcceptLimit: The receiver is limited by a certain number of
messages (default: 0).

Parameters to test SCTP extensions

• auth: Indicates whether AUTH is activated (default: false).

• chunks: Chunk types that have to be authenticated. Several chunks
are separated by a comma (default: ””).

• addIP: Indicates whether AddIP is activated (default: false).

• addTime: Sets the time when an address should be added or deleted
(default: 0 s).

• addAddress: The address to be added or deleted (default: ””).

• addIpType: The value of the AddIp-Parameter type (default: ””)

49153 ADD IP ADDRESS

49156 SET PRIMARY ADDRESS

49154 DELETE IP ADDRESS

Several parameters are separated by a comma.

• packetDrop: Indicates whether packet drop reporting is activated (de-
fault: false).

Special Parameters

• testing: Indicates whether debug output should be enabled.

• timeout: If testing is true, it sets the time when debug output should
be started.
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A.2 Application Parameters

In addition to those parameters that are needed for every connection like des-
tination address or message length, some parameters are provided that allow
to change the sending behavior. As a host can start several applications so
that for instance a server can have associations with numerous clients, the ap-
plication parameters can be configured independently for every application.
Parameters that influence the sending and receiving behavior are

• delayFirstRead: The receiver waits delayFirstRead seconds before the
first incoming message is read.

• thinkTime: Time between two consecutive send calls.

• echoDelay: In case of an echoserver the time waited before the data is
sent back.

Other parameters are specific to SCTP like

• outboundStreams: Number of outbound streams the host wants to use.

• ordered: Indicates whether the messages should be ordered or un-
ordered.

• address: As the host can be multihomed, all addresses can be bound
or just the ones specified.

To allow more predictable and longer testing times, the following parameters
can be configured.

• queueSize: Size of sendqueue before the upperlayer is notified to send
new data.

• startTime: Time when the client application starts the handshake.

• stopTime: If greater than 0, time when a SHUTDOWN chunk will be sent.

Parameters to test NAT:

• ownName: Name included in the NAT message to the rendezvous
server.

• peerName: Name of the peer the sender of the NAT message wants to
communicate with.

• rendezvous: Indicates whether the peer is still in the rendezvous phase.

• multi: Indicates whether the peer is multihomed.
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Appendix B

Configuration Examples

B.1 Fairness Test of Section 8.3

B.1.1 Setting up the network

In the ned file of the example, the network of Figure 8.14, which we repeat
here for convenience, has to be defined with all the submodules. We need

SCTP Server

TCP-like ServerTCP-like Client

Router 1

SCTP Client 
Router 2

Figure B.1: Testbed

four StandardHosts and two Routers. Two channels have to be defined, one
for the unlimited and one for the bottleneck link.

First the location of the necessary modules has to be declared:

package inet.examples.sctp.fair;

import inet.nodes.inet.StandardHost;

import inet.nodes.inet.Router;

import ned.DatarateChannel;
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Then the channels can be configured. Only the values that are different
from the default have to be specified.

channel BottleneckPath extends DatarateChannel

{

parameters:

datarate = 1Mbps;

}

channel NormalPath extends DatarateChannel

{

parameters:

datarate = 1Gbps;

}

Finally, the network is assembled. For each module the routingFile pa-
rameter is set to the name of the file defined for that module. An example
for a routing file has been given in Subsection 5.1.4.

network fair

{

parameters:

volatile double testTimeout;

bool testing;

submodules:

sctp_client: StandardHost {

parameters:

routingFile = "sctp_client.mrt";

@display("i=laptop3;p=128,317");

gates:

pppg[1];

}

sctp_server: StandardHost {

parameters:

routingFile = "sctp_server.mrt";

@display("i=laptop3");

gates:

pppg[1];

}

tcp_client: StandardHost {

parameters:

routingFile = "tcp_client.mrt";
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@display("i=laptop2;p=302,398");

gates:

pppg[1];

}

tcp_server: StandardHost {

parameters:

routingFile = "tcp_server.mrt";

@display("i=laptop2");

gates:

pppg[1];

}

router1: Router {

parameters:

routingFile = "router1.mrt";

@display("i=abstract/router;p=270,293");

gates:

pppg[4];

}

router2: Router {

parameters:

routingFile = "router2.mrt";

@display("i=abstract/router");

gates:

pppg[4];

}

connections:

sctp_client.pppg[0] <--> NormalPath

<--> router1.pppg[0];

router2.pppg[0] <--> NormalPath

<--> sctp_server.pppg[0];

tcp_client.pppg[0] <--> NormalPath

<--> router1.pppg[1];

router2.pppg[1] <--> NormalPath

<--> tcp_server.pppg[0];

router1.pppg[2] <--> BottleneckPath

<--> router2.pppg[2];

}
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B.1.2 Configuring the Parameters

The omnetpp.ini is the configuration file of the example. Here, the values
for the parameters are set and configurations are defined:

[General]

network = fair

fair.testing = false

**.testTimeout = 0

# UDP and TCP apps (off)

**.numUdpApps = 0

**.numTcpApps = 0

# TCP like client

**.tcp_client.numSctpApps = 1

**.tcp_client.sctpAppType = "SCTPClient"

**.tcp_client.sctpApp[0].address = "10.1.2.1"

**.tcp_client.sctpApp[0].port = 0

**.tcp_client.sctpApp[0].connectAddress = "10.1.4.1"

**.tcp_client.sctpApp[0].connectPort = 8888

**.tcp_client.sctpApp[0].numRequestsPerSession = 100000000

**.tcp_client.sctpApp[0].queueSize = 1000

**.tcp_client.sctpApp[0].requestLength= 1452

**.tcp_client.tcpdump.dumpFile = "tcp_client.pcap"

# TCP like server

**.tcp_server.numSctpApps = 1

**.tcp_server.sctpAppType = "SCTPServer"

**.tcp_server.sctpApp[0].address = "10.1.4.1"

**.tcp_server.sctpApp[0].port = 8888

**.tcp_server.tcpdump.dumpFile = "tcp_server.pcap"

# SCTP client

**.sctp_client.numSctpApps = 1

**.sctp_client.sctpAppType = "SCTPClient"

**.sctp_client.sctpApp[0].address = "10.1.1.1"

**.sctp_client.sctpApp[0].connectAddress = "10.1.3.1"

**.sctp_client.sctpApp[0].connectPort = 6666

**.sctp_client.sctpApp[0].requestLength= 1452

**.sctp_client.sctpApp[0].numRequestsPerSession = 100000000
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**.sctp_client.sctpApp[0].queueSize = 1000

**.sctp_client.tcpdump.dumpFile = "sctp_client.pcap"

# SCTP server

**.sctp_server.numSctpApps = 1

**.sctp_server.sctpAppType = "SCTPServer"

**.sctp_server.sctpApp[*].address = "10.1.3.1"

**.sctp_server.sctpApp[0].port = 6666

**.sctp_server.tcpdump.dumpFile = "sctp_server.pcap"

# NIC configuration

**.ppp[*].queueType = "REDQueue"

**.vector-recording = false

[Config fairnessTest]

**.sctp_client.sctpApp[0].requestLength = ${12..204 step 12}

**.sctp.osbWithHeader = true

**.sctp.padding = true

**.sctp_client.sctpApp[0].startTime = truncnormal(1s,0.2s)

**.sctp_client.sctpApp[0].stopTime = truncnormal(600s,10s)

**.sctp_client.sctp.fairStart = 50s

**.sctp_client.sctp.fairStop = 450s

**.tcp_client.sctpApp[0].startTime = truncnormal(5s,0.2s)

**.tcp_client.sctpApp[0].stopTime = truncnormal(500s,10s)

**.tcp_client.sctp.fairStart = 50s

**.tcp_client.sctp.fairStop = 450s

**.sctp_server.tcpdump.countStart = 50s

**.sctp_server.tcpdump.countStop = 450s

**.tcp_server.tcpdump.countStart = 50s

**.tcp_server.tcpdump.countStop = 450s

In this example we only enabled one SCTP application per host, although
it is possible to have several applications, even from different transport pro-
tocols. The sctp client is connected to the sctp server and the tcp client to
the tcp server. The start and stop times are chosen randomly according a
normal distribution with a given mean and standard deviation. Other start
and stop times are configured to measure the throughput on the applica-
tion layer (fairStart and fairStop) and on the network layer (countStart and
countStop). The UMS of the SCTP client is iterated from 12 to 204 bytes
in steps of 12. Thus, the configuration fairnessTest comprises 17 runs. The
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dump module is set to record the traces.

B.2 Changing Error Rate and Delay

In this example a new configuration aspect is the changing of the error rate
and the delay in the omnetpp.ini, which has not been possible prior to OM-
NeT++ version 4.0.

The network consists of a client and a server, which are connected via
two routers. The link between the two routers is configured with a packet
error rate (per) and a delay.

package inet.examples.sctp.matt;

import inet.nodes.inet.StandardHost;

import inet.nodes.inet.Router;

import ned.DatarateChannel;

channel bottleNeck extends DatarateChannel

{

delay = 0.1s;

datarate = 100Mbps;

per = 0.005;

}

channel unlimited extends DatarateChannel

{

datarate = 1 Gbps;

}

network ClientServerWithRouter

{

parameters:

double testTimeout @unit(s) = default(0s);

bool testing = default(false);

submodules:

client: StandardHost {

parameters:

routingFile = "client.mrt";

@display("p=37,182;i=laptop3");

gates:

pppg[1];

}
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server: StandardHost {

parameters:

routingFile = "server.mrt";

@display("p=448,175;i=server1");

gates:

pppg[1];

}

router1: Router {

parameters:

routingFile = "router1.mrt";

gates:

pppg[2];

}

router2: Router {

parameters:

routingFile = "router2.mrt";

gates:

pppg[2];

}

connections:

client.pppg[0] <--> unlimited <--> router.pppg[0];

router1.pppg[1] <--> bottleNeck <--> router2.pppg[0];

router2.pppg[1] <--> unlimited <--> server.pppg[0];

}

To configure the packet error rate for the bottleneck link, both directions
have to be distinguished. To set the error rate for instance to 0.01, the link
from router1 to router2 has to be set to

**.router1.pppg$o[1].channel.per=0.01

for the outgoing and

**.router1.pppg$i[1].channel.per=0.01

for the incoming direction. To iterate over the values, a variable has to be
defined which can be referred to when configuring the opposite direction:

**.router1.pppg$o[1].channel.per=${N=0.005..0.01 step 0.001}

**.router1.pppg$o[1].channel.per=${N}

Otherwise, the configuration would result in 36 instead of 6 runs, because
the iterations over parameter spaces are realized as nested loops.



190



191



192
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fasst zu haben und nur die angegebene Literatur und Hilfsmittel verwendet
zu haben.

Irene Rüngeler
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