
UNIVERSITY OF VAASA

FACULTY OF TECHNOLOGY

TELECOMMUNICATION ENGINEERING

Waleed Ahmed

SIMULATION AND EVALUATION OF WIRED AND WIRELESS NETWORKS

WITH NS2, NS3 AND OMNET++

Master’s thesis for the degree of Master of Science in Technology submitted for inspection,

Vaasa, 23th of March, 2015.

Supervisor Mohammed Elmusrati

Instructor Tobias Glocker

2

ACKNOWLEDGEMENTS

First of all, praises to Allah Almighty whose blessings are countless to me in all shadows of

my life.

Secondly, I would like to express my deepest gratitude towards my master thesis

supervisor, Mohammed Elmusrati for his knowledgeable guidance during the whole course

of my studies. Nevertheless, special thanks to my instructor Tobias Glocker for guiding and

motivating me for completing the master thesis with high quality and productivity.

Then, I would like to convey special thanks to my parents, spouse Farrah Farooq and

daughter Wafaa Fatima Ahmed who supported me all the days and nights with all the

necessities and time I needed to complete my master thesis. Special thanks to my brothers

Sheraz Ahmed, Fraz Ahmed, Jawad Ahmed and sister Mishal Waqas for their uncountable

and admirable support during this time.

Furthermore, I am really grateful to University of Vaasa and Government of Finland for

giving me an opportunity to study in one of the best University in a region for free and

allowing me to complete my studies in extended period of time.

At the end, I would like to thanks my university teachers, classmates, all the friends in

Finland, Pakistan and around the globe for giving me respectable support and guidance

throughout my study period and filling my life with pleasant experiences and delights.

Waleed Ahmed

Vaasa, Finland, 12 March 2014

3

TABLE OF CONTENTS PAGE

ABBREVIATIONS 11

ABSTRACT 14

1. INTRODUCTION 15

2. THEORY AND BACKGROUND INFORMATION 18

2.1.Literature Review 18

2.2.Wired Networks 22

2.2.1.Star Network 22

2.2.2.Bus Network 23

2.2.3.Ring Network 24

2.3.Wireless Networks 24

2.3.1.Wireless Sensor Network 25

2.3.2.Wireless Ad-hoc Network 26

2.3.3.Mobile Ad-hoc Network 27

2.3.4.Vehicular Ad-hoc Network 27

2.3.5.Wireless Local Area Network 29

2.4.Wireless Channel 29

2.4.1.Wireless Channel Physical Modeling 30

2.4.1.1.Free space, fixed transmit and receive antenna 31

2.4.1.2.Free space, moving antenna 32

2.4.1.3.Reflecting walls, fixed antenna 33

2.4.1.4.Reflecting walls, moving antenna 35

2.4.1.5.Reflection from a ground plane 36

2.4.2.Input/output Models of the Wireless Channel 37

2.4.2.1.Wireless channel as a linear-time varying system 37

2.4.2.2.Baseband equivalent model 39

2.4.2.3.A discrete-time baseband model 41

2.5.Congestion Control and Queue Management 42

4

2.5.1.TCP Congestion Control 43

2.5.2.Queue Management 47

3. NETWORK SIMULATORS 52

3.1.Basic Concepts in Network Simulators 54

3.1.1.Network Simulator and Simulation 54

3.1.2.Network Simulation and Emulation 54

3.1.3.Discrete Event Simulation 55

3.2.Type of Network Simulators 55

3.2.1.Free and Commercial 55

3.2.2.Simple and Complex 56

3.3.Network Simulator 2 56

3.3.1.Architectural Overview 59

3.3.2.NS2 Models and Technologies 60

3.4.Network Simulator 3 62

3.4.1.Architectural Overview 64

3.4.2.NS3 Models and Technologies 67

3.5.OMNET++ 68

3.5.1.Architectural Overview 70

3.5.2.OMNET++ Models and Technologies 72

3.6.Comparison of Network Simulators 72

4. EXPERIMENTS AND ANALYSIS 79

4.1.Performance Evaluation Metrics 79

4.2.System and Software 81

4.3.Network Models 81

4.4.Simulations 82

4.4.1.Wired Network 82

4.4.1.1.S1 Star Network 82

4.4.1.2.S2 Star Network and Large Simulation Time 91

4.4.1.3.S3 Star Network and Queue Types 98

5

4.4.2.Wireless Networks 107

4.4.2.1.S1 Simple Office Ad-hoc Network 107

4.4.2.2.S2 Complex Office Ad-hoc Network 115

5. CONCLUSION AND FUTURE WORK 125

REFERENCES 127

6

LIST OF FIGURES PAGE

Figure 1. Wired and Wireless Networks. 18

Figure 2. Star Network (Pandey et al. 2013). 23

Figure 3. Bus Network (Pandey et al. 2013). 23

Figure 4. Ring Network (Bestofmedia Team 2012). 24

Figure 5. Wireless Network. 25

Figure 6. Wireless Sensor Networks. 26

Figure 7. Wireless Ad-hoc Network (Pandey et al. 2013). 26

Figure 8. Mobile Ad-hoc Network (MANET). 27

Figure 9. Vehicular Ad-hoc Network (VANET). 28

Figure 10. Wireless Local Area Network (WLAN). 29

Figure 11. Short term and long term fading (Schiller 2003). 30

Figure 12. Illustration of the direct path and reflective path (Tse et al. 2005). 33

Figure 13. Relation of the reflected wave to the wave without wall (Tse et al. 2005). 34

Figure 14. Illustration of a direct and reflected path (Tse et al. 2005). 35

Figure 15. Illustration of direct and reflected path of ground plane (Tse et al. 2005). 36

Figure 16. Passband spectrum and baseband equivalent Relationship (Tse et al. 2005). 40

Figure 17. Illustration of up-conversion followed by down-conversion (Tse et al. 2005). 40

Figure 18. Baseband transmitted signal to baseband received signal(Tse et al. 2005). 41

Figure 19. Slow start congestion control. 46

Figure 20. Fast retransmission and recovery algorithm. 47

Figure 21. Simplified NS2 user view (Pan et al. 2008). 57

Figure 22. NAM (Karl 2005). 58

Figure 23. NS2 architecture (Karl 2005). 59

Figure 24. Discrete event scheduler (Karl 2005). 59

Figure 25. OTcl class hierarchy (Karl 2005). 60

Figure 26. NS3 Simulation Architecture (Rajankumar, Nimisha & Kamboj 2014). 63

Figure 27. NS3 Features (Chaudhary et al 2012). 64

7

Figure 28. NS3 Internal Architecture. 64

Figure 29. NS3 IP Stack Architecture. 65

Figure 30. NS3 Testbed. 66

Figure 31. NetAnim (NetAnim from ns-3 wiki). 66

Figure 32. OMNET++ GUI. 68

Figure 33. OMNET++ Architecture. 70

Figure 34. OMNET++ Simulation Process. 71

Figure 35. Network Simulators and Programming Languages. 73

Figure 36. Network Simulators and Platforms. 73

Figure 37. Star Office Network (point to point). 82

Figure 38. S1 Star simulation in NAM. 84

Figure 39. S1 Star Network (Congestion Window NS2). 85

Figure 40. S1 Star Network (Congestion Window NS3). 85

Figure 41. S1 Star Network (Congestion Window NS2, NS3) – Computer A. 85

Figure 42. S1 Star Network (Congestion Window NS2, NS3) – Computer B. 86

Figure 43. S1 Star Network (Congestion Window NS2, NS3) – Computer C. 86

Figure 44. S1 Star Network (Congestion Window NS2, NS3) – Computer D. 86

Figure 45. S1 Star NS2 Node throughput. 87

Figure 46. S1 Star NS3 Node Throughput. 87

Figure 47. S1 Star Network Throughput Comparison. 88

Figure 48. S1 Star Network Throughput Mean and Standard Deviation. 89

Figure 49. S1 Star End-to-End Delay for NS2, NS3. 90

Figure 50. S1 Star Packet Deliver Ratio for NS2, NS3. 90

Figure 51. S1 Star Packet Loss for NS2, NS3. 91

Figure 52. S2 Star Network (Congestion Window NS2). 93

Figure 53. S2 Star Network (Congestion Window NS3). 94

Figure 54. S2 Star Network (Congestion Window NS2, NS3) – Computer A. 94

Figure 55. S2 Star Network (Congestion Window NS2, NS3) – Computer B. 94

Figure 56. S2 Star Network Throughput Comparison. 95

8

Figure 57. S1 Star Network Throughput Mean and Standard Deviation. 96

Figure 58. S2 Star End-to-End Delay for NS2, NS3. 97

Figure 59. S2 Star Packet Deliver Ratio for NS2, NS3. 97

Figure 60. S2 Star Packet Loss for NS2, NS3. 98

Figure 61. S3 Star Network (DropTail Congestion Window NS2). 100

Figure 62. S3 Star Network (DropTail Congestion Window NS3). 101

Figure 63. S3 Star Network (RED Congestion Window NS2). 101

Figure 64. S3 Star Network (RED Congestion Window NS2). 101

Figure 65. S3 Star Network (SFQ Congestion Window NS2). 102

Figure 66. S3 Star Network (SFQ Congestion Window NS3). 102

Figure 67. S3 Star DropTail Packet loss for NS2, NS3. 104

Figure 68. S3 Star RED Packet loss for NS2, NS3. 105

Figure 69. S3 Star SFQ Packet loss for NS2, NS3. 106

Figure 70. S1 Simple Office Ad-hoc Network. 107

Figure 71. S1 Simple Office Ad-hoc Network in NAM. 110

Figure 72. S1 Simple Office Ad-hoc Network (CWND for TwoRayGround). 111

Figure 73. S1 Simple Office Ad-hoc Network (CWND for FreeSpace. 111

Figure 74. S1 Simple Office Ad-hoc Network (Network Throughput TwoRayGround). 112

Figure 75. S1 Simple Office Ad-hoc Network (Network Throughput FreeSpace). 112

Figure 76. S1 Simple Office Ad-hoc Network (Mean & Std Dev. TwoRayGround). 113

Figure 77. S1 Simple Office Ad-hoc Network (Mean & Std Dev. FreeSpace). 113

Figure 78. S1 Simple Office Ad-hoc Network (Congestion Window AODV). 114

Figure 79. S1 Simple Office Ad-hoc Network (Congestion Window DSDV). 114

Figure 80. S1 Simple Office Ad-hoc Network (Congestion Window DSR). 115

Figure 81. S2 Complex Office Ad-hoc Network. 116

Figure 82. S2 Complex Office Ad-hoc Network in NAM. 119

Figure 83. S2 Complex Office Ad-hoc Network (Congestion Window AODV). 120

Figure 84. S2 Complex Office Ad-hoc Network (Network Throughput AODV). 120

Figure 85. S2 Complex Office Ad-hoc Network (Congestion Window DSDV). 121

9

Figure 86. S2 Complex Office Ad-hoc Network (Network Throughput DSDV). 122

Figure 87. S2 Complex Office Ad-hoc Network (Congestion Window DSR). 122

Figure 88. S2 Complex Office Ad-hoc Network (Network Throughput DSR). 123

Figure 89. S2 Complex Office Ad-hoc Network (Comparison Network Throughput). 124

10

LIST OF TABLES PAGE

Table 1. Radio Channel Parameters (R H Katz. 1994). 31

Table 2. Congestion Avoidance Methods. 44

Table 3. Network simulators advantages and disadvantages. 53

Table 4. NS2 models and technologies. 61

Table 5. NS3 Models and Technologies. 67

Table 6. OMNET++ INET Models and Technologies. 72

Table 7. Network Simulators and Supported Network Types. 74

Table 8. Performance Evaluation Metrics. 79

Table 9. System and Software. 81

Table 10. Network Scenarios. 81

Table 11. S1 Star Network Throughput Mean and Standard Deviation. 88

Table 12. S2 Star Network Throughput Mean and Standard Deviation. 96

Table 13. S3 Star Packet Loss Results for DropTail, RED & SFQ. 103

11

ABBREVIATIONS

ACK Acknowledgement

AODV Ad-hoc On-Demand Distance Vector

AOMDV Ad-hoc On-demand Multipath Distance Vector

AQM Active Queue Management

ATM Asynchronous Transfer Mode

BGP Border Gateway Protocol

CDMA Code Division Multiple Access

CIMS Columbia IP Micro-Mobility Suite

CISE Computer and Information Science and Engineering

CPU Central Processing Unit

CRCN Cognitive Radio Cognitive Network

CSMA Carrier Sense Multiple Access

CWND Congestion Window

DDCP Datagram Congestion Control Protocol

DES Discrete-event Simulation

DHCP Dynamic Host Configuration Protocol

DLSR Dynamic Link State Routing Protocol

DMCR Distributed Multiple Criteria Routing

DSDV Destination-Sequenced Distance Vector

DSR Dynamic Source Routing

DYMO Dynamic Manet On-demand

FCC Federal Communication Commission

FIFO First In First Out

EURANE Enhanced UMTS radio access network

GloMoSim Global Mobile Information System

GPRS General Packet Radio Service

GSM Global System for Mobile

12

GT Grid Topology

GTNetS Georgia Tech Network Simulator

HWMP Hybrid Wireless Mesh Protocol

IEEE Institute of Electrical and Electronics Engineers

IGMP Internet Group Management Protocol

ISI Inter Symbol Interference

IP Internet Protocol

IR-UWB Impulse-Radio Ultra-Wide Band

IS-IS Intermediate System to Intermediate System

ITS Intelligent Transportation Systems

IVC Inter-vehicle Communications

JiST Java in Simulation Time

J-Sim JavaSim

LAN Local Area Network

LIFO Last in First Out

LT Linear Topology

LTI Linear Time Invariant

LTV Linear Time Variant

MAC Media Access Control Protocol

MANET Mobile Ad-hoc Networks

Mbps Megabits per Seconds

MPLS Multi Protocol Label Switching

NAT Network Address Translation

NCI Network Interface Card

NS Network Simulators

NSF National Science Foundation

OFDM Orthogonal Frequency Division Multiplexing

OLSR Optimized Link State Routing Protocol

OMNET++ Objective Modular Network Test-bed in C++

13

OSFP Open Shortest Patch First

PI Proportional Integral

PIM-SM Protocol Independent Multicast Sparse Mode

PPP Point to Point Protocol

QoS Quality of Services

RCDS Reactive Connected Dominating Set

RED Random Early Detection

REM Random Exponential Marking

RIP Routing Information Protocol

RSTP Rapid Spanning Tree Protocol

RSU Road Side Units

RTO Retransmission Timeout

RTT Round Trip Time

RWP Random Way Point

SFQ Stochastic Fair Queuing

STP Spanning Tree Protocol

SWANS Scalable Wireless Ad-hoc Network Simulator

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

TORA Temporally-Ordered Routing Algorithm

TOSSIM TinyOS Simulator

UDP User Datagram Protocol

V2I Vehicle-to-infrastructure Communications

V2V Vehicle-to-Vehicle Communication

VANET Vehicular Ad-hoc Area Network

VINT Virtual InterNetwork Testbed

WAN Wireless Ad-hoc Networks

YANS Yet Another Network Simulator

ZRP Zone Routing Protocol

14

UNIVERSITY OF VAASA
Faculty of Technology
Author: Waleed Ahmed
Topic of the Thesis: Simulation and Evaluation of Wired and Wireless

Networks with NS2, NS3 and OMNET++
Supervisor: Mohammed Elmusrati
Instructor: Tobias Glocker
Degree: Master of Science in Technology
Department: Department of Computer Science
Degree Programme: Degree Programme in Information Technology
Major of Subject: Telecommunication Engineering
Year of Entering the University: 2009
Year of Completing the Thesis: 2015 Pages: 131

ABSTRACT
Communication systems are emerging rapidly with the revolutionary growth in terms of
networking protocols, wired and wireless technologies, user applications and other IEEE
standards. Numbers of industrial as well as academic organizations around the globe are
bringing in light new innovations and ideas in the field of communication systems. These
innovations and ideas require intense evaluation at initial phases of development with the
use of real systems in place. Usually the real systems are expensive and not affordable for
the evaluation. In this case, network simulators provide a complete cost-effective testbed
for the simulation and evaluation of the underlined innovations and ideas. In past,
numerous studies were conducted for the performance evaluation of network simulators
based on CPU and memory utilization. However, performance evaluation based on other
metrics such as congestion window, throughput, delay, packet delivery ratio and packet loss
ratio was not conducted intensively. In this thesis, network simulators such as NS2, NS3
and OMNET++ will be evaluated and compared for wired and wireless networks based on
congestion window, throughput, delay, packet delivery and packet loss ratio. In the
theoretical part, information will be provided about the wired and wireless networks and
mathematical interpretation of various components used for these networks. Furthermore,
technical details about the network simulators will be presented including architectural
design, programming languages and platform libraries. Advantages and disadvantages of
these network simulators will also be highlighted. In the last part, the details about the
experiments and analysis conducted for wired and wireless networks will be provided. At
the end, findings will be concluded and future prospects of the study will be advised.

KEYWORDS: communication systems, networking protocols, wired and wireless
networks, network simulators, performance evaluation

15

1. INTRODUCTION

Simulation is an advance concept used to model and analyze various scenarios in real

world. It applies to different engineering, mathematics, science and other application areas

for achieving different purposes. With the use of simulation, one can easily model

hypothetical and a real life object, simulate and analyze the results to study the behavior of

the system based on different parameters in various contexts (Pan & Jain 2008). Computer

simulations are used in various areas for modeling and analysis of natural systems where

the real modeling becomes really expensive and even hard to implement.

With the advance revolution in computer technologies, computer networks became a

predominant area for the researchers and industrial specialists considering study and

experiment objectives. In this case, the complete understanding of the computer networks is

really important especially for network researcher so that they can deeply evaluate different

technologies, component and protocol used in computer networks and also work to enhance

the technologies more appropriately for end users. Considering all this, network simulation

became an important tool to understand the systems in depth. Network simulations are used

during the development of new communication architectures and protocols (Weingartner,

Lehn, Wehrle 2009: 1287-1291).

The implementation of new networking architectures and protocols is a progressive method

and requires continues changes and evaluation during the whole process. It also requires a

proof of concept prototypes for experiments and understanding of the whole system.

Furthermore, large real networks are usually used for evaluation which requires various

resources with high cost. In this case, network simulators (NS) provide a test bed for

simulating and evaluating new architectures and protocols. It helps researchers to

understand end to end behavior of the underline technologies, also changes in the system

definition, attributes and prototypes, even rewriting of the whole system is really trivial.

16

Network simulators are emerging everyday and mostly provides infrastructure for all kind

of network technologies including the current running IEEE standards and also the future

prospect technologies. For example, it covers application of simulation technology into

network area such as network traffic simulation which is relatively a new technology.

MANET and VANET are other emerging network applications which can be simulated in

network simulators using different ad hoc networking protocols including DSDV, TORA,

DSR and AODV. As Network simulators mainly work for computer networks, therefore

understanding of computer networks in depth is very important and must be considered as a

prerequisite for network simulation.

Network simulators provide mechanism for modeling wired and wireless networks using

different kind of network nodes, routers switches, bridges, routing protocols, channel

models, packet types, queue types, channel propagation models, signal generators, sink

devices and network and physical layer protocols including TCP, UDP and MAC.

Different network simulators uses different programming languages for network design,

protocol implementation and flow control handling within the network. Mostly network

simulators come with editor for development and animator tool for witnessing the graphical

view of network simulation. For statistical data collection and analysis, network simulators

provide various tracing methods which produce data. Researcher can analyze the data by

plotting into any graph application and compare the results.

Different types of network simulators are available for researchers and industrialists. Open

source network simulators are mainly used for academic work where students and

researchers execute different simulations using free and open source tools. On the other

side, commercial tools are expensive and used by companies for commercial purposes. The

choice of network simulators depends on various factors, for example performance and

memory consumption of network simulators for large scale networks. Other factors include

scalability, reliability and troubleshooting of different network models and protocols,

17

programming languages, available support for different network components and

documentation.

The main objective of the thesis is to simulate and evaluate wired and wireless networks in

different network simulators. For experiment part, NS2, NS3 and OMNET++ network

simulators will be used for modeling different models, and computing throughput, end to

end delay, packet loss, jitter and TCP congestion control. At the end, results will be

combined and compared. This study will be an extension to existing studies where the

results of existing studies will be reviewed and outcomes will be combined to generate and

evaluate new models for NS2, NS3 and OMNET++.

In the thesis, following questions will be answered:

• What are the benefits and drawbacks of NS2, NS3 and OMNET++ network

simulators?

• What models can be simulated and how can be simulated?

• What programming languages are used in network simulators?

• How accurate are the results in comparison with the theory?

• What are the benefits and drawbacks in terms of usability?

• What are the suitable simulation parameters and how these affect the simulation

results?

18

2. THEORY AND BACKGROUND INFORMATION

In communication and computer network research, network simulation is widely used to

observe the behavior of a small scale to large scale networks. The idea of a network

simulation came from computer simulation which has been developed hand in hand with

the rapid growth of the computers since the early days of digital world. The first large scale

computer simulation deployment was Manhattan project following a World War II to

model the process of nuclear detonation (Winsberg 2010). With the rapid growth in

computer simulation methodologies, it has become indispensable in a wide variety of

scientific disciplines including astrophysics, high-energy physics, climate science,

engineering, ecology and economics. (Winsberg 2010). Figure 1 illustrates design of wired

and wireless networks.

Figure 1. Wired and Wireless Networks.

In the following section, various studies will be reviewed conducted to evaluate different

available network simulators with respect to performance, memory consumption,

scalability, reliability and accuracy compared to theory.

2.1. Literature Review

Most of the Network Simulators are based on discrete-event simulation for evaluating

protocols and architecture of wired and wireless networks. Due to differences in various

Network Simulators, selecting appropriate network simulators is a crucial task.

19

According to the authors (Fernandes & Ferreira 2012), the existing network simulators

differ with each other when it comes to realism, accuracy, performance and scalability of

the simulation. Some of the network simulators perform accurately for small scale networks

while performance in large scale network simulation decreases potentially. Based on the

previous studies about performance comparisons of different network simulators, authors

performed his experiments in NS3 for scalable VANET and evaluate the possible

enhancements to the physical layer and mobility models of NS3. For the solution, authors

proposed a spatial indexing data structure which helps in efficiently storing and updating

nodes and finding a neighbor within a given range from source node.

The authors (Weingartner, Lehn & Wehrle 2009) evaluated five different Network

Simulators namely NS2, NS3, OMNET++, SimPy and JiST/SWANS in his paper. Authors

mainly emphasized on recent developments in the field of network simulation and

conducted performance analysis by implementing identical simulation setup from scratch in

all five simulators. The results of the simulation show notable difference among all the

simulators in run time performance and memory uses. In the experimental part, authors

implemented a sample network topology with 16 nodes and analyzed the outcome for end-

to-end packet loss, computational time and memory consumption based on network size

and drop probability. At the end authors concluded that NS3 demonstrated best overall

performance while JiST proved to be a fastest simulator among all. However, NS3

development is still in early stage and only few of the simulation models from NS2 are

ported and available. OMNET++ is also another good choice when it comes to graphical

user interface and scalability of the networks. Authors gave an impression that out of five

simulators, three including NS3, JiST and OMNET++ would be a smart choice when

scalability is a main concern.

Authors (Gupta, Mangesh, Ghonge, Parag, Thakare & Jawandhiya 2013) presented a

comprehensive survey on comparison of different Open Source Network Simulators

namely NS2, NS3, OMNET++ and JiST. In the study, authors highlighted the key

20

components and features of Network Simulators and provided a detailed overview of

advantages and disadvantages. The purpose of the study was to provide a clear picture of

the Network Simulators to the researchers in order to help them in selection of an

appropriate Network Simulator for their research. According to the authors, the use of

network simulators is inexpensive, helps in finding bugs in advance and provides generality

over analytic and numerical techniques. On the other hand, there is no guarantee that the

model reflects the reality and for large scale networks, one has to simulate lots of resources

which can affect the performance of the simulation, also there is a possibility of statistical

uncertainty in results. At the end, authors concluded that NS2 is the best option among all

as it covers almost all models. NS3, OMNET++ and JiST are still in development phase.

However, NS2 lacks of a GUI which other three provide for end users. For large scale

networks, OMNET++ is more effective than others.

Network Simulators have essential utilization in the analysis of wireless sensor networks

(WSN). Choosing an appropriate Network Simulator for wireless sensor networks analysis

is a challenging task for researchers. The authors (Khan, Hasbullah &Nazir 2014)

explored different Network Simulators including NS2, NS3, OMNET++ Castalia, TOSSIM

and J-sim for wireless sensor networks and examined them together based on parameters,

CPU usage, memory usage, computational time period and scalability of a wireless sensor

network. For the experiment part, the authors assessed the execution of the state

craftsmanship test system using a LEACH routing protocol and results revealed that NS-2,

NS3 and OMNET++ Castalia are more suitable for conveying out broad ascend mesh

simulations. In all simulators, NS3 proved to be a fastest simulator in computation time and

CPU utilizations.

In communication and computer network research, wireless networks are the key areas of

interests for researcher where examining a behavior of the systems in real world and

evaluating new protocols are challenging tasks for everyone. In this case, network

simulators help researchers to analyze wireless networks in a virtual world using a testbed

21

having all the required ingredients of wireless networks to cook the experiment in an

efficient and cost effective way. The research conducted by authors (Khan, Bilal &

Othman. 2012) is based on above phenomena where they rehearsed experiments for

wireless networks using Mobile Ad hoc Networks (MANET) protocols. For the

experiment, the authors selected NS2, NS3, OMNET++ and GloMoSim network simulators

and compared them on the basis of CPU utilization, memory usage, computational time and

scalability of the networks. In the study, authors used Ad hoc on demand distance vector

(AODV) routing algorithm due to pre-availability in selected Network Simulators. The

results shows that NS3 uses the lowest memory and NS2 uses the most memory compared

to other two simulators which proved that NS3 is most efficient in memory usage among

others. In CPU utilization, NS2 and NS3 approved to be more effective than OMNET++

and GloMoSim, however with the parallel execution of other application, NS2 and NS3

CPU utilization decreased to certain level. In comparison for a large scale network, NS3,

OMNET++ and GloMoSim are effective compared to NS2. In overall comparison, NS3

demonstrates the best performance among all despite of being quite new in race.

In addition to performance analysis based on computation time and memory usage, another

objective of network simulators is to meet the results of a simulation with theory metrics. In

this case, the comparison of different network simulators based on throughput, packet loss,

jitter and end to end delay is indispensable and the expectations are always to reach near the

theoretical values. To accomplish the goal, anthers (Ikeda, Kulla, Barolli & M Takizawa)

compared throughput results of wireless ad hoc network simulations using NS2 and NS3.

The simulation experiment was conducted for two different models including Linear

Topology (LT) and Grid Topology (GT) where authors used TwoRayGround radio model

and OLSR protocol for performance evaluation. The results shoes that NS3 throughput

values are more close to theoretical values than NS2, also the memory consumption in NS3

is much better compared to NS2.

22

2.2. Wired Networks

Wired networks are collections of physically connected nodes using wires for exchanging

information to and from different hosts within a network. Wired networks are also known

as Ethernet networks which is a known type of local area network (LAN) (Pandey & tyagi

2013). The nodes in wired networks can be any computers, printers or other devices

connected through Ethernet cables. Ethernet is proven to be the fastest wired networks

protocol which provides connection speeds of 10 megabits per seconds (Mbps) to 100

megabits per seconds or higher (Pandey et al. 2013). In wired network, all nodes in a

network require an Ethernet adapter, commonly known as Network Interface Card (NIC) to

connect with other devices. The Network Interface Card (NIC) can be internally installed

through Ethernet adapter port in the computer or attached externally to the nodes. In the

following section, the most commonly used wired networks will be reviewed.

2.2.1. Star Network

In a Star Network, three or more nodes are connected with each other through central

devices usually called hub or switch where nodes can be different computers or printers.

Star Network topologies are mainly used in small business or even as a house network.

Nodes in a network use separate cables and failure of one node or cable does not harm

other computers and network keeps on functioning all the time. However, failure of central

hub or switch affects the networks and nodes cannot continue in a network. In this case, the

trouble shooting or replacement of a central node is essential. Due to high usage and less

use of cables, Star Network is a most commonly used types of wired LAN. A TCP

congestion control mechanism is used in a network to avoid collisions as all nodes can send

data at a same time which ensures high throughput in a network with minimum packet loss.

Figure 2 shows a basic architecture of Star Network.

23

Figure 2. Star Network (Pandey et al. 2013).

2.2.2. Bus Network

Bus Network is initial type of wired networks which uses common circuit instead of a

central hub to connect different nodes within a network. In Bus Network, only one node

can transmit data at a time and if there are two nodes trying to send data then collision will

occur and result in data loss. All the nodes in a network broadcast messages in a network

with a destination address and the message travels to all nodes until a destination is

reached. Figure 3 shows a basic architecture of Bus Network.

Figure 3. Bus Network (Pandey et al. 2013).

Special software is used in a network which decides data transmission in a network. As

there is no central hub used in a network, so failing of one node is robust and doesn’t affect

the network to work. Special terminators are used at the end of common cable to ensure

that packets are not re-bounced.

24

2.2.3. Ring Network

In Ring Network, nodes are connected in a closed loop or ring where every node connects

to the next node and the last node connects to the first node. A special ring token is used in

a network and any node which has ring token can transmit data in a network. A message in

a network always travels in one direction. Ring Network has no central control hub, thus

network remains functioning even any of the nodes is broken. Figure 4 shows a basic

architecture of Ring Network.

Figure 4. Ring Network (Bestofmedia Team 2012).

2.3. Wireless Networks

Wireless networks are the fastest growing mean of the communication in a modern world.

In the presence of wired communication systems, it has captured the attention of the media

and the imagination of the public remarkably due to its efficient, reliable and long distance

coverage services. The exponential growth in the use of cellular systems over the last

decade turns the number of mobile users into almost two billion figures worldwide.

Furthermore, many home users, businesses, and campuses are using wireless local area

networks in place of ancient wired networks. Many new applications including wireless

sensor networks (WSN), mobile ad hoc networks (MANET), vehicular ad hoc networks

25

(VANET), automated highways and factories, smart homes and appliances, and remote

telemedicine are emerging from research ideas to concrete systems (Goldsmith 2004).

In brief, wireless communication is a transfer of information from source to destination

over a distance without the use of electrical conductors or wires. The distances involved

may be short (a few meters as in television remote control) or long (thousands or millions

of kilometers for radio communications). There are many wireless communication systems

available used for multi purposes. Some of these systems are: mobile, portable two-way

radios, cellular telephones, personal digital assistants (PDAs), GPS units, garage door

openers and or garage doors, wireless computer mouse, keyboards and headsets, satellite

television and cordless telephones. Different background technologies used in wireless

systems are bluetooth, infrared, wifi, gsm, gprs, 3G, 4G, LTE and satellite.

Figure 5. Wireless Network.

Wireless networks (see Figure 5) support communications using radio or light waves

propagating through an air medium. Many wireless networks are used depending upon the

need of use and distance requirements. Following is an overview of different wireless

networks used in communication systems.

2.3.1. Wireless Sensor Network

Wireless Sensor Network (WSN) shown in Figure 6 consists of wireless nodes connected

through access point in a relatively long distance area equipped with sensors which

measures quantities in surroundings to monitor physical and environmental changes. Sensor

nodes in a network are tiny devices having small memory

an analytical design for the devices to work in long durations. Due to tiny nature and small

infrastructure, these networks faces quite many challenges ranges from r

consumption, reduced node sizes with high utilization, mobility to privacy and security.

Some of the applications for WSN consist of military surveillance and monitoring, medical

diagnosis and monitoring, environmental monitoring, industr

appliances, factory, supply chains, infrastructure protection monitoring including power

grids and water distribution monitoring and other miscellaneous applications (K Sharma, M

K Chose. 2010).

Figure 6. Wireless Sensor Networks

2.3.2. Wireless Ad-hoc Network

Wireless Ad-hoc Network (WAN)

connected with each other in a temporary network without any infrastructure and control of

a central administration. These nodes connect on random basis and communicate with the

neighboring nodes for information sharing and notifications. These networks are not robust

in nature and always under certain security threads due to the independent nature of

connected nodes; therefore making the communication in Wir

critical challenge.

Figure 7. Wireless Ad-hoc Network

26

nodes in a network are tiny devices having small memory and power storage which require

analytical design for the devices to work in long durations. Due to tiny nature and small

infrastructure, these networks faces quite many challenges ranges from reliability, power

consumption, reduced node sizes with high utilization, mobility to privacy and security.

Some of the applications for WSN consist of military surveillance and monitoring, medical

diagnosis and monitoring, environmental monitoring, industrial sensing and diagnostics for

appliances, factory, supply chains, infrastructure protection monitoring including power

grids and water distribution monitoring and other miscellaneous applications (K Sharma, M

Wireless Sensor Networks.

hoc Network

hoc Network (WAN) shown in Figure 7 is a collection of wireless nodes

connected with each other in a temporary network without any infrastructure and control of

These nodes connect on random basis and communicate with the

neighboring nodes for information sharing and notifications. These networks are not robust

in nature and always under certain security threads due to the independent nature of

herefore making the communication in Wireless Ad-hoc networks

hoc Network (Pandey et al. 2013).

and power storage which require

analytical design for the devices to work in long durations. Due to tiny nature and small

eliability, power

consumption, reduced node sizes with high utilization, mobility to privacy and security.

Some of the applications for WSN consist of military surveillance and monitoring, medical

ial sensing and diagnostics for

appliances, factory, supply chains, infrastructure protection monitoring including power

grids and water distribution monitoring and other miscellaneous applications (K Sharma, M

is a collection of wireless nodes

connected with each other in a temporary network without any infrastructure and control of

These nodes connect on random basis and communicate with the

neighboring nodes for information sharing and notifications. These networks are not robust

in nature and always under certain security threads due to the independent nature of

hoc networks is a

27

2.3.3. Mobile Ad-hoc Network

Mobile Ad-hoc Network (MANET) shown in Figure 8 is a sub type of wireless ad-hoc

networks and a self-organizing and self configuring multihop wireless network where

structure of the network changes dynamically all the time. The dynamic nature of the

network is based on mobility of the nodes. In a network, nodes connect with each other in

friendly manner and become of part of multihop forwarding mechanism. These nodes

behave in a network as a host as well as router to forward information from one node to

another. The routing in MANET is a challenge due to the unavailability of the

infrastructure; therefore all nodes in a network are responsible to forward data for other

nodes using proper routing mechanism. Without routing, out of range destination nodes

become unreachable as other nodes cannot find a proper route to reach, hence resulting in

packet loss. In MANET base stations access all the network nodes by sending broadcast

messages instead of following routing flow. Applications of MANETs are used in

classrooms, battlefields and vehicle-to-vehicle communications in certain scenarios.

Figure 8. Mobile Ad-hoc Network (MANET).

2.3.4. Vehicular Ad-hoc Network

Vehicular Ad-hoc Network (VANET) shown in Figure 9 is an emerging technology which

integrates modern wireless networking capabilities to vehicles. It is based on Mobile Ad

Hoc Networks (MANETs) which is a collection of wireless mobile nodes connected with

28

each other for exchanging information in the absence of any infrastructure. In principle,

Vehicular Ad Hoc Network (VANETs) is a subclass of MANETs; however it behaves in

fundamentally different ways than MANETs due to fragile nature of vehicles connectivity,

fast movement, varying driver behaviors and high mobility in a network (Ho & Leung

2007).

Figure 9. Vehicular Ad-hoc Network (VANET).

In Vehicular Ad Hoc Network, the idea is to provide ubiquitous connectivity among

different mobile users on the road with the efficient vehicle-to-vehicle communication

which enables the Intelligent Transportation Systems (ITS). Due to the connectivity

paradigm, Vehicular Ad Hoc Networks (VANETs) (Li & Wang 2007) are also called Inter-

vehicle Communications (IVC) or Vehicle-to-Vehicle Communication (V2V) and Vehicle-

to-infrastructure Communications (V2I) where vehicles communicate with the nearby

vehicles and road side units (RSU) through dynamic wireless links. The applications of ITS

in Vehicular Ad Hoc Networks (VANETs) includes (Li et al. 2007) co-operative traffic

monitoring control of traffic flows, blind crossing, prevention of collisions, nearby

information services and real time detour routes computation. Due to variety of safety

critical applications, Vehicular Ad Hoc Networks (VANETs) are gaining intention from

researchers and engineers in academic and automobile industries for road safety and

pleasure applications. Vehicle Ad Hoc Networks (VANETs) require automobile cars to be

equipped with computing technologies and internet connectivity through wireless networks

and major car manufacturer companies have already announced to add computing and

connectivity powers to their vehicles.

2.3.5. Wireless Local Area Network

Wireless Local Area Network (WLAN)

connects two or more devices in a closed circuit through access point. These networks are

mainly used for providing internet access to the connected devices using the IEEE 802.11

WLAN standard called WiFi. In wireless area ne

technologies allow mobility to the devices in local area without disconnecting from the

network. The applications of wireless area networks are in houses, offices, airports,

shopping markets, universities and others for provi

services to the end users.

Figure 10. Wireless Local Area Network (WLAN)

2.4. Wireless Channel

Wireless channel is a path in a spectrum being used for transmission of electromagnetic

signals. A defining characteristic of the mobile wireless channel is the variations of the

channel strength over time and over frequency (Tse & Viswanath

can be roughly divided into two types:

Large-scale fading– Large-scale fading is caused by path loss of signal due to distance and

shadowing by large objects such as buildings and hills. This occurs as the mobile moves

29

Wireless Local Area Network

Wireless Local Area Network (WLAN) (see Figure 10) is a short range network which

connects two or more devices in a closed circuit through access point. These networks are

mainly used for providing internet access to the connected devices using the IEEE 802.11

WLAN standard called WiFi. In wireless area network, spread-spectrum or OFDM

technologies allow mobility to the devices in local area without disconnecting from the

network. The applications of wireless area networks are in houses, offices, airports,

shopping markets, universities and others for providing free and on-demand internet

Wireless Local Area Network (WLAN).

Wireless channel is a path in a spectrum being used for transmission of electromagnetic

signals. A defining characteristic of the mobile wireless channel is the variations of the

over time and over frequency (Tse & Viswanath 2005). The va

can be roughly divided into two types:

scale fading is caused by path loss of signal due to distance and

shadowing by large objects such as buildings and hills. This occurs as the mobile moves

is a short range network which

connects two or more devices in a closed circuit through access point. These networks are

mainly used for providing internet access to the connected devices using the IEEE 802.11

spectrum or OFDM

technologies allow mobility to the devices in local area without disconnecting from the

network. The applications of wireless area networks are in houses, offices, airports,

demand internet

Wireless channel is a path in a spectrum being used for transmission of electromagnetic

signals. A defining characteristic of the mobile wireless channel is the variations of the

2005). The variations

scale fading is caused by path loss of signal due to distance and

shadowing by large objects such as buildings and hills. This occurs as the mobile moves

30

through a distance of the order of the cell size, and is typically frequency independent (Tse

et al. 2005).

Small-scale fading– Small-scale fading occurs due to the constructive and destructive

interference of the multiple signal paths between the transmitter and receiver. This occurs at

the spatial scale of the order of the carrier wavelength, and is frequency dependent (Tse et

al. 2005). Due to the variation in signal power, receiver tries to adopt the changing

characteristics of the channel e.g. changing the equalizer parameter. However if changes

are too fast, such as driving on a highway, receiver can’t adopt fast enough and hence the

transmission error probability can be dramatically increased.

Large-scale fading is more relevant to issues such as cell-site planning whereas small-scale

multipath fading is more relevant to the design of reliable and efficient communication

systems (Tse et al. 2005).

Figure 11 compares short term and long term fading.

Figure 11. Short term and long term fading (Schiller 2003).

2.4.1. Wireless Channel Physical Modeling

The radio propagation of electromagnetic waves between transmitter and receiver is

characterized by the presence of multipath due to various phenomena such as reflection,

refraction, scattering, and diffraction. The study of wave propagation appears as an

important task when developing a wireless system (El Zein 1993). The performance of

31

communication systems depends on the propagation medium and the physical modeling of

antenna. For broadband systems, the analysis is usually made in the frequency domain and

the time domain which allows measuring the coherence bandwidth, the coherence time, the

respective delay spread, and Doppler spread values. Coherence distance and wave direction

spread are also used to highlight the link between propagation and system, in the space

domain. Table 1 lists details for radio channel parameters.

Table 1. Radio Channel Parameters (R H Katz. 1994).

In USA, the Federal Communication Commission (FCC) has limited the cellular

communications in one of three frequency bands, one around 0.9 GHz, one around 1.9

GHz, and one around 5.8 GHz. The wavelength λ of electromagnetic radiation at any

given frequency f is given by fc /=λ , where smc /103 8∗= is the speed of light (Tse et

al. 2005). The wavelength in these cellular bands is a fraction of a meter, so to calculate the

electromagnetic field at a receiver, the locations of the receiver and the obstructions would

have to be known within sub-meter accuracies. Thus, the spatial and temporal properties of

the channel with accurate measurements are necessary for the design of broadband multi-

antenna systems with a choice of suitable network topology.

2.4.1.1. Free space, fixed transmit and receive antenna

Fixed transmit and receive antennas model works in a similar fashion as wired

communication model works, where signal is viewed as simply a voltage or current

waveform. In this case, in a far field, the electric field and magnetic field at any given

location are usually perpendicular and proportional to each other and to the direction of

propagation from the antenna. Therefore, it is sufficient to know only one of them.

32

In response to a transmitted sinusoid ftπ2cos , the received waveform at fixed antenna point

),,(ϕθru = is then:

r

crtff
utfEr

)/(2cos),,(
),,(

−= πϕθα
 (1)

Where r represents the distance from transmitter antenna to receive pointu ,),(ϕθ

represents the vertical and horizontal angles from the antenna to u respectively. The

constant c is the speed of light, and),,(fϕθα is the product of the antenna patterns of

transmitter and receiver antennas in the given direction (Tse et al. 2005). Here, (1) is linear

in input and forms linear time invariant (LTI) channel. That is, the received waveform at u

in response to a weighted sum of transmitted waveforms is simply the weighted sum of

responses to those individual waveforms which doesn’t change frequency.

System function at point u is given by:

r

ef
fH

cfrj /2),,(
)(

πϕθα −

= (2)

 Where

[]ftj
r efHutfE π2)(),,(ℜ= (3)

And inverse Fourier transforms of)(fH is an impulse response of a channel.

2.4.1.2. Free space, moving antenna

A model, where receiver antenna becomes non-stationary with speed v in the direction of

increasing distance of transmitter antenna and changes its position with respect to timet , a

destination point is represented as),),(()(ϕθtrtu = and relative distance becomes

33

vtrtr += 0)(. Thus, the received electric field using (1) at the moving point)(tu is given

by:

[]
vtr

crtcvff
vtrtfEr +

−−
=+

0

0
0

/)/1(2cos),,(
)),,(,,(

πϕθαϕθ (4)

Where the sinusoid at frequency f has been converted to a sinusoid of frequency

)/1(cvf − and cfv /− is Doppler shift due to the motion of the observation point.

The channel is represented as linear time variant (LTV) that changes the frequency with

respect to times. The channel can be represented in terms of a system function followed by

translating the frequency f by the Doppler shift cfv /− , if the time varying attenuation in

the denominator of (4) is ignored. It is important to observe that the amount of shift

depends on the frequency f. Here it is not important that either transmitter or receiver or

both are moving. However, channel characteristics depend on a relative distance between

two antennas caused by the movement.

2.4.1.3. Reflecting walls, fixed antenna

In this model, the characteristics of channel and signal propagation depends on the multi

signal interference caused due to reflecting walls in the surroundings of fixed transmitter

and receiver antennas.

Figure 12. Illustration of the direct path and reflective path (Tse et al. 2005).

In Figure 12, transmitter antenna sends a sinusoidal signal ftπ2cos towards a fixed receiver

antenna where transmitted signal has two paths; direct and indirect. The indirect signal path

34

comes from the fixed reflecting wall that adds up to the direct path signal at receiver. The

electromagnetic field at the receive antenna is the sum of the free space field coming from

the transmit antenna plus a reflected wave coming from the wall. Assume that if the receive

antenna is absent; the perturbation of the field due to the antenna is represented by the

antenna pattern. An additional assumption here is that the presence of the receive antenna

does not appreciably affect the plane wave impinging on the wall (Tse et al. 2005). In this

situation, the intensity of the reflecting signal is same as a free space wave that would exist

on the opposite side of a large wall in case wall doesn’t exist (see Figure 13) which means

that the total intensity of the reflective signals is of length equal to the sum of distance from

transmit antenna to wall and then back to the receive antenna from wall, i.e., rd −2 .

Figure 13. Relation of the reflected wave to the wave without wall (Tse et al. 2005).

Considering both direct and reflected wave with the antenna gainα , equation (1) becomes:

rd

crdtf

r

crtf
tfEr −

−−−−=
2

)/)2((2cos)/(2cos
),(

παπα
 (5)

Where, phase difference between two waves is:

πππππθ +−=






−






 +−=∆)(
42)2(2

rd
c

f

c

fr

c

rdf
 (6)

On the basis of above equations, the interference of both signals can be either constructive

or destructive depending upon the phase value. If the phase value is integer multiple ofπ2 ,

the interference will be constructive that makes the signal strong at the receive antenna. On

35

the other hand, if the phase value is odd integer multiple of π then the received signal

becomes week due to destruction. The difference of the peak to low intensity of the signal

is referred as coherence distance and is denoted by:

4

λ=∆ cx (7)

Where fc /=λ is a wavelength of transmitted sinusoid.

2.4.1.4. Reflecting walls, moving antenna

Consider the above model with the assumption that the receive antenna starts moving

towards the large reflective walls at speedv . Figure 14 illustrates direct and reflected path.

Figure 14. Illustration of a direct and reflected path (Tse et al. 2005).

The movement of a receive antenna causes interferences between two signal waves and the

intensity of the receive signals starts either decreasing or increasing. The construction and

destruction of signals occurs due to the phase change and the phenomenon of variation in a

signal quality is called multipath fading. The time taken to travel from a peak to a valley is

fvc 4/ : this is the time-scale at which the fading occurs, and it is called the coherence time

of the channel (Tse et al. 2005).

Consider if the starting location of a receiver at time 0 is 0r and total distance is vtrr += 0

at timet , the received signal equation using (5) becomes:

36

[] []
vtrd

cdrtcvf

vtr

crtcvf
tfEr −−

−++−
+

−−=
0

0

0

0

2

)/)2(()/1(2cos)/()/1(2cos
),(

παπα

(8)

From the equation, Doppler shift effects can be easily seen from the direct and reflected

sinusoid signals where in the direct wave term at frequency)/1(cvf − , Doppler shift is

cfvD /1 −= and from the indirect wave at frequency)/1(cvf + , Doppler shift is

cfvD /2 = . The difference between 1D and 2D is called Doppler spread.

2.4.1.5. Reflection from a ground plane

In physical modeling of mobile systems, if transmit and receive antennas lies on a ground

plane in a way that the horizontal distance between the antennas is larger than the height of

both antennas from a ground plane then at certain distance r two waves; direct and

reflected from the plane starts to cancel each other (see Figure 15). In these kinds of

models, the difference in length of direct and reflected wave is directly proportional to1−r .

Figure 15. Illustration of direct and reflected path of ground plane (Tse et al. 2005).

In case, if receive antenna is moving in the opposite direction of transmit antenna, than

situation happens when the length difference 1−r between both the antennas becomes 0 due

to the increase in total distancer . As a result both direct and indirect signals become equal

and start canceling each other due to opposite phase. The electric wave at the receiver is

then attenuated as2−r , and the received power decreases as4−r (Tse et al. 2005). The

impact of this situation is important to consider in those areas where base-station

transceivers are placed on roads.

37

2.4.2. Input/output models of the wireless channel

In wireless communication, the behavior of input signal throughout the channel path is

usually affected by the involvement of different obstacles; specially buildings or hills. On

the basis of these multipath effects caused by reflection, diffraction or scattering, channel

can be modeled as linear-time varying system. In the following section, the characteristics

of linear-time varying model and discrete-time varying model derived from continuous-

time channels will be reviewed.

2.4.2.1. Wireless channel as a linear-time varying system

Wireless channels behavior changes depending on the spatial attributes of the transmitter,

receiver and environmental factors. If all elements of the communication are stationary then

the channel becomes linear-time invariant channel while on the other hand, if any of the

element of wireless communication starts moving with respect to times then channel

becomes linear-time variant channels in which attenuation factors of transmitter and

receiver and propagation delay changes as time passes.

In linear-time variant channel, if the input signal is fttx π2cos)(= then the received signal

can be written as:

∑ −=
i ii tftxtfáty)),((),()(τ (9)

Where),(tfái and),(tfiτ are attenuation and propagation delay respectively from

transmitter to receive antenna at path i from n available paths. In practical scenario,

attenuation and propagation delays are slow varying function of frequencyf . These

variations follow from the time- varying path lengths and also from frequency-dependent

antenna gains (D Tse & P Viswanath. 2005), therefore if the frequency from linear-time

variant system model is omitted then (9) becomes:

38

∑ −=
i ii ttxtáty))(()()(τ (10)

Due to the linear nature of the input/output system, the complete system equation in terms

of impulse response of a channel can be defined in following manner:

∫
∝

∝−

−= τττ dtxthty)(),()((11)

Where),(th τ is an impulse response at time t for the input signal transmitted atτ−t .

Alternatively, the expression for the impulse response from (11) can be given as:

∑ −=
i

ii ttth))(()(),(ττδατ (12)

In special case when transmitter, receiver and all environmental reflectors becomes

stationary where attenuation)(tái and propagation delay)(tiτ don’t depend on time than

the equation of impulse response),(th τ for the resulting linear-time invariant systems for

the input signal fttx π2cos)(= can be written as:

∑ −=
i

iih)()(ττδατ (13)

Considering the time-varying impulse response),(th τ , the time-varying frequency response

can be derived as:

∑∫
−

∝

∝−

− ==
i

tfj
i

fj ietdethtfH)(22)(),();(τπτπ αττ (14)

Usually linear-time invariant channels reduce frequency response in a system. One can

overcome this issue by considering the channel as a slow varying function of time t with

39

frequency response);(tfH at each fixed timet . In this case, time t at which channel

varies becomes much longer than the delay spread, thus these types of channel can be

called as underspread channels.

2.4.2.2. Baseband equivalent model

Normally, in mobile communication data is transmitted using passband signal from sender

to receiver within a frequency range[]cWfWf cc /,2/ +− . But other processing including

coding/decoding, modulation/demodulation, compression/decompression, synchronization

etc at each terminal is happened in a baseband signal. Usually, transmission signal is up-

converted from baseband to passband at receiver before sending on the transmission

medium and at receiver down-converted from passband to baseband before processing.

Therefore understanding the conversion process of passband and baseband signal is crucial

in telecommunication arena.

If the passband signal is)(ts with Fourier transform)(fS and frequency band limited to

[]cWfWf cc /,2/ +− , then baseband equivalent signal)(tsb can be represented as:



 +=
0

)(2
)(c

b

ffS
fs

0

0

≤+
>+

c

c

ff

ff
 (15)

The factor of 2 is quite arbitrary but chosen to normalize the energies of)(ts and)(tsb

to be the same.)(tsb is band-limited in []cWW /,2/− (Tse et al. 2005). Figure 16 shows

relationship between passband spectrum and baseband equivalent.

40

Figure 16. Passband spectrum and baseband equivalent Relationship (Tse et al. 2005).

Given baseband signal)(tsb , passband signal can be constructed with the following

observation:

)()()(2 *
cbcb ffSffSfS −−+−= (16)

When taking the Fourier transform:

[] []tfj
b

tfj
b

tfj
b

ccc etsetsetsts πππ 22*2)(2)()(
2

1
)(ℜ=+= − (17)

The complete realization of conversions (up and down) for passband and baseband is

illustrated in Figure 17.

Figure 17. Illustration of up-conversion followed by down-conversion (Tse et al. 2005).

Figure 18 relates baseband transmitted signal to baseband received signal.

41

Figure 18. Baseband transmitted signal to baseband received signal(Tse et al. 2005).

2.4.2.3. A discrete-time baseband model

Finally, a discrete-time channel can be derived from continuous-time channel using

sampling theorem technique. For the input waveform with a band limited toW , the

baseband equivalent has the following form with the band limited to 2/W :

[]∑ −=
n

b nWtcnxtx)(sin)((18)

Where

[])/(Wnxnx b= and
t

t
tc

π
π)sin(

)(sin =

From the above baseband input signal, baseband output signal can be represented as:

[]∑ ∑ −−=
n i

i
b
ib ntWWtctanxty))((sin)()(τ (19)

Discrete-time channel equation then can be obtained by sampling the output baseband

signal at multiple of W/1 as:

[] []∑ ∑ −−=
n i

i
b
i WWmnmcWmanxmy))/((sin)/(τ (20)

42

Where

[])/(Wmymy b=

Equation (20) can be simplified by considering nml −= as:

[] []∑ ∑ −−=
n i

i
b
i WWmlcWmalmxmy))/((sin)/(τ (21)

All equations used are taken from (Tse et al. 2005).

2.5. Congestion Control and Queue Management

In last decade, communication systems have brought revolutionary changes in everyone’s

life where the benefits of wired and wireless networks are utilized for impressive countless

quality of services in different areas. With communication revolution, the speed and

capacity of various components in versatile networks such as transmission media, switches

and routers have been drastically increased. Also the number of users and traffic flow has

reached to a new sky level which makes communication system more complicated and

diversified (Koo, Ahn &Chung. 2004).

In this case, the Quality-of-Services (QoS) is obligatory in wired and wireless Networks for

ensuring the integrity, reliability and security of the information from source to destination

in a fast and efficient way resulting in best-effort services for end users. Also performance

requirements in terms of throughput, delay, jitter and packet loss are essential for good

quality services. QoS enabled network provides various functions for improving packet

delivery performance such as rate controller, classifier, scheduler and admission control

(Koo et al. 2004). A sequential order in which packets are required to be processed is

handled through congestion control and queue management policies namely called as

43

Active Queue Management (AQM).

TCP and AQM are designed to work for both wired and wireless networks. In wired

networks, main reason for packet loss is network congestion while in wireless networks,

small bandwidth, mobile nature of the nodes and pure wireless links cause packet loss

(Dhadse & Chandavarkar 2014). In a network, congestion occurs when source message gets

time out or source receives three duplicate ACK messages. In this case, router is flooded

with messages and its queue gets over flown resulting in dropping last messages from

queue tail. This method is synchronized with all the connected nodes. Router informs nodes

about the congestion resulting nodes to reduce the data sending rate which may lead in low

link utilization. In this case, AQM helps in utilizing the underline network by properly

managing the queue and keeping the average queue size small which results in fewer

number of packet loss. In coming sections, different queue mechanisms used for congestion

control will be reviewed along with TCP design to handle the congestion control in wired

and wireless networks.

2.5.1. TCP Congestion Control

Transmission Control Protocol (TCP) is a standard set of rules used with Internet Protocol

(IP) to send data in form of packets from source computer to destination computer over the

internet. TCP is a controller which keeps track of the data divided into small junks called

packets and ensures end-to-end transmission of data, using certain routing algorithms,

format of the data, ordering and retransmission in case of failure (Bhargava, Bhargava,

Mathuria, Gupta & Jyotiyana 2013).

TCP Congestion Control mechanism is used to ensure the uninterrupted communication

and better utilization of network resources from source to destination. It provides window

based end-to-end flow control where on the receiving a message, receiver sends ACK

message back to sender to notify about correctly receiving a packet and sender updates the

congestion window size. A window size at the source is always proportional to the allowed

44

transmission rate. In case of congestions, TCP congestion control dissolves congestion by

asking distributed nodes to reduce window sizes. Sources then update the window sizes to

avoid more congestion, also congestion measures are updated by channel links. These

updated measures are feedback to sources using the link.

TCP Congestion Control Algorithms

First TCP congestion control algorithm was introduced to the TCP protocol stack in 1988

by VAN Jacobson followed by three other introduced until 1990 (Sun & Xiaoling. 2012)

including the slow start algorithm, congestion avoidance algorithm, fast retransmission and

fast recovery algorithms. These algorithms provide basic architecture of TCP flow control

and congestion control. Due to the emerging requirements in network transmission area,

researchers proposed and implemented various improvements including TCP Tohoe, TCP

Reno, TCP new Reno, TCP SACK (Selective Acknowledgement) and TCP Vegas. Table 2

shows different congestion avoidance methods:

Table 2. Congestion Avoidance Methods.

Variants of TCP Name of Algorithms
TCP Tahoe Slow start + Fast retransmission

TCP Reno Fast retransmission + Fast recovery (in
case of single packet loss)

TCP New Reno Fast retransmission + Fast recovery (in
case of multiple packets lost)

TCP SACK Fast Retransmission + Fast Recovery
(in case of retransmission of more than
one lost packet)

TCP Vegas New retransmission mechanism +
Modified slow start + New congestion
avoidance mechanism

Four TCP core congestion control algorithms are executed at source end and they belong to

source algorithms in terms of realization (Sun et al. 2012). These algorithms are using

45

adjustable parameters including congestion window (CWND), window slow start threshold

(ssthresh), delay (RTT) and overtime counter (RTO). In the following section, the core

algorithms used for TCP Congestion Control and set of rules with the parameters used by

these algorithms will be reviewed.

Slow Start and Congestion Avoidance

In slow start algorithm (see Figure 19), TCP uses ACK received from receiver to adjust

congestion window (CWND) size. At the start of TCP connection, it enters into a slow

start-up phase by setting CWND value to 1 for all the connected nodes in a network and

gradually increases CWND on getting successful ACK from sender. A threshold value is

set to 65535 bytes. On a certain condition when CWND reaches and overflow to threshold

value, TCP enters in a congestion avoidance phase.

Slow start and congestion avoidance algorithms (Bhargava et al. 2013):

• Declare congestion window (CWND) and bandwidth threshold (ssthresh) variables.

o Declare CWND, ssthresh

• Initialize variables.

o Initialize CWND = 1, ssthresh = 65535

• Increment CWND value on getting every successful ACK from receiver.

o CWND = CWND + 1

• On each RTT, increase CWND value exponentially.

o CWND = 2 x CWND

• Entering congestion avoidance phase when

o CWND >= ssthresh

• In congestion avoidance phase, reduce the ssthresh to half of CWND and initialize

CWND to 1

o ssthresh = CWND / 2

o initiaze CWND = 1

o Start

• Increases the CWND value linearly infractions until congestion avoidance phase is

over.

o CWND = CWND

Figure 19. Slow start congestion control

Rapid Retransmission and Recovery

In TCP, retransmission timeout counter (RTO) has impact on TCP performance such as it

has much bigger value then each packet round trip time (RTT) which results in long idle

time in case of real packet lost. In order to avoid such situation, a new

protocol is introduced which helps in avoiding the wait time instead retransmitting the lost

packet in quick and efficient manner. In general, when sender receives three same ACK

from receiver then it decides to retransmit a packet by consi

case, the threshold value is reduced to current congestion window, and CWND is reduced

to half of the original value. When lost packet retransmission is in progress, TCP does not

wait for RTT and start recovering data befor

recovery algorithm (see Figure 20

especially for large window.

46

initiaze CWND = 1

Increases the CWND value linearly infractions until congestion avoidance phase is

CWND + 1 / CWND

Slow start congestion control.

Recovery

In TCP, retransmission timeout counter (RTO) has impact on TCP performance such as it

has much bigger value then each packet round trip time (RTT) which results in long idle

time in case of real packet lost. In order to avoid such situation, a new retransmission

protocol is introduced which helps in avoiding the wait time instead retransmitting the lost

packet in quick and efficient manner. In general, when sender receives three same ACK

from receiver then it decides to retransmit a packet by considering it a lost packet. In this

threshold value is reduced to current congestion window, and CWND is reduced

to half of the original value. When lost packet retransmission is in progress, TCP does not

wait for RTT and start recovering data before getting RTT as it is a fast retransmission and

Figure 20). It allows high throughput under moderate congestion

Increases the CWND value linearly infractions until congestion avoidance phase is

In TCP, retransmission timeout counter (RTO) has impact on TCP performance such as it

has much bigger value then each packet round trip time (RTT) which results in long idle

retransmission

protocol is introduced which helps in avoiding the wait time instead retransmitting the lost

packet in quick and efficient manner. In general, when sender receives three same ACK

dering it a lost packet. In this

threshold value is reduced to current congestion window, and CWND is reduced

to half of the original value. When lost packet retransmission is in progress, TCP does not

e getting RTT as it is a fast retransmission and

under moderate congestion

47

Fast retransmission and recovery algorithms (Bhargava et al. 2013):

• On receiving three duplicate ACK in a row, set threshold value to current

congestion window.

o ssthresh = CWND

• Retransmit a missing packet

• Set congestion window using threshold value.

o CWND = ssthresh + 3

• On getting same duplicate ACK each time, increase congestion window by 1.

o CWND = CWND + 1

• In case of non-duplicate ACK arrives, set congestion window value using threshold

and continue with a linear increase such as congestion avoidance.

o CWND = ssthresh

Figure 20. Fast retransmission and recovery algorithm.

2.5.2. Queue Management

In communication networks, hosts understand the behavior of congested router either by

time-out occurs and sender receives series of same ACK from receiver. In this case, the

network hosts adjust the data sending rate to reduce the network congestion. At the same

time, a better queue management is required at router to ensure a free and fare handling of

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

Retransmit
packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver

48

network packets coming from all network nodes. A traditional queue management process

works in a way that when there is network congestion and queue is filled, router drops

packet from tail of a queue to overcome the congestion. Router also notifies all the

connected nodes about the congestion and in a result all nodes reduces the data sending rate.

However, this approach causes Lock out and full Queue problem (Dhadse &Chandavarkar

2014). To avoid these problems, new queue management algorithms known as Active

Queue Management have been introduced to ensure better and fair queue management for

all nodes in a network.

The main goal of a queue management in network systems is to increase the throughput as

well as decrease the average packet loss and end-to-end delay. In the following section, the

definitions of different key indicators for a good network system will be briefly described.

Queue is a place in a system, where packets arrive for a service, wait for a service if not an

urgent packet, and leave the system on getting served. In principle, queuing system is

defined by four basic characteristics in networks such as arrival pattern of packets, service

pattern of schedules, queue discipline and system capacity.

Delay is a time elapsed between start and end point of a communication system. Total delay

is calculated from source to destination including all in between nodes and normally is

called end to end delay. Delay in a network can happen due to over congestion situation or

transmission delay of a network. In communication systems, delay insensitive applications

can be effected badly by a network delay such as audio or video applications which

requires minimum delay for better quality propagation at receiver.

Packet loss occurs when receiver does not receive intended packet from sender and hence

start recovering process. Packet loss affects the throughput of a network. Packets can be

lost when the queue in a network gets overflow, hence affecting the loss insensitive

applications. Some applications cannot perform well if end-to-end packet loss between

nodes is large relative to some threshold value, causing excessive packet loss effecting the

49

certain real time applications. (Koo et al. 2004.)

End-to-end delay is a sum of delays encountered at every point in a network from source to

destination. Each such delay consists of two constant components including transmission

delay at the node and propagation delay on the link to next node. (Koo et al. 2004.)

Active Queue Management

Active Queue Management (AQM) ensures reduce number of packets dropped in router by

keeping the average queue size small. Without AQM, more packets can be dropped when

queue overflows which results in bad quality of a system. In the following section, the

traditional TailDrop queue management along with few AQM policies will be reviewed

which helps in improving the overall performance of a network.

DropTail

DropTail simply revolves around first in first out (FIFO) queues without using any

additional parameters. In case of queue outburst, packets are always dropped from tail

which results in unfairness of a network. In DropTail, most of the queue shares are used by

few of the network nodes while others suffer from less utilization of a queue. This results in

Lock Out and Full Queue problem. The Lock Out is often resulted due to the

synchronization in a network. As the tail drop only informs connected nodes about the

congestion when queue is full and packet drop occurs, which results in sudden drop for

whole of a network and there is no intelligence sharing during the time when queue is not

full. In this case, handling the full queue size affects all the nodes casing full queue delays.

Random Early Detection

Random Early Detection (RED) is a mechanism of AQM which ensures better queue

management by deducting the congestion in advance. The objective of a RED is to

50

minimize the packet loss and queuing delay as well as avoid global synchronization of

sources to maintain high link utilization and remove biases against high data rate sources

(Koo et al. 2004). RED is not specifically designed for certain protocol; however it works

impressively for the protocols which perceive drops as indication of congestion. TCP is one

of those where RED performs well.

In RED, user is required to specify five parameters including maximum buffer size or

queue limit, minimum threshold, maximum threshold, maximum dropping probability and

wait factor used to calculate the average queue size (Dhadse et al. 2014). RED works in

three different zones.

• Normal operation zone - when average queue size (Qavg) is below minimum

threshold (minth), there is no packet drop.

• Congestion avoidance zone - when average queue size (Qavg) is between minimum

threshold (minth) and maximum threshold (maxth), packets are discarded with certain

probability Pa.

• Congestion control region - when average queue size (Qavg) is above maximum

threshold (maxth), all packets are dropped.

Here are formulas (Koo et al. 2004) for calculating the average queue size (Qavg) and

probability (Pa).

Average queue size:

Qavg = (1−Wq)·Qavg +Wq ·Q (22)

where Q is the current queue length and Wq is a weight parameter, ≤ Wq ≤ 1

Probability:

Pa = Pb / (1 − count · Pb) (23)

51

And

Pb = maxp / (maxth − minth) . (Qavg − minth) (24)

where maxp is a maximum value of Pb when average queue length Qavg is equal to maxth.

Other AQM policies include BLUE, REM and PI which ensures better congestion control

and fair queue management for QoS-enabled systems.

SFQ

SFQ uses large number of separate FIFO queues to provide fairness in queue management.

52

3. NETWORK SIMULATORS

Network simulation is an important technique in model era, in which researchers can model

hypothetical and real life network objects on computer and observe the behavior of the

underline networks by executing different experiments based on combination of various

parameters. A simulation can consist of different network entities including hosts,

interconnections between nodes, connecting devices such as router, switches and bridges,

configuration systems, mobility models and system level networking protocols.

In Network research area, implementation and deployment of complete test bed containing

various network nodes, connecting devices including routers, bridges and switches and data

links to validate and verify certain networking protocols is very expensive. In this case,

network simulators are cost and time effective solution to achieve the tasks through

different network simulations. Network simulators help researchers to test the design of

new networking protocols or change the existing networking protocols in a controlled and

reproducible manner (Pan & Jian 2008).

Network simulators are used by different researchers, industrial scientists and Quality

Assurance (QA) engineers for testing the performance and validity of different networking

protocols where visibility of a simulation is irrelevant. In other words, the main objective of

network simulation is to observe the characteristics and behavior of a network where one

can simulate, emulate and analyze the end results of network simulations. The network

research area is very wide where new revolutions as well as innovations are seen every day.

Different organizations work in parallel in different technologies and contribute in building

of the network communication platforms where new technologies are evolving every single

moment. In this case, the progressive growth in network simulators is very important so

that all the new technologies are immediately available and can be evaluated as soon as

these become standards for everyone. The growth in network simulators cannot be handled

by a single organization and contributions from different organizations is essential. It can

53

only be achieved by open platforms of all network simulators such that everyone can work

and contribute to the development of network simulators and make them up to date with the

recent technologies.

Authors (Gupta, Mangesh, Ghonge, Thakare & Jawandhiya 2013) listed some of the

advantages and disadvantages of network simulators given in Table 3:

Table 3. Network simulators advantages and disadvantages.

Advantages Disadvantages

• Inexpensive

• Help to gain the knowledge about the

improvements of a system

• Help to understand the working

principle of a system

• Testbed for evaluating new

communication protocols

• Finding bugs and troubleshooting in

advance

• Use of analytic and numerical

techniques for observing the behavior

of a system

• Partial simulation for observing parts

of full model

• Unclear model reflection to reality

• High simulation complexity in large

scale networks

• Slow compare to reality (1 minute of

real time can take hours in

simulations)

• Hard to determine right level of

model complexity

• Uncertain statistical results

In the following sections, the basic concepts, main features, languages and recent as well as

future developments of different open source network simulators will be assessed. At the

end, a comprehensive comparison between different network simulators will be provided

based on merits and demerits, platforms, cost, license, API, user interface and supported

network types.

54

3.1. Basic Concepts in Network Simulators

Understanding of basic concepts in network simulators is essential for everyone especially

for new researchers so that they can utilize maximum benefits of network simulators and

produce results approached near to reality. Here, some of the basic concepts to help readers

are listed.

3.1.1. Network Simulator and Simulation

Network simulator is a tool which provides user interface to the users for defining a model

using diverse network components. User interface can be a command line or graphical user

interface (GUI). Command line interface requires strong programming skills while GUI

requires basic knowledge for novel users. In principle, network simulators allow users to

model any real world model where users can tweak different network properties and

analyze the result. But in reality, network simulators are not perfect and models rarely

matches the real world models due to diversity, unpredictable and random nature involved

in real models. However, network simulators can provide relatively close results which

gives user a meaningful insight into the network under test and how the parameter changes

can affect its operation (Pan et al. 2008).

3.1.2. Network Simulation and Emulation

Network simulation is a process in which a researcher models range of real world models

using various network components including nodes, routers, switches, physical links or

packets and applies mathematical formulas for evaluation. The simulation experiments

conducted either online or offline in the controlled environments can be observed using

various combinations of parameters and configuration settings.

On the other hand, emulation is an extension to simulations where end systems such as

computers can be attached to simulation models through emulators and act as they are

55

connected to real network. A famous NS2 simulator can be used as a limited-functionality

emulator whereas WANsim is the typical bridge WAN network emulator.

3.1.3. Discrete Event Simulation

In network simulation, discrete-event simulation (DES) is a process of modeling the

operation of a system as discrete sequence of events in time where each event occurs at a

particular time causing a change in the state of a system (Borboruah & Nandi 2014). In this

process, continuous events are not possible between two consecutive events; hence state of

a system can jump between states on specific time intervals. Currently, most of the

available network simulators are based on discrete-event simulation.

3.2. Type of Network Simulators

Network simulators can be classified based on certain criteria such as they are free or

commercial, open source or proprietary and simple or complex.

3.2.1. Free and Commercial

Some of the network simulators are free and provide open source code for researchers. The

advantage of such simulators is that the source code is available to everyone for

contributions and researchers can analyze different parts of the software as well as improve

the functionality or introduce new features based on their requirements. On the other hand,

different people contribute and make amendments in a source code and there is no single

organization which governs the development, resulting in diversity and lack of systematic

and complete documentation which can lead to serious problems. Free and open source

network simulators include NS2, NS3, OMNET++, SSFNet and J-Sim.

56

Commercial network simulators are proprietary software and source code is not open to

anyone. Only organization which owns network simulator can manage the source code and

implement new features. All the users have to pay for a license to use their software as a

whole or as a partial system where user pays for specific packages. The advantage of

commercial network simulators is that they come with a well organized, systematic and up-

to-date documentation for end user which is consistently maintained by specialized staff in

a company. The famous commercial network simulators are OPNET and QualNet.

3.2.2. Simple and Complex

Currently, there are penalty of different network simulators available in market ranges from

simple to complex in nature. The basic functionality in simple simulators allows end users

to define simple topologies consisting of scenarios, specifying the nodes and links between

these nodes and generating traffic in a network. GUI enabled network simulators also make

life easy for end users and they can view underline simulations clearly and can define

network models using drag and drop features.

Contrary, complex network simulators provide more room to end users to play with core

networking protocols by providing them programmatic platform where only skilled

researchers can effectively work. These simulators are usually text based and provide less

interactive interface but allow advance customization to the source code.

3.3. Network Simulator 2

Network simulator 2 (NS2) is a most eminent object oriented, open source discrete-event

simulator used in communication research and development. NS2 and extension of NS

which was developed in 1989 based on REAL network simulator and evolved revolutionary

over the past couple of years (Pan et al. 2008). NS2 was originally developed at University

of California, Berkeley for focusing the simulation of IP networks on packet levels. NS2

57

project is now part of the Virtual InterNetwork Testbed (VINT) project which is

responsible for developing tools for network simulation research (Karl 2005). Currently,

NS2 is used by large group of organizations in academic research and non-profit groups all

around the world contributed various packages in a core base. In recent years, NS2

development is discontinued and NS3 has taken over the place.

NS2 covers a large number of networking applications, protocols, networking types,

network elements and traffic models. Researchers use NS2 for the development and

analysis of various protocols such as TCP and UDP, router queuing policies such as RED,

ECN and CBQ, unicast and multicast transmissions, multimedia applications and other

networking resources.

A platform for NS2 is based on two languages consisting of C++ and OTcl (Tcl script

language with object oriented extension developed at MIT). NS2 core is based on C++ and

NS2 frontend is based on OTcl. C++ is an efficient language for writing device drivers and

low-level applications, the purpose to use C++ in NS2 is to have an efficient mechanism to

execute simulations which increases the overall performance and reliability of the

simulations. On the other hand, C++ is not good and easy to use for graphical user

applications and here OTcl language helps researchers to cover this area.

Figure 21 illustrates a simplified user view for NS2.

Figure 21. Simplified NS2 user view (Pan et al. 2008).

58

In NS2, OTcl language is used to model networks by defining various network nodes, data

link connections, routers and network configurations such as queue management, routing

and congestion control. OTcl provides easy approach to modify and assemble different

components and change different parameters on the fly to the end users. Considering the

main principle of these languages, C++ covers the control part as well as OTcl covers data

part of the simulation implementation. NS2 uses C++ for the implementation and

compilation of the event scheduler and basic network component objects to reduce packet

and event processing time. Moreover, C++ is used to implement detailed network protocols

whereas OTcl is used for providing a controlled way to define different simulation

scenarios and researchers can schedule different events using the provided C++ event

scheduler classes.

In NS2, user defines simulation scenario using network nodes, protocols, network topology,

specific application and form of required output in OTcl script. OTcl interpreter links the

written script to compiled C++ components through OTcl linkage that creates one to one

match of OTcl object for each of C++ object. After the execution of the simulation, the

simulation results are captured in different ways such as in tracing files which are used to

analyze the results using different statistical and analytical techniques. NS2 comes with

network animator (NAM) shown in Figure 22 which displays the visual simulation to the

end users.

Figure 22. NAM (Karl 2005).

59

3.3.1. Architectural Overview

NS2 architecture (see Figure 23) consists of the following five parts:

Figure 23. NS2 architecture (Karl 2005).

Event scheduler is used to schedule simulation events on discrete time intervals, therefore is

known as discrete-event scheduler (DES). Event scheduling can be any type such as packet-

handling delay events or specific timers use for scheduling certain actions. Figure 24

shows important component if discrete event scheduler.

Figure 24. Discrete event scheduler (Karl 2005).

Network components are network elements defined as C++ class hierarchy in NS2. The

example of OTcl class hierarchy is given in the following figure:

Event

scheduler

Network

components
Tclcl

OTcl library
Tcl 8.0 script

lanuage

60

Figure 25. OTcl class hierarchy (Karl 2005).

In the OTcl class hierarchy (see Figure 25), TclObject is a super class of all the objects

whereas NsObject is a super class of Connector and Classifier. Connector class is a parent

of all the basic network components which have only one output data path whereas

Classifier class is a super class of advance network components which has multiple output

data paths.

Tclcl is used to implement OTcl linkage.

OTcl is an extension to Tcl/Tk scripting language (Karl2005) for object oriented

programming. It is used to define the prototype, configuration and control model of the

simulation. User can define event scheduler, the network topology and data links, traffic,

errors configurations and tracing options in NS2 OTcl script.

Tcl 8.0 is a scripting language used for writing OTcl script in NS2.

3.3.2. NS2 Models and Technologies

NS2 has a long list of supported models and communication technologies contributed by

various non-profit organizations around the globe. Though the development of NS2 is

clogged due to future NS3 but researches are still utilizing existing NS2 models for the

network research area.

Table 4 briefly illustrates the available models and technologies in NS2.

61

Table 4. NS2 models and technologies.

Category Model and technologies

Routing AODV, AODV-UV, ZRP, AOMDV, IS-IS, RCDS, DLSR, DMCR,

DYMO, UM-OLSR, ATM, HWMP

Wired, Wireless

and Mobility

ARP, HDLC, GAF, MPLS, LDP MAC: CSMA, Satellite Aloha,

Queuing: Drop Tail, RED, RIO, SRR, WFQ, REM, IEEE 802.11b,

IEEE802.15.4, IEEE 802.11 support, IEEE 802.11 PHY-MAC

design and implementation, IEEE 802.11 PCF, IEEE 802.11 PSM,

IEEE 802.11e EDSA and CFB simulation model, IEEE 802.11e

HCCA module, IEEE 802.15.4, IEEE 802.16 model, IEEE 802.16

model MIRACLE framework, IEEE 802.16 wireless mesh

networks, NS2-emulation extension (optimized for wireless

networks, IR-UWB, TDMA DAMA satellite support, WiMAX,

CRCN, UCBT Bluetooth, SUNSET underwater networking,

VANAT, CanuMobiSim, EURANE extensions, BonnMotion, a

java mobility scenario generator and analyzer, GPRS, BlueHoc, a

bluetooth extension, CIMS

Transport TCP Pacing, UDP, DCCP for wired and wireless networks, Linux

TCP Congestion Control for 12 different congestion control

algorithms (BIC, CUBIC, HighSpeed TCP, H-TCP, TCP-HYBLA,

NewReno, Scalable TCP, Vegas, Westwood, TCP Veno, TCP

Compound and TCP Low-Priority), Network Simulation Cradle,

TCP Westwood, Extensions to RTP code, Freeze-TCP, Multipath

TCP, Data Center TCP (DCTCP), TCP ex Machina, SCTP, TCP

Rate-Halving Algorithm, MFTP, SNACK

Other models and

technologies

Satellite networks, Topology and traffic generation, Differentiated

services, Integrated services, Scheduling and queue management,

Multicast, DTN, Application layer

62

NS2 development for new models is almost terminated and no notable enhancements have

been made during last one decade. However, NS2 is lightly maintained through its active

mailing list.

3.4. Network Simulator 3

Network simulator 3 (NS3) is a next generation simulator which aims to improve existing

system functionalities and network models of NS2 with the improved software core and

execution methodologies. NS3 is based on NS2, GTNets and YANS. NS3 development

work started in 2006 by NSF CISE and INRIA and the first official release was in 2008.

The main objectives behind the development of NS3 were to provide a different software

core written in C++ and python scripting interface in order to enhance the simulation

performance. Furthermore, other focused areas included the intention to realism and

software integration with more open source networking software.

Similar to NS2, NS3 is an open source discrete-event simulator and various organizations

and researchers are continuously striving to contribute new telecommunication models and

network protocols implementations, data link layers functionalities and tracing as well as

analytical methodologies. NS3 is not backward compatible and uses completely different

programming languages and platform for writing core libraries and network simulations

compared to NS2. However, a few of the existing NS2 models have already been

transformed to NS3 and are currently being used. NS3 allows researchers to study and

evaluate various internet protocols and large scale systems in a controlled environment.

In Figure 26, NS3 simulation architecture components are listed.

Figure 26. NS3 Simulation Architecture (

NS3 core is designed as C++ libraries which can be statistically as well as dynamically

linked to C++ main program for various network simulations. Python scripting interface is

used by users as a wrapper to encapsulate C++ modules which

programming in C++. For a simulation, user creates a traffic scenario by defining network

topologies consisting of various network components in either C++ or Python. A traffic

scenario is attached to C++ core where different NS3

program. The execution of a simulation can be viewed using

NetAnim. For the analysis, NS3 provides

These trace files can be plotted to various g

Authors (Chaudhary et al. 2012) categorized NS3 features in different sections such as

testbed integration, attribute system, tracing architecture and topology generation.

According to them, NS3 testbed integration enable

novel protocol stacks and emit network packets over real device drivers. NS3 attribute

system allows researchers to identify and configure values to the parameters in a simulator.

These values can be handled as default v

configured values provided at run time from console. Furthermore, NS3 tracing system uses

call back functions to separate tracing data completely from trace sink and enable

customization of the tracing or statisti

Authors also emphasizes on a topology building feature of NS3 which allows users to

design and model simulation scenario using number of stock topology objects implemented

63

NS3 Simulation Architecture (Rajankumar, Nimisha & Kamboj 2014

NS3 core is designed as C++ libraries which can be statistically as well as dynamically

linked to C++ main program for various network simulations. Python scripting interface is

used by users as a wrapper to encapsulate C++ modules which are easy to use compared to

programming in C++. For a simulation, user creates a traffic scenario by defining network

topologies consisting of various network components in either C++ or Python. A traffic

scenario is attached to C++ core where different NS3 models and libraries are linked to the

program. The execution of a simulation can be viewed using an animator, for example

analysis, NS3 provides a tracing mechanism which produces trace files.

These trace files can be plotted to various graphs using different graph tools.

2012) categorized NS3 features in different sections such as

testbed integration, attribute system, tracing architecture and topology generation.

According to them, NS3 testbed integration enables researchers to experiment various

novel protocol stacks and emit network packets over real device drivers. NS3 attribute

system allows researchers to identify and configure values to the parameters in a simulator.

These values can be handled as default values, hard coded in a simulator script or

configured values provided at run time from console. Furthermore, NS3 tracing system uses

call back functions to separate tracing data completely from trace sink and enable

customization of the tracing or statistics output without rebuilding the simulation program.

Authors also emphasizes on a topology building feature of NS3 which allows users to

design and model simulation scenario using number of stock topology objects implemented

2014).

NS3 core is designed as C++ libraries which can be statistically as well as dynamically

linked to C++ main program for various network simulations. Python scripting interface is

easy to use compared to

programming in C++. For a simulation, user creates a traffic scenario by defining network

topologies consisting of various network components in either C++ or Python. A traffic

models and libraries are linked to the

animator, for example

tracing mechanism which produces trace files.

2012) categorized NS3 features in different sections such as

testbed integration, attribute system, tracing architecture and topology generation.

s researchers to experiment various

novel protocol stacks and emit network packets over real device drivers. NS3 attribute

system allows researchers to identify and configure values to the parameters in a simulator.

alues, hard coded in a simulator script or

configured values provided at run time from console. Furthermore, NS3 tracing system uses

call back functions to separate tracing data completely from trace sink and enable

cs output without rebuilding the simulation program.

Authors also emphasizes on a topology building feature of NS3 which allows users to

design and model simulation scenario using number of stock topology objects implemented

in C++ libraries. NS3 Stock obj

topologies.

Figure 28 illustrates NS3 features in end to end simulation starting from reason question to

simulation visualization and analysis.

Figure 27. NS3 Features (Chaudhar

3.4.1. Architectural Overview

NS3 Internal architecture consists of various components and

components in detail:

Figure 28. NS3 Internal Architecture

64

in C++ libraries. NS3 Stock objects include trees, meshes, stars and other random

illustrates NS3 features in end to end simulation starting from reason question to

ion visualization and analysis.

NS3 Features (Chaudhary et al 2012).

Architectural Overview

NS3 Internal architecture consists of various components and Figure 28 illustrates these

NS3 Internal Architecture.

ects include trees, meshes, stars and other random

illustrates NS3 features in end to end simulation starting from reason question to

illustrates these

65

The NS3 core contains all the common components used across all protocols, hardware and

environmental models. NS3 network consists of fundamental network objects including

packets and nodes. In addition, other network layer components including address types,

queues and sockets also belong to NS3 network. NS3 core and network are two basic

platform components which are used not only in all network simulations but also in other

simulations as well. Other components such as internet, mobility, protocols, applications,

devices and propagations are subclasses of core components. Helper classes are wrappers

which encapsulate low level complex API calls for easy use. These classes provide

convenient ways for python scripts where NS3 core libraries can be imported using these

helper classes.

Figure 29 exemplifies NS3 IP stack architecture showing various components working in

end-to-end communication:

Figure 29. NS3 IP Stack Architecture.

In NS3 IP stack architecture, nodes are entities which can be static or have mobility nature.

These nodes contain network devices which transfer packets over a channel over physical

layer and data link layer phase. Network protocols such as IP and ARP are managed at

network layer whereas transport protocols such as TCP and UDP are supported at transport

layer. Network simulation applications are written by end users at application layer. From

sender to receiver, data travels on certain channels and all application layers are traversed

in reverse order at receiver.

66

NS3 testbed supports real system integration with the network simulation and Figure 30

shows brief details for NS3 testbed:

Figure 30. NS3 Testbed.

NS3 interconnects virtual machines on real machines and testbed interconnects NS3 stacks.

For simulation visualization, NS3 uses various tools such as NetAnim, ns-3-viz, pyviz and

iNSpect. Most of these tools are still under development. Figure 31 shows NetAnim

interface which is most commonly used tool in NS3 community:

Figure 31. NetAnim (NetAnim from ns-3 wiki).

67

NetAnim is based on QT 4 toolkit developed by George F Riley which uses XML trace

files collected from simulation and animates the results in offline mode.

3.4.2. NS3 Models and Technologies

Table 5 illustrates the available model and technologies in NS3.

Table 5. NS3 Models and Technologies.
Category Model and technologies

Routing NAT, BGP, OSPF, RIP, IS-IS, PIM-SM, IGMP, Static (Dijkstra)

unicast, Static multicast, DSDV, Global (link state), Nix-vector, DSR,

MANET, OLSR, AODV, VANET

Wired, Wireless

and Mobility

IEEE 802 physical layers, New 802.11 model, Wifi 802.11 links, Mesh

802.11s, IEEE 802.11 variants (mesh, QoS), WiMAX 802.16, TDMA,

CDMA, , GPRS, CSMA, Bridge (802.1D Learning), PPP, Zigbee,

MPLS, Rayleigh and Rician fading channels, GSM, Jakes composite

loss model, Friis, Hierarchical, Random direction, RWP, ns-2 Scen-

Gen

Transport TCP stack emulation (Linux, BSD), UDP, Additional high speed TCP

variants, DDCP

Other models

and

technologies

Sockets-like API, Traffic generator, Ping, Echo, Packet sink, Topology

input reader, Random number generator, Tracing, Unit test, Logging,

Callback, Error models

Many of the models and technologies for NS3 are under development at the moment and

major challenges for NS3 are open to solve. Experts from different research organizations

are voluntarily contributing to NS3 core stack on daily basis which means that new

components will be added to the NS3 stack in coming years.

68

3.5. OMNET++

Objective Modular Network Test-bed in C++ (OMNET++) is an open source, discrete-

event and component based network simulator with GUI support. It is available as free

software for academic and research use as well as it has commercial license for the

industry. OMNET++ has a better documentation and support for commercial license as

dedicated group of experts are paid and work in different areas such as research and

development, testing, support and documentation for end users. OMNET++ was developed

by András Varga at the Department of Telecommunications, Technical University of

Budapest (Erdei Márk et al) in 1997. The primary area of OMNET++ simulations is

communication networks; however its generic and a flexible architecture allows working

with other areas such as IT systems, queuing networks, hardware architectures and even

business processes models as well.

OMNET++ is based on component architecture where all components, also called as

modules, are written in C++. High level language (NED) is used to assemble these

components in simulation scenarios same as OTcl in NS2 and Python in NS3. The modular

architecture of OMNET++ supports simulation kernel to be embedded into various kinds of

different end user applications. Figure 32 illustrates OMNET++ graphical user interface.

Figure 32. OMNET++ GUI.

OMNET++ works for both wired and wireless networks and offers an Eclipse-based IDE, a

graphical runtime environment and a host of other tools. It also comes with the extensions

69

for real time simulation, network emulation, database integration, SystemC integration and

several other functions.

Here is a list of OMNET++ components in brief.

Simulation kernel library is written in C++ and consists of utility classes for random

number generation, statistics collection, topology discovery etc. These classes are used to

define simulation components including simple modules and channels which are assembled

and configured for simulation models in NED. Simulation programs using NED and C++

are written in Eclipse IDE for designing, running and evaluating simulations. Runtime user

interface environments such as Tkenv and Cmdenv are used for the simulation execution.

Users can use utilities such as makefile to build and run the simulation from command line.

OMNET++ has organized documentation and sample programs for learning and support

researchers.

� Simulation kernel library

� NED topology description language

� OMNET++ IDE based on Eclipse platform

� GUI for simulation execution, links into simulation executable (Tkenv)

� Command line user interface for simulation execution (Cmdenv)

� Utilities (makefile creation tool, etc

70

3.5.1. Architectural Overview

Figure 33 represents OMNET++ architecture of a simulation program:

Figure 33. OMNET++ Architecture.

In order to simulate any communication network in OMNET++, one has to follow certain

steps from a start to the end of the simulation experiment. The steps include defining a

model structure and network topology in NED file, writing active components in C++,

building a MakeFile and creating a simulation executable using make command.

Furthermore, writing simulation configurations and parameters in OMNetpp.ini file,

running a simulation executable and processing the results are the important steps in

OMNET++. User can also modify configuration parameters, build and run simulation

executable for any number of times.

 In Figure 34, summary of all the OMNET++ simulation steps using a flowchart is given.

71

Figure 34. OMNET++ Simulation Process.

For simulations, OMNET++ includes INET framework which is an open source

communication networks simulation package. It contains models for various wired and

wireless networking protocols including TCP, UDP, SCTP, IP, IPv6, Ethernet, PPP,

802.11, MPLS, OSPF and others. The INET framework uses the same concepts as

OMNET++ such as modules communicating by message passing. In INET, protocols are

designed as simple modules with external interface defined in a NED file whereas

implementation is provided in a C++ class with the same name. The INET framework is

helpful for the beginners and provides various example models for the simulations.

72

3.5.2. OMNET++ Models and Technologies

Table 6 provides a list of models and technologies available in OMNET++ INET

framework.

Table 6. OMNET++ INET Models and Technologies.
Category Model and technologies

Routing Link-state routing, OSPF (INET), OSPF (Quagga), BGP (INET), RIP

(INET), BGP (Quagga), RIP (Quagga), STP, RSTP, MANET:

AODV, DYMO-UM, DYMO-FAU, DSDV, DSR, DSR, OLSR

Wired, Wireless

and Mobility

PPP, Ethernet, IEEE 802.11 (INET), IEEE 802.1e, IEEE 802.11

(MF), IEEE 802.16e (WiMAX), IEEE 802.16 (WiMAX), IEEE

802.15.4 (LR-WPAN), MPLS, LDP, RSVP-TE, ARP, HIP, DHCP

Transport TCP (INET), TCP (lwIP), TCP (NSC), UDP, SCTP, RTP, RTCP

Other models

and

technologies

Traffic generators (CBR/VBR), HTTP traffic generators, File transfer,

Basic and advance video and voice streaming models, Sensor

networks, Vehicular networks, Cellular networks, Satellite networks,

Optical networks, Interconnection networks, NoCs, Cloud

Computing, HPC clusters and SANs

Due to GUI support and well organized libraries, OMNET++ is popular in academic and

industrial research for its extensibility and open source code. Online documentation is also

a good resource for beginners to start working with OMNET++.

3.6. Comparison of Network Simulators

In this section, NS2, NS3 and OMNET++ will be compared on the basis of programming

languages, platforms, memory management, performance, network models, and simulation

73

output. Merits and demerits of using these network simulators in communication network

research will also be explained.

All three network simulators core libraries are written in C++ language. In addition,

different scripting languages are used by each network simulator for network typology

design and implementation. Figure 35 highlights the common as well as uncommon

programming languages used by these simulators.

Figure 35. Network Simulators and Programming Languages.

In addition to programming languages, NS2 and NS3 provides command line interface to

the user whereas OMNET++ has a graphical user interface where user can drag and drop

different network elements to design the network topology on the fly.

Network simulators are supported by different operating system platforms and are not

available for all operating systems. Figure 36 provides details for platforms support in

NS2, NS3 and OMNET++.

Figure 36. Network Simulators and Platforms.

74

Memory management is critical in network simulations, therefore special considerations are

given in the design of NS2, NS3 and OMNET++. NS2 uses basic manual C++ memory

management functions to utilize memory in best possible way. However, these are old

methods ad NS2 cannot compete with newly developed network simulations when it comes

to memory management and utilization. NS3 uses basic manual C++ memory management

functions such as new, delete, malloc and free. It also uses new techniques such as

automatic de-allocation of objects using reference counting (track number of pointers to an

object) to deal with unused packets.

OMNET++ and NS3 are proved to be better in performance compared to NS2. In NS2, the

computation time consumed by interfacing Otcl interpreter with C++ is an actual overhead

which takes time and affects the performance of a simulation. In NS3, the aggregation

system helps to avoid storage of the unused parameters and reserved header spaces for

packets. NS3 and OMNET++ use a garbage collection which enhances the memory

utilization in the simulation of large scale networks without having effects on performance.

NS2 is the most widely used network simulator as it supports almost all network models.

Other simulators including NS3 and OMNET++ are in development phase and still lack

support for numerous number of network models. Table 7 lists all the supported models for

NS2, NS3 and OMNET++.

Table 7. Network Simulators and Supported Network Types.

Network Simulator Supported Network Types

NS2 • Wired networks

• Wireless Ad-Hoc networks

• Wireless managed networks

• Wired cum wireless networks

• Wireless sensor networks with the exception that it cannot

simulate problems of bandwidth or power consumption in these

75

networks

NS3 • Wired networks

• Wireless networks

• Wireless sensor networks

OMNET++ • Wired networks

• Wireless managed networks

For simulation visualization and analysis, NS2 includes a utility called Network Animator

(NAM) whereas NS3 comes with visualization utility programs known as ns3-viz, pyviz,

NetAnim. OMNET++ IDE provides a good support for the simulation visualization and

analysis within a tool. Other tools such as OMVis are also available for OMNET++

simulation analyses which focus on the intuitive and spatio-temporal visualization of

simulation data.

Merits and demerits of network simulators

NS2 merits

� NS2 is most used network simulator in communication network research due to a

rich collection of network models and technologies.

� NS2 supports parallel and distributed simulations.

� Over 50% of ACM and IEEE network simulation research papers cite the use of

NS2.

NS2 demerits

� Development is almost stopped and unmaintained for a long period of time.

� Lacking the adaptation of modern programming techniques such as smart pointers

and design patterns therefore has outdated code design.

76

� Network scalability is not well supported raising memory management and

performance issues for large scale networks.

� Simulation analysis is difficult due to use of complex tracing system where one

needs to parse the trace files to extract required results. Trace files contain

unnecessary information and sometimes miss the required information.

� Hard to find centralized documentation and tutorials, information is really

dispersed.

� Hard to debug the code due to use of bi-languages, especially for Otcl scripting

language.

NS3 merits

� Fast compared to NS2 as everything is designed in C++ with optional python

scripting support.

� NS3 is active open source project and is continuously under development for

enhancements and improvements under the supervision of experts working for

different organizations voluntarily.

� Integrations support for external tools such as random mobility generators, traffic

generators and others.

� Emulation mode supports integration with real systems which makes NS3

preferable to use.

� Attribute system allows end users to either configure simulation parameters within a

code or provide as command line arguments during run time which makes NS3

really flexible which helps to change the experiment outputs without building the

simulation.

� Good network scalability and suitable for large scale network simulations, resulting

in improved memory management and performance for network simulations.

� Use of modern programming techniques such as smart pointers and design patterns.

� Tutorials and well organized documentation is available.

77

� Easy debugging of a code due to full use of C++.

NS3 demerits

� NS3 is still underdevelopment and lacks a lot of models already available in NS2,

therefore is not recommended for all kind of network simulations.

� Limited GUI which makes network modeling very complex and time consuming

task.

� Even though NS3 is considered to be a next generation of NS2, but it is written

from scratch and therefore lacks backward compatibility with NS2.

OMNET++ merits

� Support simulations for large scale networks.

� Use modern programming techniques such as design patterns.

� Modular structure where modules are used as components and the definition is

separated from the implementation.

� Modules are reusable and can be used as combinations in various scenarios.

� Due to use of generic and flexible architecture, OMNET++ makes a successful use

in IT systems, queuing networks and hardware architectures along with

communication networks.

� GUI interface and design of NED is easy to use.

� Ready to use simulation library known as INET framework.

� Provide parallel simulation support to the end users.

� Good animation and tracing support for data visualization and analysis.

� Well maintained documentation, tutorials and support from a group of dedicated

experts hired for a single organization.

78

OMNET++ demerits

� OMNET++ is relatively new in growth and does not contain all the network models

with certain features, therefore in some cases not recommended for use.

� No contributions from external organizations therefore speed of new features

implementation and enhancement is slow compared to other open source network

simulators.

� Free academic license has fewer features compared to commercial license.

79

4. EXPERIMENTS AND ANALYSIS

This chapter contains details about the experiments and analysis conducted for NS2 and

NS3 network simulators. In the first part of the chapter, the performance evaluation metrics

is described which is used for number of versatile experiments. Second part illustrates the

details about the underlined system and software used for experiments. Third part lists all

the chosen models for experiments, whereas fourth part provides details about all the

experiments and analysis performed for NS2 and NS3 network simulators.

4.1. Performance Evaluation Metrics

Before proceeding further to experiments, the details about the performance evaluation

matrix used in experiments are described which provides information about the different

key indicators used to evaluate networking models in chosen network simulators. For the

evaluation, we have considered the productivity, responsiveness, utilization, packet loss,

congestion window utilization and queue management characteristics of a network. Table 8

provides details about the performance evaluation metrics used in the experiments.

Table 8. Performance Evaluation Metrics.

Category Metric Units

Productivity Node throughput

Network throughput

Packet delivery ratio

Mega bits per second (Mbps) /

Kilo bytes per second (KBps)

Packet delivery percentage

Responsiveness Average end-to-end delay Milliseconds (ms)

Utilization Congestion Control CWND

Losses Packet loss Packet lost percentage

Queue Management Queue drop (DropTail, RED, SFQ) Packet lost percentage

80

Node throughput is a measure of packets received at specific node.

Network throughput is a measure of packets received by all receiving nodes in a network.

Packet delivery ratio is a measure of a packets received at receiver compared to packets

sent from source node.

������ ��	
���
 ���
� =
��. �� ��������� ������� �� !

�� .�� ��������� ��"� �� !
 × 100 (25)

&ℎ��� (
) �)�*��� +��� �+�

) � ��)�
+��
�+

Average end-to-end delay is a measure of an average time difference between sending and

receiving time of all the received packets at destination nodes. It is calculated as follow:

,����-� �+� − �� − �+� ��	�
 =
∑ �0

1 2 3

�
 × 100 (26)

&ℎ��� �
) � ��	�
 4�� 5�����
 �+� 6
) ����	 ����
��� 5�����)

Congestion control is used by TCP protocol to utilize the channel more appropriately for all

the connected nodes. It ensures the maximum utilization of a channel by gradually

increasing the packet sending rates until congestion is occurred in a network which results

in congestion avoidance phase. Congestion control window size is managed by source

nodes which increases or decreases the window size based on channel availability.

Packet loss is a measure of finding the difference between no. of packets sent by source

node and received by a destination node.

81

4.2. System and Software

All the experiments are performed on Linux system and latest software versions are used

for NS2 and NS3. The underlying system and software details are given in Table 9.

Table 9. System and Software.

System and Software Details

Operating system Linux Ubuntu 14.04 LTS

 Intel Core i5-4310U CPU @ 2.00GHz x 4

 64-bit

NS2 ns-allinone-2.35

NS3 ns-allinone-3.21

4.3. Network models

Four different networking models are chosen including two wired and two wireless

networking models. In the experiments, different scenarios are made using these models

and applied various algorithms and mathematical formulas in order to get various values

fulfilling the performance evaluation metrics. Table 10 provides the details about different

scenarios used in this thesis.

Table 10. Network Scenarios.

Network Scenario

Wired • S1 Star Network

• S2 Star Network and Large Simulation Time

• S3 Star Network and Queue Types

Wireless • S1 Simple Ad-hoc Network

• S2 Complex Ad-hoc Network

82

4.4. Simulations

In the following sections, the results about all the simulation experiments with appropriate

analysis are provided and executed for wired and wireless networks using NS2 and NS3

network simulators. These results are based on comparative, qualitative and mathematical

analysis conducted using different mathematical formulas, communication standards and

programming algorithms.

4.4.1. Wired Network

4.4.1.1. S1 Star Network

Here a local area office network (see Figure 37) is selected where all the client computers

connect to server systems through router in a wired network.

Figure 37. Star Office Network (point to point).

83

Configurations

Star network: six computers, two routers, printer, fileserver and scanner
Simulation time: 100 second
Transport protocol: UDP, TCP
Applications: FTP, CBR
TCP agent: Newreno (e.g. Agent/TCP/Newreno etc)
UDP agent: UDP (e.g. Agent/UDP etc)
Sink: DelAck, Null (e.g. Agent/TCPSink/DelAck)
TCP packet size: 552
UDP packet size: 512
Queue: DropTail
Queue size: default 50
Computer (1-6): 1Mb 10ms
Router (1-2): 5Mb 50ms
Router2-printer: 1Mb 10ms
Router2-fileserver: 3Mb 10ms
Router2-scanner: 1Mb 10ms

Experiment execution

In this scenario, six network computers are connected to server systems including printer,

scanner and file server. These computers connect to LAN router which further connects to

server router. Server router connects all the network hosts to the printer, scanner and file

server. Communication in a network by passes through LAN and server routers. All the

computers in a network have 1Mb channel bandwidth with 10ms delay. LAN and server

routers have 5Mb bandwidth and 10ms delay. Channel bandwidth for printer and scanner is

1Mb with 10ms delay whereas fileserver shares 3Mb channel bandwidth with 10ms delay.

Computer A and Computer B use TCP transmission with FTP packet generation

application and connects to printer. Computer C and Computer D connects to scanner using

the same TCP transmission with FTP packet generation application. Computer E and

Computer F uses UDP with CBR application and connects to file server.

84

Figure 38. S1 Star simulation in NAM.

 In Figure 38, computer A, B, C and D uses TCP transmission, therefore the congestion

window configurations are configured for these nodes. The congestion window threshold is

8000 and packet size is 552 bits. Packet size for computer E and F is set to 512 bits with 1.0

mb date rate.

After implementing a NS2 TCL script and NS3 C++ application program, the simulation

was executed for 100 seconds.

Analysis

After the execution, we have calculated congestion window, node and network throughout,

average end-to-end delay, packet delivery ratio and average packet loss by running

different perl scripts for NS2 and NS3 output trace files.

Congestion Window (CWND)

First, NS2 and NS3 congestion window information for all the TCP sources in separated

graphs (see Figure 39 & Figure 40) is presented. These graphs show that the congestion

85

window for NS3 has higher values than NS2 congestion window ensuring a better

utilization of channel in NS3 compared to NS2.

Figure 39. S1 Star Network (Congestion Window NS2).

Figure 40. S1 Star Network (Congestion Window NS3).

For node by node analysis, the information for each node is combined into separate graphs

for NS2 and NS3 and results are shown in Figure 41.

Figure 41. S1 Star Network (Congestion Window NS2, NS3) – Computer A.

0

50

100
0

.1

6
.8

1
3

.5

2
0

.2

2
6

.9

3
3

.6

4
0

.3 4
7

5
3

.7

6
0

.4

6
7

.1

7
3

.8

8
0

.5

8
7

.2

9
3

.9

C
W

N
D

Congestion Window NS2

Computer A

Computer B

Computer C

Computer D

0

50

100

0
.1

6
.8

1
3

.5

2
0

.2

2
6

.9

3
3

.6

4
0

.3 4
7

5
3

.7

6
0

.4

6
7

.1

7
3

.8

8
0

.5

8
7

.2

9
3

.9

C
W

N
D

Congestion Window NS3

Computer A

Computer B

Computer C

Computer D

0

50

100

0
.1

7
.3

1
4

.5

2
1

.7

2
8

.9

3
6

.1

4
3

.3

5
0

.5

5
7

.7

6
4

.9

7
2

.1

7
9

.3

8
6

.5

9
3

.7

C
W

N
D

Congestion Window

NS2 Computer A

NS3 Computer A

86

Comparison for Computer A for NS2 and NS3 shows that NS3 congestion window

increases more efficiently than NS2 which is an indication of better channel utilization in

NS3 compared to NS2.

Comparison for other computers shows similar results as Computer A in the following

graphs (see Figure 42, Figure 43 and Figure 44).

Figure 42. S1 Star Network (Congestion Window NS2, NS3) – Computer B.

Figure 43. S1 Star Network (Congestion Window NS2, NS3) – Computer C.

Figure 44. S1 Star Network (Congestion Window NS2, NS3) – Computer D.

0

50

100

0
.1

7
.3

1
4

.5

2
1

.7

2
8

.9

3
6

.1

4
3

.3

5
0

.5

5
7

.7

6
4

.9

7
2

.1

7
9

.3

8
6

.5

9
3

.7

C
W

N
D

Congestion Window

NS2 Computer B

NS3 Computer B

0

50

100

0
.1

7
.3

1
4

.5

2
1

.7

2
8

.9

3
6

.1

4
3

.3

5
0

.5

5
7

.7

6
4

.9

7
2

.1

7
9

.3

8
6

.5

9
3

.7

C
W

N
D

Congestion Window

NS2 Computer C

NS3 Computer C

0

50

100

0
.1

7
.3

1
4

.5

2
1

.7

2
8

.9

3
6

.1

4
3

.3

5
0

.5

5
7

.7

6
4

.9

7
2

.1

7
9

.3

8
6

.5

9
3

.7

C
W

N
D

Congestion Window

NS2 Computer D

NS3 Computer D

87

Throughput

In this experiment, node and network throughput is calculated for all the receiving nodes in

NS2 and NS3 simulation. Node throughput is observed for Router LAN, Router Server,

Printer, File Server and Scanner, whereas network throughput is calculated for the whole

network and compared for NS2 and NS3. Mean and standard deviation for network

throughout are also calculated.

Figure 45. S1 Star NS2 Node throughput.

Figure 46. S1 Star NS3 Node Throughput.

NS2 and NS3 node throughput shows symmetry in both graphs given in Figure 45 and

Figure 46 for each node. However, NS3 node throughput has high figures compared to

NS3. In the graph, the maximum throughput can be seen at both routers. The maximum

throughput is further divided among all server nodes. In NS2, the throughput for routers is

around .050 Mbps whereas in NS3, it is approximately 0.56 Mbps. In the simulation, UDP

with CBR applications are used for File Server connections and TCP with FTP application

0

0.5

1

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Time

NS2 Node Throughput

Router LAN

Router Server

Printer

File Server

0

1

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Time

NS3 Node Throughput

Router LAN

Router Server

Printer

File Server

88

are used for Printer and Scanner connections. CBR rate was high around 1.0 Mbps and data

packet size was 512 which resulted in high throughput at File Server. On the other hand

FTP data rate was based on TCP congestion window with packet size 552 which resulted in

low throughput at Printer and Scanner.

For comparison between NS2 and NS3, the network throughput with mean and standard

deviation is calculated and results are shown in the Figure 47, Figure 48 and Table 11.

Figure 47. S1 Star Network Throughput Comparison.

Table 11. S1 Star Network Throughput Mean and Standard Deviation.

 Time count Throughput 7 (Mbps) Throughput 8(Mbps)

NS2 100 0.50675051 0.10414388

NS3 100 0.56155041 0.08715246

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Time

Network Throughput

NS2

NS3

89

Figure 48. S1 Star Network Throughput Mean and Standard Deviation.

Network throughput mean is higher for NS3 compared to NS2 which shows that NS3

provides more efficiency in transmitting data and allow better throughput for the underlying

network. At the same time, standard deviation for NS3 is lower than the NS2 and confirms

that NS3 network throughput has fewer variations and provides smooth communications as

compared to NS2.

Average End-to-End Delay

In a simulation, the average time elapsed between data sending and receiving for all the

TCP and UDP packets is calculated and compared the results for NS2 and NS3 (see Figure

49). Results show that TCP packets consume more time compared to UDP packets in order

to reach to the destination. In NS2, average end-to-end delay for TCP packets is 245.23

milliseconds and for UDP packets, it is 77.29 milliseconds. If the average end-to-end delay

is combined for TCP and UDP then the average end-to-end delay for whole network is

161.26 milliseconds. In NS3, the average end-to-end delay for TCP packets is 168.25 and

for UDP, it is 35.56. When combining TCP and UDP then average end-to-end delay for an

underlined network is 101.91. In comparison, NS2 has higher figures compare to NS3 for

0

0.1

0.2

0.3

0.4

0.5

0.6

Throughput mean (Mbps) Throughput Standard Dev. (Mbps)

Network Throughput Comparison

NS2 NS3

90

average end-to-end delay which makes NS3 better in terms of network delay compared to

NS2.

Figure 49. S1 Star End-to-End Delay for NS2, NS3.

Packet Delivery Ratio

In the experiments, the packet delivery ratio is measured for NS2 and NS3 and Figure 50

shows the results:

Figure 50. S1 Star Packet Deliver Ratio for NS2, NS3.

NS2 NS3

TCP 245.23 168.25

UDP 77.29 35.56

Both 161.26 101.91

0
50

100
150
200
250
300

T
im

e
 (

m
s)

End-to-End Delay

TCP UDP Both

NS2 99.46 99.92 99.7

NS3 99.75 99.85 99.8

99.2

99.4

99.6

99.8

100

P
a

ck
e

t
D

e
li

v
e

ry
 R

a
ti

o

Packet Delivery Ratio

91

Packet delivery ratio for TCP packets in NS3 is enhanced compared to NS2 while packet

delivery ratio for UDP packets in NS3 lack behind NS2 UDP packets. But as a whole

network, NS3 provides high packet delivery ratio 99.8% compared to NS2 99.7%. However

the difference is very small and findings are concluded that both NS2 and NS3 performance

in terms of packet delivery ratio is at same level.

Packet Loss

In comparison for packet loss (see Figure 51) in TCP and UDP packets, NS2 looses more

TCP packets than UDP packets compared to NS3. However, as a whole packet loss in NS2

is noticeable compared to NS3 which provides minimum packet loss percentage.

Figure 51. S1 Star Packet Loss for NS2, NS3.

In S1 Star experiment, NS3 produced enhanced and efficient results for all the performance

evaluation metrics compared to NS2.

4.4.1.2. S2 Star Network and Large Simulation Time

In this experiment, S1 Star office LAN network is simulated for large simulation time and

observed various performance evaluation metrics in details. Here, the most important

details are presented about the outcome for NS2 and NS3.

TCP UDP Both

NS2 0.55 0.08 0.29

NS3 0.26 0.16 0.2

0

0.2

0.4

0.6

P
a

ck
e

t
Lo

ss
 P

e
rc

e
n

ta
g

e Packet Loss

92

Configurations

Star network: six computers, two routers, printer, fileserver and scanner
Simulation time: 500 second
Transport protocol: UDP, TCP
Applications: FTP, CBR
TCP agent: Newreno (e.g. Agent/TCP/Newreno etc)
UDP agent: UDP (e.g. Agent/UDP etc)
Sink: DelAck, Null (e.g. Agent/TCPSink/DelAck)
TCP packet size: 552
UDP packet size: 512
Queue: DropTail
Queue size: default 50
Computer (1-6): 1Mb 10ms
Router (1-2): 5Mb 50ms
Router2-printer: 1Mb 10ms
Router2-fileserver: 3Mb 10ms
Router2-scanner: 1Mb 10ms

Experiment execution

In this scenario, six network computers are connected to server systems including printer,

scanner and file server. These computers connect to LAN router which further connects to

server router. Server router connects all the network hosts to the printer, scanner and file

server. Communication in a network by passes through LAN and server routers. All the

computers in a network have 1Mb channel bandwidth with 10ms delay. LAN and server

routers have 5Mb bandwidth and 10ms delay. Channel bandwidth for printer and scanner is

1Mb with 10ms delay whereas fileserver shares 3Mb channel bandwidth with 10ms delay.

Computer A and Computer B use TCP transmission with FTP packet generation

application and connects to printer. Computer C and Computer D connects to scanner using

same TCP transmission with FTP packet generation application. Computer E and Computer

F uses UDP with CBR application and connects to file server.

Computer A, B, C and D uses TCP transmission, therefore the congestion window

configurations are implemented for these nodes where congestion window threshold is

93

8000 with packet size 552 bits. Packet size for Computer E and F is set to 512 bits with 1.0

mb date rate.

After implementing a NS2 TCL script and NS3 C++ application program, the simulation

was executed for 500 seconds.

Analysis

After the execution, the congestion window, node and network throughout, average end-to-

end delay, packet delivery ratio and average packet loss are calculated by running different

perl scripts over NS2 and NS3 output trace files. As the network model is same as of S1

Star, few of the important results are presented.

Congestion Window (CWND)

In Figure 52 and Figure 53, congestion window is compared for Computer A and B in

NS2 and NS3 which shows that congestion window for nodes in NS3 sometimes touches

70 while the maximum boundary observed for NS2 nodes is approximately close to 60.

Figure 52. S2 Star Network (Congestion Window NS2).

0

20

40

60

80

0
.1

2
9

.6

5
9

.1

8
8

.6

1
1

8
.1

1
4

7
.6

1
7

7
.1

2
0

6
.6

2
3

6
.1

2
6

5
.6

2
9

5
.1

3
2

4
.6

3
5

4
.1

3
8

3
.6

4
1

3
.1

4
4

2
.6

4
7

2
.1

C
W

N
D

Congestion Window NS2

Computer A

Computer B

94

Figure 53. S2 Star Network (Congestion Window NS3).

Comparison for Computer A between NS2 and NS3 shows that the NS3 congestion

window increases more efficiently than NS2 which is an indication of a better channel

utilization in NS3 compared to NS2. Figure 54 provides node by node comparison.

Figure 54. S2 Star Network (Congestion Window NS2, NS3) – Computer A.

Comparison for other computers (see Figure 55) shows similar results as of Computer A in

the following graphs.

Figure 55. S2 Star Network (Congestion Window NS2, NS3) – Computer B.

0

50

100

0
.1

3
1

.4

6
2

.7 9
4

1
2

5
.3

1
5

6
.6

1
8

7
.9

2
1

9
.2

2
5

0
.5

2
8

1
.8

3
1

3
.1

3
4

4
.4

3
7

5
.7

4
0

7

4
3

8
.3

4
6

9
.6

C
W

N
D

Congestion Window NS3

Computer A

Computer B

0

50

100

0
.1

3
5

.9

7
1

.7

1
0

7
.5

1
4

3
.3

1
7

9
.1

2
1

4
.9

2
5

0
.7

2
8

6
.5

3
2

2
.3

3
5

8
.1

3
9

3
.9

4
2

9
.7

4
6

5
.5

C
W

N
D

Congestion Window

NS2 Computer A

NS3 Computer A

0

50

100

0
.1

3
8

.6

7
7

.1

1
1

5
.6

1
5

4
.1

1
9

2
.6

2
3

1
.1

2
6

9
.6

3
0

8
.1

3
4

6
.6

3
8

5
.1

4
2

3
.6

4
6

2
.1

C
W

N
D

Congestion Window

NS2 Computer B

NS3 Computer B

95

Considering the congestion window graphs, it is concluded that the congestion window in

NS3 provides better utilization of the channel compared to NS2 even with the large

simulation time experiments.

Throughput

In this experiment, the network throughput with mean and standard deviation is compared

for NS2 and NS3. The network throughput comparison shows that NS3 performs well

compared to NS2 for a large simulation time. Here the network throughput for NS2 is

approximately 0.2 times higher than NS2. Mean and standard deviation of the network

throughput are also measured.

Figure 56 illustrates results of network throughput in NS2 and NS3.

Figure 56. S2 Star Network Throughput Comparison.

In Table 12 and Figure 57, Network throughput mean is higher for NS3 compared to NS2

which shows that NS3 provides more efficiency in transmitting data for large simulation

time and allow better throughput for underlined network. At the same time, the standard

deviation for NS3 is lower than the NS2 and confirms that NS3 network throughput has

fewer variations and provides smooth communications compared to NS2.

0

0.2

0.4

0.6

0.8

1

2
9

5
7

8
5

1
1

3

1
4

1

1
6

9

1
9

7

2
2

5

2
5

3

2
8

1

3
0

9

3
3

7

3
6

5

3
9

3

4
2

1

4
4

9

4
7

7

T
h

ro
u

g
h

p
u

t
(M

b
p

s) Network Throughput

NS2

NS3

96

Table 12. S2 Star Network Throughput Mean and Standard Deviation.

 Time count Throughput 7 (Mbps) Throughput 8(Mbps)

NS2 500 0.501366 0.096775

NS3 500 0.561552 0.062542

Figure 57. S1 Star Network Throughput Mean and Standard Deviation.

Average End-to-End Delay

In the experiment, the average time elapsed for TCP and UDP data transmission is

calculated and compared for NS2 and NS3 (see Figure 58). The results show that with the

large simulation time, average end-to-end delay 100.92 ms is improved for NS3 compared

to small simulation time 101.91 ms in the previous experiment. On the other hand, the

average end-to-end delay for large simulation time has been increased to 163.18 ms

compared to the small simulation time which was 161.26 ms previous experiment.

0

0.1

0.2

0.3

0.4

0.5

0.6

Throughput mean (Mbps) Throughput Standard Dev. (Mbps)

Network Throughput Comparison

NS2 NS3

97

Figure 58. S2 Star End-to-End Delay for NS2, NS3.

Packet Delivery Ratio

In the experiments, the packet delivery ratio is calculated for NS2 and NS3. With a large

simulation time, the packet delivery ratio for TCP packets in NS3 is enhanced compared to

NS2 while the packet delivery ratio for UDP packets in NS3 lack behind the UDP packets

in NS2. But as a whole network, NS3 provides high packet delivery ratio 99.9% compared

to NS2 99.83%. However the difference is very small and it is concluded that both NS2 and

NS3 performance in terms of the packet delivery ratio is at same level. Figure 59 shows the

results for the packet delivery ratio.

Figure 59. S2 Star Packet Deliver Ratio for NS2, NS3.

NS2 NS3

TCP 249.09 163.87

UDP 77.26 37.97

Both 163.18 100.92

0
50

100
150
200
250
300

T
im

e
 (

m
s)

End-to-End Delay

TCP UDP Both

NS2 99.83 99.98 99.91

NS3 99.9 99.95 99.96

99.7

99.8

99.9

100

P
a

ck
e

t
D

e
li

v
e

ry
 R

a
ti

o

Packet Delivery Ratio

98

Packet Loss

In comparison for the packet loss in TCP and UDP packets, NS2 looses more TCP packets

than UDP packets compared to NS3. However, as a whole, the packet loss in NS2 is

noticeable compared to NS3 which provides a minimum packet loss percentage. The

comparison for a packet loss is given in Figure 60.

Figure 60. S2 Star Packet Loss for NS2, NS3.

With a large simulation time in S2 Star Network experiment, NS3 produced enhanced and

efficient results for all the performance evaluation metrics compared to NS2.

4.4.1.3. S3 Star Network and Queue Types

In this experiment, S1 Star office LAN network is simulated for different queue types

available in NS2 and NS3. These queue types include DropTail, RED and SFQ. For the

analysis, the congestion control window and packet loss are compared for all source nodes

in a network based on each queue type.

TCP UDP Both

NS2 0.17 0.02 0.09

NS3 0.1 0.05 0.04

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

P
a

ck
e

t
Lo

ss
 P

e
rc

e
n

ta
g

e

Packet Loss

99

Configurations

Star network: six computers, two routers, printer, fileserver and scanner
Simulation time: 100 second
Transport protocol: UDP, TCP
Applications: FTP, CBR
TCP agent: Newreno (e.g. Agent/TCP/Newreno etc)
UDP agent: UDP (e.g. Agent/UDP etc)
Sink: DelAck, Null (e.g. Agent/TCPSink/DelAck)
TCP packet size: 552
UDP packet size: 512
Queue: DropTail | RED | SFQ
Queue size: default 50
Computer (1-6): 1Mb 10ms
Router (1-2): 5Mb 50ms
Router2-printer: 1Mb 10ms
Router2-fileserver: 3Mb 10ms
Router2-scanner: 1Mb 10ms

Experiment execution

In this scenario, six network computers are connected to server systems including printer,

scanner and file server. These computers connect to LAN router which further connects to

server router. Server router connects all the network hosts to the printer, scanner and file

server. Communication in a network travels through LAN and server routers. All the

computers in a network have 1Mb channel bandwidth with 10ms delay. LAN and server

routers have 5Mb bandwidth and 10ms delay. Channel bandwidth for printer and scanner is

1Mb with 10ms delay whereas fileserver shares 3Mb channel bandwidth with 10ms delay.

Computer A and Computer B use TCP transmission with a FTP packet generation

application and connects to printer. Computer C and Computer D connects to a scanner

using same TCP transmission with a FTP packet generation application. Computer E and

Computer F uses UDP with a CBR application and connects to the file server.

100

Computer A, B, C and D uses TCP transmission, therefore the congestion window is

configured for these nodes. The congestion window threshold is 8000 and the packet size is

552 bits. The packet size for Computer E and F is set to 512 bits with 1.0 mb date rate.

For the experiment, three different queue types such as DropTail, RED and SFQ are used to

observe behavior of underlying network.

After implementing a NS2 TCL script and NS3 C++ application program, the simulation

was executed for 100 seconds.

Analysis

After the execution, the congestion window and packet loss are calculated for each TCP

source node. As the network model is same as S1 Star, results are provided (see Figure 61

to Figure 66) only for Computer A and Computer B using DropTail, RED and SFQ in NS2

and NS3.

Congestion Window (CWND)

DropTail

Figure 61. S3 Star Network (DropTail Congestion Window NS2).

0

10

20

30

40

0
.1

7
.3

1
4

.5

2
1

.7

2
8

.9

3
6

.1

4
3

.3

5
0

.5

5
7

.7

6
4

.9

7
2

.1

7
9

.3

8
6

.5

9
3

.7

C
W

N
D

Congestion Window NS2

Computer A

Computer B

101

Figure 62. S3 Star Network (DropTail Congestion Window NS3).

RED

Figure 63. S3 Star Network (RED Congestion Window NS2).

Figure 64. S3 Star Network (RED Congestion Window NS2).

0

10

20

30

0
.1

7
.8

1
5

.5

2
3

.2

3
0

.9

3
8

.6

4
6

.3 5
4

6
1

.7

6
9

.4

7
7

.1

8
4

.8

9
2

.5

C
W

N
D

Congestion Window NS3

Computer A

Computer B

0

10

20

30

40

0
.1

7
.8

1
5

.5

2
3

.2

3
0

.9

3
8

.6

4
6

.3 5
4

6
1

.7

6
9

.4

7
7

.1

8
4

.8

9
2

.5

C
W

N
D

Congestion Window NS2

Computer A

Computer B

0

5

10

15

20

25

30

0
.1

7
.8

1
5

.5

2
3

.2

3
0

.9

3
8

.6

4
6

.3 5
4

6
1

.7

6
9

.4

7
7

.1

8
4

.8

9
2

.5

C
W

N
D

Congestion Window NS3

Computer A

Computer B

102

SFQ

Figure 65. S3 Star Network (SFQ Congestion Window NS2).

Figure 66. S3 Star Network (SFQ Congestion Window NS3).

In this experiment, the congestion control window is compared for DropTail, RED and

SFQ and the results show that SQF is a fair queue which handles queue fairly among all the

connected TCP source nodes. DropTail is proved to be an unfair queue, which handles

packets from different source nodes in different ways. In case of congestion occurrence, it

always drops the packet from a tail of the queue causing blockage for a specific node data

for a long duration. The results shows that congestion window with RED queue is slightly

fair than DropTail where congestion window for different nodes have symmetry among all

the nodes.

0

10

20

30

40

0
.1

7
.3

1
4

.5

2
1

.7

2
8

.9

3
6

.1

4
3

.3

5
0

.5

5
7

.7

6
4

.9

7
2

.1

7
9

.3

8
6

.5

9
3

.7

C
W

N
D

Congestion Window NS2

Computer A

Computer B

0

20

40

60

0
.1

7
.3

1
4

.5

2
1

.7

2
8

.9

3
6

.1

4
3

.3

5
0

.5

5
7

.7

6
4

.9

7
2

.1

7
9

.3

8
6

.5

9
3

.7

C
W

N
D

Congestion Window NS3

Computer A

Computer B

103

In comparison with NS2 and NS3, SFQ is a best queue for handling network traffic.

However, sometimes it behaves strangely with one or more nodes where the congestion

window remains under a minimum congestion control threshold. On the other side, SFQ

increases the congestion window fairly and efficiently for all the other connected nodes

which results in an improved network performance by all means.

Packet Loss

For the queue analysis, packet loss is computed for each source node in a network using

DropTail, RED and SFQ queue types. Table 13 shows the computed results for NS2 and

NS3:

Table 13. S3 Star Packet Loss Results for DropTail, RED & SFQ.

DropTail

NS2

Comp. A Comp. B Comp. C Comp. D Comp. E Comp. F

Packets send 14445 14673 17390 17882 73120 72727

Packets drop 46 46 39 44 7964 16331

Packet drop % 0.32 0.31 0.22 0.25 10.89 22.45

NS3

Comp. A Comp. B Comp. C Comp. D Comp. E Comp. F

Packets send 15252 17252 14952 15247 83524 83495

Packets drop 42 50 37 27 6055 16073

Packet drop % 0.28 0.29 0.25 0.18 7.25 19.25

RED

NS2

Computer
A Computer B

Computer
C Computer D

Computer
E Computer F

Packets send 15640 14660 14973 14982 72939 72917

Packets drop 56 53 62 62 10784 13560

Packet drop % 0.36 0.36 0.41 0.42 14.79 18.6

NS3

Comp. A Comp. B Comp. C Comp. D Comp. E Comp. F

Packets send 16242 16298 16324 15834 83524 83495

Packets drop 50 47 57 67 11426 13810

Packet drop % 0.31 0.29 0.35 0.42 13.68 16.54

104

SFQ

NS2

Comp. A Comp. B Comp. C Comp. D Comp. E Comp. F

Packets send 30530 324 31152 14982 65880 65915

Packets drop 31 30 30 62 12172 12173

Packet drop % 0.1 9.26 0.1 0.41 18.48 18.47

NS3

Comp. A Comp. B Comp. C Comp. D Comp. E Comp. F

Packets send 32621 32542 32492 31985 67524 67622

Packets drop 33 33 32 67 11168 11043

Packet drop % 0.1 0.1 0.1 0.21 16.54 16.33

In the following section, the results are visualized with respect to different queue types and

network simulators:

Figure 67. S3 Star DropTail Packet loss for NS2, NS3.

Computer

A

Computer

B

Computer

C

Computer

D

Computer

E

Computer

F

NS2 0.32 0.31 0.22 0.25 10.89 22.45

NS3 0.28 0.29 0.25 0.18 7.25 19.25

0

5

10

15

20

25

P
a

ck
e

t
Lo

ss
 P

e
rc

e
n

ta
g

e

DropTail Packet Loss

105

In a DropTail (see Figure 67), Computer F is impacted mostly and encountered higher

packet loss in NS2 and NS3. Packet loss for Computer E is relatively less than Computer

A. The difference in the packet loss between Computer E and F is approximately 12% in

NS2 and NS3.

Figure 68. S3 Star RED Packet loss for NS2, NS3.

Using a RED queue (see Figure 68), the packet loss is relatively small compared to a

DropTail. The packet loss difference for Computer E and F is reduced to 4% in NS2 and

NS3 but still it is still not reasonable.

Computer

A

Computer

B

Computer

C

Computer

D

Computer

E

Computer

F

NS2 0.32 0.36 0.41 0.42 14.79 18.6

NS3 0.31 0.29 0.35 0.42 13.68 16.54

0

2

4

6

8

10

12

14

16

18

20

P
a

ck
e

t
Lo

ss
 P

e
rc

e
n

ta
g

e

RED Packet Loss

106

Figure 69. S3 Star SFQ Packet loss for NS2, NS3.

In Figure 69, SFQ has high improvements in terms of reduced differences in the packet

loss, especially for Computer E and F in NS2 and NS3.

Considering the figures and graphs, it is concluded that SFQ is proved to be an impressive

queue type and provides fairness in network simulation. However, sometimes it behaves

strangely in NS2 and drops packets for a certain node all the time. Example of such node is

Computer B in the NS2 simulation which has a very high packet loss percentage compared

to the other nodes in a network.

Computer

A

Computer

B

Computer

C

Computer

D

Computer

E

Computer

F

NS2 0.1 9.26 0.1 0.41 18.48 18.47

NS3 0.1 0.1 0.1 0.21 16.54 16.33

0

2

4

6

8

10

12

14

16

18

20
P

a
ck

e
t

Lo
ss

 P
e

rc
e

n
ta

g
e

SFQ Packet Loss

107

4.4.2. Wireless Networks

4.4.2.1. S1 Simple Office Ad-hoc Network

In this experiment, a simple wireless office ad-hoc network consisting of four nodes

connected on ad hoc basis is selected and implemented. These nodes are either laptops or

mobile devices as shown in Figure 70.

Figure 70. S1 Simple Office Ad-hoc Network.

Configurations

a) AODV with TwoRayGround

Define options
set val(chan) Channel/WirelessChannel; # channel type
set val(prop) Propagation/TwoRayGround; # radio-propagation model
set val(netif) Phy/WirelessPhy; # network interface type
set val(mac) Mac/802_11; # MAC type
set val(ifq) Queue/DropTail/PriQueue; # interface queue type
set val(ll) LL; # link layer type

108

b) AODV with FreeSpace

c) DSDV with TwoRayGround

set val(ant) Antenna/OmniAntenna; # antenna model
set val(ifqlen) 50; # max packet in ifq
set val(nodeCount) 4; # number of mobile nodes
set val(rp) AODV; # routing protocol
set val(x) 500; # X dimension of topography
set val(y) 400; # Y dimension of topography
set val(stop) 20; # time of simulation end

Define options
set val(chan) Channel/WirelessChannel; # channel type
set val(prop) Propagation/FreeSpace; # radio-propagation model
set val(netif) Phy/WirelessPhy; # network interface type
set val(mac) Mac/802_11; # MAC type
set val(ifq) Queue/DropTail/PriQueue; # interface queue type
set val(ll) LL; # link layer type
set val(ant) Antenna/OmniAntenna; # antenna model
set val(ifqlen) 50; # max packet in ifq
set val(nodeCount) 4; # number of mobile nodes
set val(rp) AODV; # routing protocol
set val(x) 500; # X dimension of topography
set val(y) 400; # Y dimension of topography
set val(stop) 20; # time of simulation end

Define options
set val(chan) Channel/WirelessChannel; # channel type
set val(prop) Propagation/TwoRayGround; # radio-propagation model
set val(netif) Phy/WirelessPhy; # network interface type
set val(mac) Mac/802_11; # MAC type
set val(ifq) Queue/DropTail/PriQueue; # interface queue type
set val(ll) LL; # link layer type
set val(ant) Antenna/OmniAntenna; # antenna model
set val(ifqlen) 50; # max packet in ifq
set val(nodeCount) 4; # number of mobile nodes
set val(rp) DSDV; # routing protocol
set val(x) 500; # X dimension of topography
set val(y) 400; # Y dimension of topography
set val(stop) 20; # time of simulation end

109

d) DSR with TwoRayGround

Experiment execution

In the first experiment, network consists of four wireless node including two laptops and

two mobile phones. These nodes were connected using TCP protocol with FTP

applications. Laptop A was connected to Laptop B and Mobile A was connected to Mobile

B through WLAN IEEE 802.11 network. All the nodes in a network have mobility

characteristics. The initial positions of the nodes were defined at time 0.0 and all nodes

were placed at a distance from each other. At time 0.1, 0.2, 0.3 and 0.4 Laptop A, Mobile

A, Mobile B and Laptop B started to move to a new destination point respectively. In the

middle of the simulations, both source laptop and mobile nodes became close to receiver

nodes and then moved away again gradually. The simulation area was set to 500 X 400 and

nodes moved within the range of 20 seconds. Figure 71 shows S1 simple office ad hoc

network in NAM.

Define options
set val(chan) Channel/WirelessChannel; # channel type
set val(prop) Propagation/TwoRayGround; # radio-propagation model
set val(netif) Phy/WirelessPhy; # network interface type
set val(mac) Mac/802_11; # MAC type
set val(ifq) CMUPriQueue; # interface queue type
set val(ll) LL; # link layer type
set val(ant) Antenna/OmniAntenna; # antenna model
set val(ifqlen) 50; # max packet in ifq
set val(nodeCount) 4; # number of mobilenodes
set val(rp) DSR; # routing protocol
set val(x) 500; # X dimension of topography
set val(y) 400; # Y dimension of topography
set val(stop) 20; # time of simulation end

110

Figure 71. S1 Simple Office Ad-hoc Network in NAM.

Analysis

For the evaluation of performance evaluation metrics, different configurations are used for

different propagation models such as TwoRayGround and FreeSpace for comparing the

results. A selected network is also analyzed for different routing protocols such as AODV,

DSDV and DSR. For the evaluation, the congestion window and network throughput are

calculated for NS2 and NS3 simulations.

TwoRayGround and FreeSpace

First, the simulation is executed for TwoRayGround and FreeSpace propagation model

using AODV routing protocol in NS2 and NS3, and results are compared.

Congestion Window (CWND) for TwoRayGround

The results show almost symmetrical results for NS2 and NS3 using AODV routing

protocol with TwoRayGround propagation model. However, to some extent, NS3 results

111

are better than NS2 (see Figure 72). In the simulation, the congestion window for nodes

started to increase as soon as nodes find valid route to the destination. In NS3, the route

was found around 5.75 milliseconds when the congestion window started to increase while

in NS2, nodes spent more time in the destination discovery and the congestion window

started to increase around 6.10 milliseconds.

Figure 72. S1 Simple Office Ad-hoc Network (CWND for TwoRayGround).

Congestion Window (CWND) for FreeSpace

Figure 73. S1 Simple Office Ad-hoc Network (CWND for FreeSpace.

As the definition of FreeSpace propagation model suggests, the congestion window for

AODV using a FreeSpace propagation model (see Figure 73) started to increase quite

earlier than TwoRayGround Model due to less error probability and channel noises. In

0

10

20

30

0
.1

1
.3

5

2
.6

3
.8

5

5
.1

6
.3

5

7
.6

8
.8

5

1
0

.1

1
1

.3
5

1
2

.6

1
3

.8
5

1
5

.1

1
6

.3
5

1
7

.6

1
8

.8
5

C
W

N
D

Congestion Window

NS2 Laptop A

NS2 Mobile A

NS3 Laptop A

NS3 Mobile A

0

20

40

60

0
.1

1
.3

5

2
.6

3
.8

5

5
.1

6
.3

5

7
.6

8
.8

5

1
0

.1

1
1

.3
5

1
2

.6

1
3

.8
5

1
5

.1

1
6

.3
5

1
7

.6

1
8

.8
5

C
W

N
D

Congestion Window

NS2 Laptop A

NS2 Mobile A

NS3 Laptop A

NS3 Mobile A

112

FreeSpace, nodes in a network discovered each other at start and the congestion window

started to increase in a quick fashion. After reaching 20, the congestion window for both

NS2 and NS3 progressed relatively in a slow speed until the simulation ended. In

comparison, NS2 and NS3 results are similar to each other. However, the NS3 congestion

window size becomes proportionally higher compared to NS2 as long as simulation time is

increased.

Throughput

In the experiment, the network throughput with mean and standard deviation is calculated

for NS2 and NS3 simulation using TwoRayGround and FreeSpace propagation models (see

Figure 74 and Figure 75).

Figure 74. S1 Simple Office Ad-hoc Network (Network Throughput TwoRayGround).

Figure 75. S1 Simple Office Ad-hoc Network (Network Throughput FreeSpace).

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
h

ro
u

g
h

p
u

t
(K

B
p

s) Network Throughput

NS2

NS3

0

50000

100000

150000

1 2 3 4 5 6 7 8 9 1011121314151617181920

T
h

ro
u

g
h

p
u

t
(K

B
p

s) Network Throughput

NS2

NS3

113

Using a TwoRayGround (see Figure 76) and FreeSpace (see Figure 77) propagation model

in NS2 and NS3, the network throughput mean is higher for NS3 compared to NS2 which

shows that NS3 provides more efficiency in transmitting data for a large simulation time

and allow better throughput for underlying network. However, the standard deviation for

NS2 using a FreeSpace model is better compared to NS3 and shows fewer variations in the

network throughput. In comparison between TwoRayGround and FreeSpace models, it is

evident that the FreeSpace propagation generates better throughput and fewer fluctuations

in a data transmission.

Figure 76. S1 Simple Office Ad-hoc Network (Mean & Std Dev. TwoRayGround).

Figure 77. S1 Simple Office Ad-hoc Network (Mean & Std Dev. FreeSpace).

NS2 NS3

Mean 3.76 4.34

Standard Dev. 2.47 2.23

0
2
4
6

M
e

a
n

 a
n

d
 S

td
 D

e
v

.

(K
B

p
s)

Network Throughput

NS2 NS3

Mean 10.73 11.14

Standard Dev. 0.32 0.33

0

2

4

6

8

10

12

M
e

a
n

 a
n

d
 S

td
 D

e
v

.
(K

B
p

s) Network Throughput

114

Routing Protocols

Next the behavior of different routing algorithms used in ad hoc networks is analyzed. For

the comparison, the simulation for AODV, DSDV and DSR routing protocols in NS2 and

NS3 was executed. In the experiments, the congestion control window and network

throughput are calculated and visualized.

Congestion Window (CWND) AODV

Figure 78. S1 Simple Office Ad-hoc Network (Congestion Window AODV).

Congestion Window (CWND) DSDV

Figure 79. S1 Simple Office Ad-hoc Network (Congestion Window DSDV).

115

Congestion Window (CWND) DSR

Figure 80. S1 Simple Office Ad-hoc Network (Congestion Window DSR).

When comparing the congestion windows for all three routing protocols, it is proved that

AODV performs better in comparison with DSDV and DSR. In AODV (see Figure 78),

the congestion window started to grow around 6 seconds. DSDV (see Figure 79)

performed inadequately and the congestion window started to increase around 15 seconds

of the simulation which shows it took more time to construct a routing table compared to

other two protocols. In terms of performance, DSR (see Figure 80) is proved to be a middle

level protocol compared to AODV and DSDV.

4.4.2.2. S2 Complex Office Ad-hoc Network

In the experiment, the complex wireless office ad-hoc network (see Figure 81) consisting

of eight moving nodes connecting with each other on ad-hoc basis is selected and

implemented. In addition, a stationary node is introduced in a network which reacts as a

central hub and supports fast and efficient routing connectivity among other nodes in a

network. All nodes are either laptops or mobile devices.

Figure 81. S2 Complex Office Ad

Configurations

a) AODV with TwoRayGround

Define options
set val(chan) Channel/WirelessChannel;
set val(prop) Propagation/TwoRayGround;
set val(netif) Phy/WirelessPhy;
set val(mac) Mac/802_11;
set val(ifq) Queue/DropTail/PriQueue;
set val(ll) LL;
set val(ant) Antenna/OmniAntenna;
set val(ifqlen) 50;
set val(nodeCount) 8;
set val(rp) AODV;

116

Office Ad-hoc Network.

AODV with TwoRayGround

Channel/WirelessChannel; # channel type
Propagation/TwoRayGround; # radio-propagation model
Phy/WirelessPhy; # network interface type
Mac/802_11; # MAC type
Queue/DropTail/PriQueue; # interface queue type
LL; # link layer type
Antenna/OmniAntenna; # antenna model

 # max packet in ifq
 # number of mobile nodes
 # routing protocol

propagation model
network interface type

interface queue type

max packet in ifq
number of mobile nodes

117

b) AODV with FreeSpace

c) DSDV with TwoRayGround

set val(x) 700; # X dimension of topography
set val(y) 600; # Y dimension of topography
set val(stop) 100; # time of simulation end

Define options
set val(chan) Channel/WirelessChannel; # channel type
set val(prop) Propagation/FreeSpace; # radio-propagation model
set val(netif) Phy/WirelessPhy; # network interface type
set val(mac) Mac/802_11; # MAC type
set val(ifq) Queue/DropTail/PriQueue; # interface queue type
set val(ll) LL; # link layer type
set val(ant) Antenna/OmniAntenna; # antenna model
set val(ifqlen) 50; # max packet in ifq
set val(nodeCount) 8; # number of mobile nodes
set val(rp) AODV; # routing protocol
set val(x) 700; # X dimension of topography
set val(y) 600; # Y dimension of topography
set val(stop) 100; # time of simulation end

Define options
set val(chan) Channel/WirelessChannel; # channel type
set val(prop) Propagation/TwoRayGround; # radio-propagation model
set val(netif) Phy/WirelessPhy; # network interface type
set val(mac) Mac/802_11; # MAC type
set val(ifq) Queue/DropTail/PriQueue; # interface queue type
set val(ll) LL; # link layer type
set val(ant) Antenna/OmniAntenna; # antenna model
set val(ifqlen) 50; # max packet in ifq
set val(nodeCount) 8; # number of mobile nodes
set val(rp) DSDV; # routing protocol
set val(x) 700; # X dimension of topography
set val(y) 600; # Y dimension of topography
set val(stop) 100; # time of simulation end

118

d) DSR with TwoRayGround

Experiment execution

In the experiment, the network consists of eight wireless nodes including four laptops and

four mobile phones. These nodes were connected using TCP protocol with FTP application.

In addition, one stationary node is added in a network which reacts as central hub and helps

all connected nodes for data transmission. Laptop A and B were connected to Laptop C and

D respectively and Mobile A and B were connected to Mobile C and D through WLAN

IEEE 802.11 network. All the nodes in a network have mobility characteristics except

stationary node in a center. The initial positions of the nodes were defined at time 0.0 and

all nodes were placed at a distance from each other. During the simulation, all the laptops

and mobile nodes moved from one position to another and tried to send messages to the

connected nodes. In the middle of the simulation, all source laptops and mobile nodes

reached near to receiver nodes and then stated to move away gradually. The simulation area

was set to 700 X 600 and nodes moved within area in the range of 100 seconds. Figure 82

illustrate S2 complex office ad hoc network in NAM.

Define options
set val(chan) Channel/WirelessChannel; # channel type
set val(prop) Propagation/TwoRayGround; # radio-propagation model
set val(netif) Phy/WirelessPhy; # network interface type
set val(mac) Mac/802_11; # MAC type
set val(ifq) CMUPriQueue; # interface queue type
set val(ll) LL; # link layer type
set val(ant) Antenna/OmniAntenna; # antenna model
set val(ifqlen) 50; # max packet in ifq
set val(nodeCount) 8; # number of mobilenodes
set val(rp) DSR; # routing protocol
set val(x) 700; # X dimension of topography
set val(y) 600; # Y dimension of topography
set val(stop) 100; # time of simulation end

119

Figure 82. S2 Complex Office Ad-hoc Network in NAM.

Analysis

For the evaluation of performance evaluation metrics, different configurations were used

for routing protocols such as AODV, DSDV and DSR with TwoRayGround propagation

model. The underlying network is analyzed for different routing protocols including

AODV, DSDV and DSR. For the evaluation, the congestion window and network

throughput are calculated for NS2 and NS3. However, the most important results conducted

in NS2 are provided here including the congestion control and network throughout.

AODV

First the simulation for an AODV routing protocol with TwoRayGround model in NS2 was

executed, and results are compared. Figure 83 shows simulation graph for the congestion

window and network throughput using xgraph.

120

Congestion Window (CWND)

Figure 83. S2 Complex Office Ad-hoc Network (Congestion Window AODV).

In a complex network with TwoRayGround propagation model, the network congestions is

observed at various points during the first and the last 20 seconds of the simulation. In the

simulation, mobile 3 (Laptop A) had maximum throughput around 95 seconds when all

other nodes were distance apart from other nodes and the network was used only by mobile

3 (Laptop A) and mobile 1 (Mobile A) nodes. Between 30 to 80 seconds, the congestion

window size for mobile 1 (Mobile A), mobile 2 (Mobile B) and mobile 4 (Laptop B) was

high ensuring the maximum network throughput during this time.

Throughput

In the experiment, the network throughput (see Figure 84) with NS2 simulation is

calculated for the whole network and results are compared.

Figure 84. S2 Complex Office Ad-hoc Network (Network Throughput AODV).

121

At the middle of a simulation, the network throughput using AODV routing protocol shows

high throughput for all the connected nodes. During this time, the nodes had minimum

distance to the other nodes. Also during the last couple of seconds, two nodes had high

throughput as other nodes were not transmitting at this time.

DSDV

Secondly, simulation for a DSDV routing protocol with TwoRayGround model in NS2 was

executed, and results are compared. Figure 85 and Figure 86 show the simulation graphs

for the congestion window and network throughput using xgraph respectively.

Congestion Window (CWND)

Figure 85. S2 Complex Office Ad-hoc Network (Congestion Window DSDV).

As discussed earlier that DSDV is worst among other routing protocols, the graph (see

Figure 85) shows that the congestion window for only mobile 1 (Mobile A) and mobile 2

(Mobile B) increased during the simulation at certain time. Other nodes could not find the

destination node information; hence congestion window for such nodes remained at the

initial value all the time.

Throughput

In this experiment, the network throughput in NS2 simulation is calculated for a network

and results are compared.

122

Figure 86. S2 Complex Office Ad-hoc Network (Network Throughput DSDV).

The network throughput using DSDV routing protocol reflects the congestion control

window size given above and shows that only two nodes were able to send data during the

whole simulation.

DSR

Thirdly, the simulation is executed for a DSR routing protocol with TwoRayGround model

in NS2, and results are compared. Figure 87 and Figure 88 show the simulation graphs for

the congestion window and network throughput using xgraph respectively.

Congestion Window (CWND)

Figure 87. S2 Complex Office Ad-hoc Network (Congestion Window DSR).

In a complex network with TwoRayGround propagation model, the network congestion

was observed at the middle of the simulation. At start, mobile 2 (Mobile A) and mobile 3

123

(Laptop A) had a high congestion window size allowing them to send packets at higher

speed. As long as other nodes in a network started to send data, the congestion occurred and

the congestion window for mobile 2 and mobile 3 were reduced to initial positions. During

the middle of the simulation, all nodes started to send data at same time which reflected on

the congestion window for all sending nodes. During the last 10 seconds, all the nodes

except mobile 1 (Mobile A) and mobile 3 (Laptop A) stopped to send data which resulted

to increase the congestion window size for mobile 1 and mobile 2.

Throughput

In this experiment, the network throughput is calculated in NS2 simulation. Network

throughput is calculated for a whole network and results are compared.

Figure 88. S2 Complex Office Ad-hoc Network (Network Throughput DSR).

The network throughput using DSR routing protocol reflects the congestion control

window size and shows that all the sending nodes were able to send data during the whole

simulation. During the middle of the simulation, the increase in a throughput for all the

sending nodes can be seen from the graph, whereas during the end of simulation time, only

two of the nodes where able to send data in a network.

124

Comparison AODV, DSDV and DSR

For comparison among routing protocols, mean and the standard deviation for these

simulations calculated and results are presented in Figure 89.

Figure 89. S2 Complex Office Ad-hoc Network (Comparison Network Throughput).

In the complex Office Ad-hoc Network with long simulation time, DSR routing protocol

generated the highest average network throughput compared to AODV and DSDV. On the

other hand, DSDV is proved to be a really poor routing protocol which gave a very

minimum average network throughput. In comparison, AODV is comparable with DSR

which performed effectively in the simulations. Considering the variations in throughput,

all three routing protocols are almost at the same level with the reasonable standard

deviation.

AODV DSDV DSR

Mean 6.1074 0.7647 7.368455

Std Dev. 2.66017 2.6706 2.74812875

0

1

2

3

4

5

6

7

8

M
e

a
n

 a
n

d
 S

td
 D

e
v

.
(K

B
p

s)

Comparison

125

5. CONCLUSION AND FUTURE WORK

After completing the experiment part and considering the theoretical part in this thesis, it is

concluded that use of network simulators in the field of communication systems is really

valuable and cost-effective. These simulators provide support for various real time models

with the possibility of customization which can be used to evaluate new emerging protocols

and technologies.

Comparing these simulators with respect to time and space complexity, NS3 is proved to be

the fastest due to use of C++ code and also requires less memory compared to NS2 which

uses abstract level OTCL programming language, requiring more resources during the

building and running process of a simulation. Use of OMNET++ is user friendly due to use

of built-in toolbox and drag and drop features which makes it preferable for researchers

with limited understanding of programming paradigm. In comparison for usage complexity,

NS2 is easy to use due to OTCL programming language compared to NS3 which requires

deep knowledge of C++ programming language features such as pointers, pointer functions,

inheritance, abstract data types and other programming features.

After running different simulations using performance evaluation metrics, it is concluded

that NS3 simulation time, and output values in all the simulations were better in

comparison with NS2. In wired network simulations, the experiments are executed for a

star network using TCP and UDP protocols with CBR and FTP applications where

congestion window, throughput, end-to-end delay, and packet delivery and drop ratios

resulted in higher and smooth values for NS3. The increase in the simulation time also

shows the improvements in NS3 results whereas NS2 performance decreases as soon as

simulation time is increased. In comparison to the transport layer protocol, UDP is fast and

consumes less time to reach the destination compared to TCP, resulting in a less end-to-end

delay in both NS2 and NS3. Comparing CBR with FTP applications, CBR produces higher

throughput due to the constant transmission rate.

126

In wireless simulation, same improved behavior is observed in NS3 compared to NS2

where the calculation of performance evaluation metrics resulted in better performance for

NS3. For the experiments, different propagation models are used such as TwoRayGround

and FreeSpace in simple and complex wireless office networks where FreeSpace resulted in

a better network throughput and less packet loss in a network ensuring a better overall

performance. In addition to propagation models, different routing protocols are evaluated

such as AODV, DSDV and DSR for both simple and complex office wireless networks.

From the results, it is concluded that AODV is more consistent in establishing connections

in a network and produces high network throughput. DSDV is worst in all which produces

minimum network throughput. DSR proved to be as close as AODV and produces similar

network throughput compared to AODV but it is not consistent in establishing routing

information resulting in a high end-to-end delay.

Considering all above, it is concluded that NS3 is a network simulator for future academic

use and in coming years it will fully replace NS2 due to the high performance, available

features, network models and documentation. On the other side, OMNET++ is leading and

recommended in commercial industries due to better use, support and documentation.

In the future, one can simulate the same experiments with OMNET++ and other network

simulators for comparing the results with NS2 and NS3. In this thesis, wired and wireless

networks are evaluated with LAN characteristics. In the future, performance evaluation

metrics can be executed for advanced communication technologies such as LTE, 3G, 4G,

WiMAX, COAP and ZigBee. One enhancement would be to combine the available wired

and wireless networks in this thesis to form a wired-wireless network, execute the

performance evaluation metrics and observe the behavior of various network simulators.

127

REFERENCES

Andersen, Rappaport & Yoshida (1995). Propagation Measurements and Models for

Wireless Communications channels. In: Communications Magazine, IEEE, 33:1, 42–

49.

Bestofmedia Team (2012). Network Hardware & Assembly: LAN 102. Available from

Internet <URL: http://www.tomsitpro.com/articles/local_area_network-

gigabit_ethernet-networking-nics-scott_mueller,2-263-4.html>.

Bhargava, Dr. Ritu Bhargava, Manish Mathuria, Shipla Gupta & Kamal Kumar Jyotiyana

(2013). Analysis of Different Congestion Avoidance Algorithms. In: International

Journal of Computer Networks and Wireless Communications (IJCNWC), 3:1, ISSN:

2250–3501.

Borboruah & Gypsy Nandi (2014). A Study on Large Scale Network Simulators. In:

Internal Journal of Computer Science and Information Technologies, 5:6, ISSN:

0975–9646.

Cox (1995). Wireless Personal Communications: What is it?. In: Personal Communications,

IEEE, 2:2, 20–35.

Dhadse &B R Chandavarkar (2014). Comparative Analysis of Queue Mechanisms with

Respect to Various Traffic in Wired-Cum-Wireless Network. In: Fourth International

Conference on Advanced Computing & Communication Technologies (ACCT), Feb.

2014, 8–9.

El Zein (2009). Propagation Channel Modeling for Emerging Wireless Communication

Systems. In: ACTEA 15–17 July.2009, Zouk Mosbeh, Lebanon, 457– 462.

128

Erdei, Wagner Ambrus, Sója Katalin & Székely Márk (2001). A Networked Remote

Simulation Architecture and its Remote OMNET++ Implementation. In: Proceedings

of the European Simulation Multiconference (ESM 2001), 7–9 June. 2001, Prague.

Available From Internet <URL:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.96.5033&rep=rep1&type=

pdf>

Fernandes & Michel Ferreira (2012). Scalable VANET Simulations with NS-3. In: Vehicular

Technology Conference (VTC Spring), 2012 IEEE 75th May. 2012, 1–9.

Flickenger (2007). Wireless Networking in the Development World. 3rd Ed. ISBN-13: 978-

1484039359. Available from Internet: < URL: http://wndw.net/pdf/wndw3-

en/wndw3-ebook.pdf>.

Goldsmith (2004). Wireless Communication. California: Stanford University. Available

from Internet: < URL: http://web.cs.ucdavis.edu/~liu/289I/Material/book-

goldsmith.pdf>.

Gupta, Mangesh M. Ghonge, Parag D. Thakare & Dr. P. M. Jawandhiya (2013). Open-

Source Network Simulation Tools: An Overview. In: International Journal of

Advanced Research in Computer Engineering & Technology (IJARCET), April.

2013 2:4, 1629–1635.

Ho, King K Leung, John W Polak & Rahul Mangharam (2007). Node Connectivity in

Vehicular Ad Hoc Networks with Structured Mobility. In: 32nd IEEE Conference on

Local Computer Networks (LCN 2007), 15–18 Oct. 2007, 635–642.

129

Ikeda, Elis Kulla, Leonard Barolli & Makoto Takizawa (2011). Wireless Ad-hoc Networks

Performance Evaluation Using NS-2 and NS-3 Network Simulators. In: International

Conference on Complex, Intelligent and Software Intensive Systems (CISIS), 30 June

– 2. July. 2011, 40–45.

Katz (1994). Adaptation and Mobility in Wireless Information Systems. In: Personal

Communications, IEEE, 1:1, 6–17.

Khan, Muhammad Amir, Hasbullah Halabi & Babar Nazir (2014). Recent open source

wireless sensor network supporting simulators: A performance comparison. In:

International Conference on Computer, Communications and Control Technology

(I4CT), 24 Sept. 2014, 324–328.

Khan, Sardar M. Bilal & Mazliza Othman (2012). A performance comparison of open

source network simulators for wireless networks. In: IEEE International Conference

on Control System, Computing and Engineering (ICCSCE), 23–25 Nov. 2012, 34–

38.

Koo, Seongjin Ahn & Jinwook Chung (2004). A Comparative Study of Queue, Delay and

Loss Characteristics of AQM Schemes in QoS-Enabled Networks. In: Computing and

Informatics, 22:2003, 317–335.

Li & Yu Wang (2007). Routing in Vehicular Ad hoc Networks: A Survey. In: IEEE

Vehicular Technology Magazine, June. 2007, 2:2, 12–22.

Micheal (2005). A Comparison of the Architecture of Network Simulators NS-2 and

TOSSIM. In: im Rahmen des Seminars: Performance Simulation of Algorithms and

Protocols,31 Jan. 2005. Available from Internent:

<URL:http://wing.nitk.ac.in/resources/Comparison.pdf>.

130

NS2 Documentation: The Network Simulator ns-2. Available from Internet <URL:

http://www.isi.edu/nsnam/ns/ns-documentation.html>.

NS3 Documentation: A Discrete-Event Network Simulator. Available from Internet <URL:

http://www.nsnam.org/documentation>.

OMNET++ Documentation: Discrete Event Simulator. Available from Internet <URL:

http://www.omnetpp.org/documentation>.

Pan & Raj Jian (2008). A Survey of Network Simulation Tools: Current Status and Future

Developments. St. Louis : Washington University, Tech. Rep. Available from Internet:

<URL: http://www.cse.wustl.edu/~jain/cse567-08/ftp/simtools/>.

Pandey & Vibhore Tyagi (2013). Performance Analysis of Wired and Wireless Network

using NS2 Simulator. In: International Journal of Computer Applications (0975-8887),

June. 2013, 72:21.

Rachna, Sethi Shweta, Keshari Rita & Goel Sakshi (2012). A Study of Comparison of

Network Simulator -3 and Network Simulator -2.In: International Journal of

Computer Science and Information Technologies, 3:1, 3085 – 3092.

Rajankumar, P Nimisha & P Kamboj (2014). A comparative study and simulation of AODV

MANET routing protocol in NS2 & NS3. In: International Conference on Computing

for Sustainable Global Development (INDIACom), 5-7 March 2014, 889–894.

Schiller (2003). Mobile Communications.2nd Ed. Pearson Education. ISBN: 978-

0321123817.

131

Sekercioglu. Experiment II: Introduction to Discrete-Event Simulation and OMNET++

Framework. Monash University Department of Electrical & Computer Systems

Engineering. Available from Internet <URL:

http://titania.ctie.monash.edu.au/netperf/netperf-omnetpp-tictoc-01.pdf>.

Sharma & M K Chose (2010). Wireless Sensor Networks: An Overview on its Security

Threats. In: IJCA Special Issue on Mobile Ad-hoc Nerworks MANETs, 42–45.

Sun & Xiaoling (2012). TCP Congestion Control Algorithm Research. In: 8th International

Conference on Information Science and Digital Content Technology (ICIDT), -28

June. 2012, vol.3, pp.703, 706, 26.

Tse & Pramod Viswanath (2005). Fundamentals of Wireless Communication. Cambridge

University Press. Available from Internet: < URL:

http://www.eecs.berkeley.edu/~dtse/book.html>.

Verdú (2000). Wireless Bandwidth in the Making. In: Communications Magazine, IEEE,

38:7, 53–58.

Weingartner, Hendrik vom Lehn & Klaus Wehrle (2009). A performance comparison of

recent network simulators. In: IEEE International Conference on Communication

(ICC 2009), Dresden, Germany, 14–18 Jun. 2009, 1287–1291.

Winsberg (2010). Science in the Age of Computer Simulation. University of Chicago Press,

168 p. ISBN 9780226902043.

