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ABSTRACT 
Communication systems are emerging rapidly with the revolutionary growth in terms of 
networking protocols, wired and wireless technologies, user applications and other IEEE 
standards. Numbers of industrial as well as academic organizations around the globe are 
bringing in light new innovations and ideas in the field of communication systems. These 
innovations and ideas require intense evaluation at initial phases of development with the 
use of real systems in place. Usually the real systems are expensive and not affordable for 
the evaluation. In this case, network simulators provide a complete cost-effective testbed 
for the simulation and evaluation of the underlined innovations and ideas. In past, 
numerous studies were conducted for the performance evaluation of network simulators 
based on CPU and memory utilization. However, performance evaluation based on other 
metrics such as congestion window, throughput, delay, packet delivery ratio and packet loss 
ratio was not conducted intensively. In this thesis, network simulators such as NS2, NS3 
and OMNET++ will be evaluated and compared for wired and wireless networks based on 
congestion window, throughput, delay, packet delivery and packet loss ratio. In the 
theoretical part, information will be provided about the wired and wireless networks and 
mathematical interpretation of various components used for these networks. Furthermore, 
technical details about the network simulators will be presented including architectural 
design, programming languages and platform libraries. Advantages and disadvantages of 
these network simulators will also be highlighted. In the last part, the details about the 
experiments and analysis conducted for wired and wireless networks will be provided. At 
the end, findings will be concluded and future prospects of the study will be advised. 
 

KEYWORDS: communication systems, networking protocols, wired and wireless 
networks, network simulators, performance evaluation 
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1. INTRODUCTION 

Simulation is an advance concept used to model and analyze various scenarios in real 

world. It applies to different engineering, mathematics, science and other application areas 

for achieving different purposes. With the use of simulation, one can easily model 

hypothetical and a real life object, simulate and analyze the results to study the behavior of 

the system based on different parameters in various contexts (Pan & Jain 2008). Computer 

simulations are used in various areas for modeling and analysis of natural systems where 

the real modeling becomes really expensive and even hard to implement.  

With the advance revolution in computer technologies, computer networks became a 

predominant area for the researchers and industrial specialists considering study and 

experiment objectives. In this case, the complete understanding of the computer networks is 

really important especially for network researcher so that they can deeply evaluate different 

technologies, component and protocol used in computer networks and also work to enhance 

the technologies more appropriately for end users. Considering all this, network simulation 

became an important tool to understand the systems in depth. Network simulations are used 

during the development of new communication architectures and protocols (Weingartner, 

Lehn, Wehrle 2009: 1287-1291).  

The implementation of new networking architectures and protocols is a progressive method 

and requires continues changes and evaluation during the whole process. It also requires a 

proof of concept prototypes for experiments and understanding of the whole system. 

Furthermore, large real networks are usually used for evaluation which requires various 

resources with high cost. In this case, network simulators (NS) provide a test bed for 

simulating and evaluating new architectures and protocols. It helps researchers to 

understand end to end behavior of the underline technologies, also changes in the system 

definition, attributes and prototypes, even rewriting of the whole system is really trivial.  
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Network simulators are emerging everyday and mostly provides infrastructure for all kind 

of network technologies including the current running IEEE standards and also the future 

prospect technologies. For example, it covers application of simulation technology into 

network area such as network traffic simulation which is relatively a new technology. 

MANET and VANET are other emerging network applications which can be simulated in 

network simulators using different ad hoc networking protocols including DSDV, TORA, 

DSR and AODV. As Network simulators mainly work for computer networks, therefore 

understanding of computer networks in depth is very important and must be considered as a 

prerequisite for network simulation. 

Network simulators provide mechanism for modeling wired and wireless networks using 

different kind of network nodes, routers switches, bridges, routing protocols, channel 

models, packet types, queue types, channel propagation models, signal generators, sink 

devices and network and physical layer protocols including  TCP, UDP and MAC. 

Different network simulators uses different programming languages for network design, 

protocol implementation and flow control handling within the network. Mostly network 

simulators come with editor for development and animator tool for witnessing the graphical 

view of network simulation. For statistical data collection and analysis, network simulators 

provide various tracing methods which produce data. Researcher can analyze the data by 

plotting into any graph application and compare the results.  

Different types of network simulators are available for researchers and industrialists. Open 

source network simulators are mainly used for academic work where students and 

researchers execute different simulations using free and open source tools. On the other 

side, commercial tools are expensive and used by companies for commercial purposes. The 

choice of network simulators depends on various factors, for example performance and 

memory consumption of network simulators for large scale networks. Other factors include 

scalability, reliability and troubleshooting of different network models and protocols, 
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programming languages, available support for different network components and 

documentation. 

The main objective of the thesis is to simulate and evaluate wired and wireless networks in 

different network simulators. For experiment part, NS2, NS3 and OMNET++ network 

simulators will be used for modeling different models, and computing throughput, end to 

end delay, packet loss, jitter and TCP congestion control. At the end, results will be 

combined and compared. This study will be an extension to existing studies where the 

results of existing studies will be reviewed and outcomes will be combined to generate and 

evaluate new models for NS2, NS3 and OMNET++. 

In the thesis, following questions will be answered: 

• What are the benefits and drawbacks of NS2, NS3 and OMNET++ network 

simulators? 

• What models can be simulated and how can be simulated? 

• What programming languages are used in network simulators? 

• How accurate are the results in comparison with the theory? 

• What are the benefits and drawbacks in terms of usability? 

• What are the suitable simulation parameters and how these affect the simulation 

results? 
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2. THEORY AND BACKGROUND INFORMATION 

In communication and computer network research, network simulation is widely used to 

observe the behavior of a small scale to large scale networks. The idea of a network 

simulation came from computer simulation which has been developed hand in hand with 

the rapid growth of the computers since the early days of digital world. The first large scale 

computer simulation deployment was Manhattan project following a World War II to 

model the process of nuclear detonation (Winsberg 2010). With the rapid growth in 

computer simulation methodologies, it has become indispensable in a wide variety of 

scientific disciplines including astrophysics, high-energy physics, climate science, 

engineering, ecology and economics. (Winsberg 2010). Figure 1 illustrates design of wired 

and wireless networks. 

 

Figure 1. Wired and Wireless Networks. 

In the following section, various studies will be reviewed conducted to evaluate different 

available network simulators with respect to performance, memory consumption, 

scalability, reliability and accuracy compared to theory.  

2.1. Literature Review 

Most of the Network Simulators are based on discrete-event simulation for evaluating 

protocols and architecture of wired and wireless networks. Due to differences in various 

Network Simulators, selecting appropriate network simulators is a crucial task.  
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According to the authors (Fernandes & Ferreira 2012), the existing network simulators 

differ with each other when it comes to realism, accuracy, performance and scalability of 

the simulation. Some of the network simulators perform accurately for small scale networks 

while performance in large scale network simulation decreases potentially. Based on the 

previous studies about performance comparisons of different network simulators, authors 

performed his experiments in NS3 for scalable VANET and evaluate the possible 

enhancements to the physical layer and mobility models of NS3.  For the solution, authors 

proposed a spatial indexing data structure which helps in efficiently storing and updating 

nodes and finding a neighbor within a given range from source node.  

The authors (Weingartner, Lehn & Wehrle 2009) evaluated five different Network 

Simulators namely NS2, NS3, OMNET++, SimPy and JiST/SWANS in his paper. Authors 

mainly emphasized on recent developments in the field of network simulation and 

conducted performance analysis by implementing identical simulation setup from scratch in 

all five simulators. The results of the simulation show notable difference among all the 

simulators in run time performance and memory uses. In the experimental part, authors 

implemented a sample network topology with 16 nodes and analyzed the outcome for end-

to-end packet loss, computational time and memory consumption based on network size 

and drop probability. At the end authors concluded that NS3 demonstrated best overall 

performance while JiST proved to be a fastest simulator among all. However, NS3 

development is still in early stage and only few of the simulation models from NS2 are 

ported and available. OMNET++ is also another good choice when it comes to graphical 

user interface and scalability of the networks. Authors gave an impression that out of five 

simulators, three including NS3, JiST and OMNET++ would be a smart choice when 

scalability is a main concern. 

Authors (Gupta, Mangesh, Ghonge, Parag, Thakare & Jawandhiya 2013) presented a 

comprehensive survey on comparison of different Open Source Network Simulators 

namely NS2, NS3, OMNET++ and JiST. In the study, authors highlighted the key 
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components and features of Network Simulators and provided a detailed overview of 

advantages and disadvantages. The purpose of the study was to provide a clear picture of 

the Network Simulators to the researchers in order to help them in selection of an 

appropriate Network Simulator for their research. According to the authors, the use of 

network simulators is inexpensive, helps in finding bugs in advance and provides generality 

over analytic and numerical techniques. On the other hand, there is no guarantee that the 

model reflects the reality and for large scale networks, one has to simulate lots of resources 

which can affect the performance of the simulation, also there is a possibility of statistical 

uncertainty in results. At the end, authors concluded that NS2 is the best option among all 

as it covers almost all models. NS3, OMNET++ and JiST are still in development phase. 

However, NS2 lacks of a GUI which other three provide for end users. For large scale 

networks, OMNET++ is more effective than others. 

Network Simulators have essential utilization in the analysis of wireless sensor networks 

(WSN). Choosing an appropriate Network Simulator for wireless sensor networks analysis 

is a challenging task for researchers.   The authors (Khan, Hasbullah &Nazir 2014) 

explored different Network Simulators including NS2, NS3, OMNET++ Castalia, TOSSIM 

and J-sim for wireless sensor networks and examined them together based on parameters, 

CPU usage, memory usage, computational time period and scalability of a wireless sensor 

network. For the experiment part, the authors assessed the execution of the state 

craftsmanship test system using a LEACH routing protocol and results revealed that NS-2, 

NS3 and OMNET++ Castalia are more suitable for conveying out broad ascend mesh 

simulations. In all simulators, NS3 proved to be a fastest simulator in computation time and 

CPU utilizations. 

In communication and computer network research, wireless networks are the key areas of 

interests for researcher where examining a behavior of the systems in real world and 

evaluating new protocols are challenging tasks for everyone.  In this case, network 

simulators help researchers to analyze wireless networks in a virtual world using a testbed 
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having all the required ingredients of wireless networks to cook the experiment in an 

efficient and cost effective way. The research conducted by authors (Khan, Bilal & 

Othman. 2012) is based on above phenomena where they rehearsed experiments for 

wireless networks using Mobile Ad hoc Networks (MANET) protocols. For the 

experiment, the authors selected NS2, NS3, OMNET++ and GloMoSim network simulators 

and compared them on the basis of CPU utilization, memory usage, computational time and 

scalability of the networks. In the study, authors used Ad hoc on demand distance vector 

(AODV) routing algorithm due to pre-availability in selected Network Simulators. The 

results shows that NS3 uses the lowest memory and NS2 uses the most memory compared 

to other two simulators which proved that NS3 is most efficient in memory usage among 

others. In CPU utilization, NS2 and NS3 approved to be more effective than OMNET++ 

and GloMoSim, however with the parallel execution of other application, NS2 and NS3 

CPU utilization decreased to certain level. In comparison for a large scale network, NS3, 

OMNET++ and GloMoSim are effective compared to NS2. In overall comparison, NS3 

demonstrates the best performance among all despite of being quite new in race. 

In addition to performance analysis based on computation time and memory usage, another 

objective of network simulators is to meet the results of a simulation with theory metrics. In 

this case, the comparison of different network simulators based on throughput, packet loss, 

jitter and end to end delay is indispensable and the expectations are always to reach near the 

theoretical values. To accomplish the goal, anthers (Ikeda, Kulla, Barolli & M Takizawa) 

compared throughput results of wireless ad hoc network simulations using NS2 and NS3.  

The simulation experiment was conducted for two different models including Linear 

Topology (LT) and Grid Topology (GT) where authors used TwoRayGround radio model 

and OLSR protocol for performance evaluation. The results shoes that NS3 throughput 

values are more close to theoretical values than NS2, also the memory consumption in NS3 

is much better compared to NS2. 
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2.2. Wired Networks 

Wired networks are collections of physically connected nodes using wires for exchanging 

information to and from different hosts within a network. Wired networks are also known 

as Ethernet networks which is a known type of local area network (LAN) (Pandey & tyagi 

2013). The nodes in wired networks can be any computers, printers or other devices 

connected through Ethernet cables. Ethernet is proven to be the fastest wired networks 

protocol which provides connection speeds of 10 megabits per seconds (Mbps) to 100 

megabits per seconds or higher (Pandey et al. 2013). In wired network, all nodes in a 

network require an Ethernet adapter, commonly known as Network Interface Card (NIC) to 

connect with other devices. The Network Interface Card (NIC) can be internally installed 

through Ethernet adapter port in the computer or attached externally to the nodes. In the 

following section, the most commonly used wired networks will be reviewed. 

2.2.1. Star Network 

In a Star Network, three or more nodes are connected with each other through central 

devices usually called hub or switch where nodes can be different computers or printers. 

Star Network topologies are mainly used in small business or even as a house network. 

Nodes in a network use separate cables and failure of one node or cable does not harm 

other computers and network keeps on functioning all the time. However, failure of central 

hub or switch affects the networks and nodes cannot continue in a network. In this case, the 

trouble shooting or replacement of a central node is essential. Due to high usage and less 

use of cables, Star Network is a most commonly used types of wired LAN. A TCP 

congestion control mechanism is used in a network to avoid collisions as all nodes can send 

data at a same time which ensures high throughput in a network with minimum packet loss. 

Figure 2 shows a basic architecture of Star Network. 
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Figure 2. Star Network (Pandey et al. 2013). 

2.2.2. Bus Network 

Bus Network is initial type of wired networks which uses common circuit instead of a 

central hub to connect different nodes within a network. In Bus Network, only one node 

can transmit data at a time and if there are two nodes trying to send data then collision will 

occur and result in data loss. All the nodes in a network broadcast messages in a network 

with a destination address and the message travels to all nodes until a destination is 

reached. Figure 3 shows a basic architecture of Bus Network. 

 

Figure 3. Bus Network (Pandey et al. 2013). 

Special software is used in a network which decides data transmission in a network. As 

there is no central hub used in a network, so failing of one node is robust and doesn’t affect 

the network to work. Special terminators are used at the end of common cable to ensure 

that packets are not re-bounced.  
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2.2.3. Ring Network 

In Ring Network, nodes are connected in a closed loop or ring where every node connects 

to the next node and the last node connects to the first node. A special ring token is used in 

a network and any node which has ring token can transmit data in a network. A message in 

a network always travels in one direction. Ring Network has no central control hub, thus 

network remains functioning even any of the nodes is broken. Figure 4 shows a basic 

architecture of Ring Network.  

 

Figure 4. Ring Network (Bestofmedia Team 2012). 

2.3. Wireless Networks 

Wireless networks are the fastest growing mean of the communication in a modern world. 

In the presence of wired communication systems, it has captured the attention of the media 

and the imagination of the public remarkably due to its efficient, reliable and long distance 

coverage services. The exponential growth in the use of cellular systems over the last 

decade turns the number of mobile users into almost two billion figures worldwide. 

Furthermore, many home users, businesses, and campuses are using wireless local area 

networks in place of ancient wired networks. Many new applications including wireless 

sensor networks (WSN), mobile ad hoc networks (MANET), vehicular ad hoc networks 
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(VANET), automated highways and factories, smart homes and appliances, and remote 

telemedicine are emerging from research ideas to concrete systems (Goldsmith 2004).  

In brief, wireless communication is a transfer of information from source to destination 

over a distance without the use of electrical conductors or wires. The distances involved 

may be short (a few meters as in television remote control) or long (thousands or millions 

of kilometers for radio communications). There are many wireless communication systems 

available used for multi purposes. Some of these systems are: mobile, portable two-way 

radios, cellular telephones, personal digital assistants (PDAs), GPS units, garage door 

openers and or garage doors, wireless computer mouse, keyboards and headsets, satellite 

television and cordless telephones. Different background technologies used in wireless 

systems are bluetooth, infrared, wifi, gsm, gprs, 3G, 4G, LTE and satellite. 

 

Figure 5. Wireless Network. 

Wireless networks (see Figure 5) support communications using radio or light waves 

propagating through an air medium. Many wireless networks are used depending upon the 

need of use and distance requirements. Following is an overview of different wireless 

networks used in communication systems. 

2.3.1. Wireless Sensor Network 

Wireless Sensor Network (WSN) shown in Figure 6 consists of wireless nodes connected 

through access point in a relatively long distance area equipped with sensors which 

measures quantities in surroundings to monitor physical and environmental changes. Sensor 



 

 

nodes in a network are tiny devices having small memory 

an analytical design for the devices to work in long durations. Due to tiny nature and small 

infrastructure, these networks faces quite many challenges ranges from r

consumption, reduced node sizes with high utilization, mobility to privacy and security. 

Some of the applications for WSN consist of military surveillance and monitoring, medical 

diagnosis and monitoring, environmental monitoring, industr

appliances, factory, supply chains, infrastructure protection monitoring including power 

grids and water distribution monitoring and other miscellaneous applications (K Sharma, M 

K Chose. 2010). 

Figure 6. Wireless Sensor Networks

2.3.2. Wireless Ad-hoc Network

Wireless Ad-hoc Network (WAN)

connected with each other in a temporary network without any infrastructure and control of 

a central administration. These nodes connect on random basis and communicate with the 

neighboring nodes for information sharing and notifications. These networks are not robust 

in nature and always under certain security threads due to the independent nature of 

connected nodes; therefore making the communication in Wir

critical challenge. 

Figure 7. Wireless Ad-hoc Network
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nodes in a network are tiny devices having small memory and power storage which require 

analytical design for the devices to work in long durations. Due to tiny nature and small 

infrastructure, these networks faces quite many challenges ranges from reliability, power 

consumption, reduced node sizes with high utilization, mobility to privacy and security. 

Some of the applications for WSN consist of military surveillance and monitoring, medical 

diagnosis and monitoring, environmental monitoring, industrial sensing and diagnostics for 

appliances, factory, supply chains, infrastructure protection monitoring including power 

grids and water distribution monitoring and other miscellaneous applications (K Sharma, M 
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hoc Network (WAN) shown in Figure 7 is a collection of wireless nodes 

connected with each other in a temporary network without any infrastructure and control of 

These nodes connect on random basis and communicate with the 

neighboring nodes for information sharing and notifications. These networks are not robust 

in nature and always under certain security threads due to the independent nature of 

herefore making the communication in Wireless Ad-hoc networks

 
hoc Network (Pandey et al. 2013). 
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2.3.3. Mobile Ad-hoc Network 

Mobile Ad-hoc Network (MANET) shown in Figure 8 is a sub type of wireless ad-hoc 

networks and a self-organizing and self configuring multihop wireless network where 

structure of the network changes dynamically all the time. The dynamic nature of the 

network is based on mobility of the nodes. In a network, nodes connect with each other in 

friendly manner and become of part of multihop forwarding mechanism. These nodes 

behave in a network as a host as well as router to forward information from one node to 

another. The routing in MANET is a challenge due to the unavailability of the 

infrastructure; therefore all nodes in a network are responsible to forward data for other 

nodes using proper routing mechanism. Without routing, out of range destination nodes 

become unreachable as other nodes cannot find a proper route to reach, hence resulting in 

packet loss. In MANET base stations access all the network nodes by sending broadcast 

messages instead of following routing flow. Applications of MANETs are used in 

classrooms, battlefields and vehicle-to-vehicle communications in certain scenarios. 

 

Figure 8. Mobile Ad-hoc Network (MANET). 

2.3.4. Vehicular Ad-hoc Network 

Vehicular Ad-hoc Network (VANET) shown in Figure 9 is an emerging technology which 

integrates modern wireless networking capabilities to vehicles. It is based on Mobile Ad 

Hoc Networks (MANETs) which is a collection of wireless mobile nodes connected with 
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each other for exchanging information in the absence of any infrastructure. In principle, 

Vehicular Ad Hoc Network (VANETs) is a subclass of MANETs; however it behaves in 

fundamentally different ways than MANETs due to fragile nature of vehicles connectivity, 

fast movement, varying driver behaviors and high mobility in a network (Ho & Leung 

2007). 

 

Figure 9. Vehicular Ad-hoc Network (VANET). 

In Vehicular Ad Hoc Network, the idea is to provide ubiquitous connectivity among 

different mobile users on the road with the efficient vehicle-to-vehicle communication 

which enables the Intelligent Transportation Systems (ITS). Due to the connectivity 

paradigm, Vehicular Ad Hoc Networks (VANETs) (Li & Wang 2007) are also called Inter-

vehicle Communications (IVC) or Vehicle-to-Vehicle Communication (V2V) and Vehicle-

to-infrastructure Communications (V2I) where vehicles communicate with the nearby 

vehicles and road side units (RSU) through dynamic wireless links. The applications of ITS 

in Vehicular Ad Hoc Networks (VANETs) includes (Li et al. 2007)  co-operative traffic 

monitoring control of traffic flows, blind crossing, prevention of collisions, nearby 

information services and real time detour routes computation. Due to variety of safety 

critical applications, Vehicular Ad Hoc Networks (VANETs) are gaining intention from 

researchers and engineers in academic and automobile industries for road safety and 

pleasure applications. Vehicle Ad Hoc Networks (VANETs) require automobile cars to be 

equipped with computing technologies and internet connectivity through wireless networks 

and major car manufacturer companies have already announced to add computing and 

connectivity powers to their vehicles. 



 

 

2.3.5. Wireless Local Area Network

Wireless Local Area Network (WLAN) 

connects two or more devices in a closed circuit through access point. These networks are 

mainly used for providing internet access to the connected devices using the IEEE 802.11 

WLAN standard called WiFi. In wireless area ne

technologies allow mobility to the devices in local area without disconnecting from the 

network. The applications of wireless area networks are in houses, offices, airports, 

shopping markets, universities and others for provi

services to the end users.  

Figure 10. Wireless Local Area Network (WLAN)

2.4. Wireless Channel 

Wireless channel is a path in a spectrum being used for transmission of electromagnetic 

signals. A defining characteristic of the mobile wireless channel is the variations of the 

channel strength over time and over frequency (Tse & Viswanath

can be roughly divided into two types:

Large-scale fading– Large-scale fading is caused by path loss of signal due to distance and 

shadowing by large objects such as buildings and hills. This occurs as the mobile moves 
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Wireless Local Area Network 

Wireless Local Area Network (WLAN) (see Figure 10) is a short range network which 

connects two or more devices in a closed circuit through access point. These networks are 

mainly used for providing internet access to the connected devices using the IEEE 802.11 

WLAN standard called WiFi. In wireless area network, spread-spectrum or OFDM 

technologies allow mobility to the devices in local area without disconnecting from the 

network. The applications of wireless area networks are in houses, offices, airports, 

shopping markets, universities and others for providing free and on-demand internet 

 

Wireless Local Area Network (WLAN). 

Wireless channel is a path in a spectrum being used for transmission of electromagnetic 

signals. A defining characteristic of the mobile wireless channel is the variations of the 

over time and over frequency (Tse & Viswanath 2005).  The va

can be roughly divided into two types: 

scale fading is caused by path loss of signal due to distance and 

shadowing by large objects such as buildings and hills. This occurs as the mobile moves 

is a short range network which 

connects two or more devices in a closed circuit through access point. These networks are 

mainly used for providing internet access to the connected devices using the IEEE 802.11 

spectrum or OFDM 

technologies allow mobility to the devices in local area without disconnecting from the 

network. The applications of wireless area networks are in houses, offices, airports, 

demand internet 

Wireless channel is a path in a spectrum being used for transmission of electromagnetic 

signals. A defining characteristic of the mobile wireless channel is the variations of the 

2005).  The variations 

scale fading is caused by path loss of signal due to distance and 

shadowing by large objects such as buildings and hills. This occurs as the mobile moves 
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through a distance of the order of the cell size, and is typically frequency independent (Tse 

et al. 2005). 

Small-scale fading– Small-scale fading occurs due to the constructive and destructive 

interference of the multiple signal paths between the transmitter and receiver. This occurs at 

the spatial scale of the order of the carrier wavelength, and is frequency dependent (Tse et 

al. 2005). Due to the variation in signal power, receiver tries to adopt the changing 

characteristics of the channel e.g. changing the equalizer parameter. However if changes 

are too fast, such as driving on a highway, receiver can’t adopt fast enough and hence the 

transmission error probability can be dramatically increased. 

Large-scale fading is more relevant to issues such as cell-site planning whereas small-scale 

multipath fading is more relevant to the design of reliable and efficient communication 

systems (Tse et al. 2005). 

Figure 11 compares short term and long term fading. 

 

Figure 11. Short term and long term fading (Schiller 2003). 

2.4.1. Wireless Channel Physical Modeling 

The radio propagation of electromagnetic waves between transmitter and receiver is 

characterized by the presence of multipath due to various phenomena such as reflection, 

refraction, scattering, and diffraction. The study of wave propagation appears as an 

important task when developing a wireless system (El Zein 1993). The performance of 
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communication systems depends on the propagation medium and the physical modeling of 

antenna. For broadband systems, the analysis is usually made in the frequency domain and 

the time domain which allows measuring the coherence bandwidth, the coherence time, the 

respective delay spread, and Doppler spread values. Coherence distance and wave direction 

spread are also used to highlight the link between propagation and system, in the space 

domain. Table 1 lists details for radio channel parameters. 

Table 1. Radio Channel Parameters (R H Katz. 1994). 

 

In USA, the Federal Communication Commission (FCC) has limited the cellular 

communications in one of three frequency bands, one around 0.9 GHz, one around 1.9 

GHz, and one around 5.8 GHz. The wavelength λ  of electromagnetic radiation at any 

given frequency f  is given by fc /=λ , where smc /103 8∗=  is the speed of light (Tse et 

al. 2005). The wavelength in these cellular bands is a fraction of a meter, so to calculate the 

electromagnetic field at a receiver, the locations of the receiver and the obstructions would 

have to be known within sub-meter accuracies. Thus, the spatial and temporal properties of 

the channel with accurate measurements are necessary for the design of broadband multi-

antenna systems with a choice of suitable network topology. 

2.4.1.1. Free space, fixed transmit and receive antenna 

Fixed transmit and receive antennas model works in a similar fashion as wired 

communication model works, where signal is viewed as simply a voltage or current 

waveform. In this case, in a far field, the electric field and magnetic field at any given 

location are usually perpendicular and proportional to each other and to the direction of 

propagation from the antenna. Therefore, it is sufficient to know only one of them.  
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In response to a transmitted sinusoid ftπ2cos , the received waveform at fixed antenna point 

),,( ϕθru =  is then: 

r

crtff
utfEr

)/(2cos),,(
),,(

−= πϕθα
              (1) 

Where r represents the distance from transmitter antenna to receive pointu , ),( ϕθ

represents the vertical and horizontal angles from the antenna to u respectively. The 

constant c  is the speed of light, and ),,( fϕθα is the product of the antenna patterns of 

transmitter and receiver antennas in the given direction (Tse et al. 2005). Here, (1) is linear 

in input and forms linear time invariant (LTI) channel. That is, the received waveform at u

in response to a weighted sum of transmitted waveforms is simply the weighted sum of 

responses to those individual waveforms which doesn’t change frequency. 

System function at point u is given by: 

r

ef
fH

cfrj /2),,(
)(

πϕθα −

=       (2) 

 Where 

[ ]ftj
r efHutfE π2)(),,( ℜ=       (3) 

And inverse Fourier transforms of )( fH is an impulse response of a channel. 

2.4.1.2. Free space, moving antenna 

A model, where receiver antenna becomes non-stationary with speed v  in the direction of 

increasing distance of transmitter antenna and changes its position with respect to timet , a 

destination point is represented as  ),),(()( ϕθtrtu =  and relative distance becomes
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vtrtr += 0)( . Thus, the received electric field using (1) at the moving point )(tu is given 

by: 

[ ]
vtr

crtcvff
vtrtfEr +

−−
=+

0

0
0

/)/1(2cos),,(
)),,(,,(

πϕθαϕθ   (4) 

Where the sinusoid at frequency f  has been converted to a sinusoid of frequency 

)/1( cvf −  and cfv /−  is Doppler shift due to the motion of the observation point.  

The channel is represented as linear time variant (LTV) that changes the frequency with 

respect to times. The channel can be represented in terms of a system function followed by 

translating the frequency f by the Doppler shift cfv /− , if the time varying attenuation in 

the denominator of (4) is ignored. It is important to observe that the amount of shift 

depends on the frequency f. Here it is not important that either transmitter or receiver or 

both are moving. However, channel characteristics depend on a relative distance between 

two antennas caused by the movement. 

2.4.1.3. Reflecting walls, fixed antenna 

In this model, the characteristics of channel and signal propagation depends on the multi 

signal interference caused due to reflecting walls in the surroundings of fixed transmitter 

and receiver antennas. 

 

Figure 12. Illustration of the direct path and reflective path (Tse et al. 2005). 

In Figure 12, transmitter antenna sends a sinusoidal signal ftπ2cos  towards a fixed receiver 

antenna where transmitted signal has two paths; direct and indirect. The indirect signal path 



34 

 

 

 

comes from the fixed reflecting wall that adds up to the direct path signal at receiver. The 

electromagnetic field at the receive antenna is the sum of the free space field coming from 

the transmit antenna plus a reflected wave coming from the wall. Assume that if the receive 

antenna is absent; the perturbation of the field due to the antenna is represented by the 

antenna pattern. An additional assumption here is that the presence of the receive antenna 

does not appreciably affect the plane wave impinging on the wall (Tse et al. 2005). In this 

situation, the intensity of the reflecting signal is same as a free space wave that would exist 

on the opposite side of a large wall in case wall doesn’t exist (see Figure 13) which means 

that the total intensity of the reflective signals is of length equal to the sum of distance from 

transmit antenna to wall and then back to the receive antenna from wall, i.e., rd −2 .  

 

Figure 13. Relation of the reflected wave to the wave without wall (Tse et al. 2005). 

Considering both direct and reflected wave with the antenna gainα , equation (1) becomes: 

rd

crdtf

r

crtf
tfEr −

−−−−=
2

)/)2((2cos)/(2cos
),(

παπα
  (5) 

Where, phase difference between two waves is: 
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On the basis of above equations, the interference of both signals can be either constructive 

or destructive depending upon the phase value. If the phase value is integer multiple ofπ2 , 

the interference will be constructive that makes the signal strong at the receive antenna. On 
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the other hand, if the phase value is odd integer multiple of π then the received signal 

becomes week due to destruction. The difference of the peak to low intensity of the signal 

is referred as coherence distance and is denoted by: 

4

λ=∆ cx         (7) 

Where fc /=λ is a wavelength of transmitted sinusoid. 

2.4.1.4. Reflecting walls, moving antenna 

Consider the above model with the assumption that the receive antenna starts moving 

towards the large reflective walls at speedv . Figure 14 illustrates direct and reflected path. 

 

Figure 14. Illustration of a direct and reflected path (Tse et al. 2005). 

The movement of a receive antenna causes interferences between two signal waves and the 

intensity of the receive signals starts either decreasing or increasing. The construction and 

destruction of signals occurs due to the phase change and the phenomenon of variation in a 

signal quality is called multipath fading. The time taken to travel from a peak to a valley is

fvc 4/ : this is the time-scale at which the fading occurs, and it is called the coherence time 

of the channel (Tse et al. 2005). 

Consider if the starting location of a receiver at time 0 is 0r and total distance is vtrr += 0  

at timet , the received signal equation using (5) becomes: 
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From the equation, Doppler shift effects can be easily seen from the direct and reflected 

sinusoid signals where in the direct wave term at frequency )/1( cvf − , Doppler shift is 

cfvD /1 −=  and from the indirect wave at frequency )/1( cvf + , Doppler shift is

cfvD /2 = . The difference between 1D  and 2D is called Doppler spread. 

2.4.1.5. Reflection from a ground plane 

In physical modeling of mobile systems, if transmit and receive antennas lies on a ground 

plane in a way that the horizontal distance between the antennas is larger than the height of 

both antennas from a ground plane then at certain distance r  two waves; direct and 

reflected from the plane starts to cancel each other (see Figure 15). In these kinds of 

models, the difference in length of direct and reflected wave is directly proportional to1−r . 

 

Figure 15. Illustration of direct and reflected path of ground plane (Tse et al. 2005). 

In case, if receive antenna is moving in the opposite direction of transmit antenna, than 

situation happens when the length difference 1−r between both the antennas becomes 0 due 

to the increase in total distancer . As a result both direct and indirect signals become equal 

and start canceling each other due to opposite phase. The electric wave at the receiver is 

then attenuated as2−r , and the received power decreases as4−r  (Tse et al. 2005). The 

impact of this situation is important to consider in those areas where base-station 

transceivers are placed on roads.  
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2.4.2. Input/output models of the wireless channel 

In wireless communication, the behavior of input signal throughout the channel path is 

usually affected by the involvement of different obstacles; specially buildings or hills. On 

the basis of these multipath effects caused by reflection, diffraction or scattering, channel 

can be modeled as linear-time varying system. In the following section, the characteristics 

of linear-time varying model and discrete-time varying model derived from continuous-

time channels will be reviewed. 

2.4.2.1. Wireless channel as a linear-time varying system 

Wireless channels behavior changes depending on the spatial attributes of the transmitter, 

receiver and environmental factors. If all elements of the communication are stationary then 

the channel becomes linear-time invariant channel while on the other hand, if any of the 

element of wireless communication starts moving with respect to times then channel 

becomes linear-time variant channels in which attenuation factors of transmitter and 

receiver and propagation delay changes as time passes.  

In linear-time variant channel, if the input signal is fttx π2cos)( =  then the received signal 

can be written as: 

∑ −=
i ii tftxtfáty )),((),()( τ      (9) 

Where ),( tfái and ),( tfiτ  are attenuation and propagation delay respectively from 

transmitter to receive antenna at path i  from n  available paths. In practical scenario, 

attenuation and propagation delays are slow varying function of frequencyf . These 

variations follow from the time- varying path lengths and also from frequency-dependent 

antenna gains (D Tse & P Viswanath. 2005), therefore if the frequency from linear-time 

variant system model is omitted then (9) becomes: 
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∑ −=
i ii ttxtáty ))(()()( τ       (10) 

Due to the linear nature of the input/output system, the complete system equation in terms 

of impulse response of a channel can be defined in following manner: 

∫
∝

∝−

−= τττ dtxthty )(),()(       (11) 

Where ),( th τ  is an impulse response at time t  for the input signal transmitted atτ−t . 

Alternatively, the expression for the impulse response from (11) can be given as: 

∑ −=
i

ii ttth ))(()(),( ττδατ       (12) 

In special case when transmitter, receiver and all environmental reflectors becomes 

stationary where attenuation )(tái and propagation delay )(tiτ don’t depend on time than 

the equation of impulse response ),( th τ for the resulting linear-time invariant systems for 

the input signal fttx π2cos)( = can be written as: 

∑ −=
i

iih )()( ττδατ        (13) 

Considering the time-varying impulse response ),( th τ , the time-varying frequency response 

can be derived as:  

∑∫
−

∝

∝−

− ==
i

tfj
i

fj ietdethtfH )(22 )(),();( τπτπ αττ    (14) 

Usually linear-time invariant channels reduce frequency response in a system. One can 

overcome this issue by considering the channel as a slow varying function of time t with 
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frequency response );( tfH  at each fixed timet . In this case, time t  at which channel 

varies becomes much longer than the delay spread, thus these types of channel can be 

called as underspread channels. 

2.4.2.2. Baseband equivalent model 

Normally, in mobile communication data is transmitted using passband signal from sender 

to receiver within a frequency range[ ]cWfWf cc /,2/ +− . But other processing including 

coding/decoding, modulation/demodulation, compression/decompression, synchronization 

etc at each terminal is happened in a baseband signal. Usually, transmission signal is up-

converted from baseband to passband at receiver before sending on the transmission 

medium and at receiver down-converted from passband to baseband before processing.  

Therefore understanding the conversion process of passband and baseband signal is crucial 

in telecommunication arena. 

If the passband signal is )(ts  with Fourier transform )( fS  and frequency band limited to

[ ]cWfWf cc /,2/ +− , then baseband equivalent signal )(tsb  can be represented as:  


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 +=
0
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fs  
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≤+
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c

c

ff

ff
    (15) 

The factor of 2  is quite arbitrary but chosen to normalize the energies of )(ts  and )(tsb  

to be the same. )(tsb  is band-limited in [ ]cWW /,2/−  (Tse et al. 2005). Figure 16 shows 

relationship between passband spectrum and baseband equivalent. 
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Figure 16. Passband spectrum and baseband equivalent Relationship (Tse et al. 2005). 

Given baseband signal )(tsb , passband signal can be constructed with the following 

observation: 

)()()(2 *
cbcb ffSffSfS −−+−=      (16) 

When taking the Fourier transform: 

[ ] [ ]tfj
b

tfj
b

tfj
b

ccc etsetsetsts πππ 22*2 )(2)()(
2

1
)( ℜ=+= −   (17) 

The complete realization of conversions (up and down) for passband and baseband is 

illustrated in Figure 17. 

 
Figure 17. Illustration of up-conversion followed by down-conversion (Tse et al. 2005). 

Figure 18 relates baseband transmitted signal to baseband received signal. 
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Figure 18. Baseband transmitted signal to baseband received signal(Tse et al. 2005). 

2.4.2.3. A discrete-time baseband model 

Finally, a discrete-time channel can be derived from continuous-time channel using 

sampling theorem technique. For the input waveform with a band limited toW , the 

baseband equivalent has the following form with the band limited to 2/W : 

[ ]∑ −=
n

b nWtcnxtx )(sin)(       (18) 

Where 

[ ] )/( Wnxnx b= and
t

t
tc

π
π )sin(

)(sin =  

From the above baseband input signal, baseband output signal can be represented as: 

[ ]∑ ∑ −−=
n i

i
b
ib ntWWtctanxty ))((sin)()( τ    (19) 

Discrete-time channel equation then can be obtained by sampling the output baseband 

signal at multiple of W/1 as: 

[ ] [ ]∑ ∑ −−=
n i

i
b
i WWmnmcWmanxmy ))/((sin)/( τ   (20) 
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Where 

[ ] )/( Wmymy b=  

Equation (20) can be simplified by considering nml −=  as: 

[ ] [ ]∑ ∑ −−=
n i

i
b
i WWmlcWmalmxmy ))/((sin)/( τ   (21)   

All equations used are taken from (Tse et al. 2005). 

2.5. Congestion Control and Queue Management 

In last decade, communication systems have brought revolutionary changes in everyone’s 

life where the benefits of wired and wireless networks are utilized for impressive countless 

quality of services in different areas. With communication revolution, the speed and 

capacity of various components in versatile networks such as transmission media, switches 

and routers have been drastically increased. Also the number of users and traffic flow has 

reached to a new sky level which makes communication system more complicated and 

diversified (Koo, Ahn &Chung. 2004).  

In this case, the Quality-of-Services (QoS) is obligatory in wired and wireless Networks for 

ensuring the integrity, reliability and security of the information from source to destination 

in a fast and efficient way resulting in best-effort services for end users. Also performance 

requirements in terms of throughput, delay, jitter and packet loss are essential for good 

quality services. QoS enabled network provides various functions for improving packet 

delivery performance such as rate controller, classifier, scheduler and admission control 

(Koo et al. 2004). A sequential order in which packets are required to be processed is 

handled through congestion control and queue management policies namely called as 
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Active Queue Management (AQM). 

TCP and AQM are designed to work for both wired and wireless networks. In wired 

networks, main reason for packet loss is network congestion while in wireless networks, 

small bandwidth, mobile nature of the nodes and pure wireless links cause packet loss 

(Dhadse & Chandavarkar 2014). In a network, congestion occurs when source message gets 

time out or source receives three duplicate ACK messages. In this case, router is flooded 

with messages and its queue gets over flown resulting in dropping last messages from 

queue tail. This method is synchronized with all the connected nodes. Router informs nodes 

about the congestion resulting nodes to reduce the data sending rate which may lead in low 

link utilization. In this case, AQM helps in utilizing the underline network by properly 

managing the queue and keeping the average queue size small which results in fewer 

number of packet loss. In coming sections, different queue mechanisms used for congestion 

control will be reviewed along with TCP design to handle the congestion control in wired 

and wireless networks. 

2.5.1. TCP Congestion Control 

Transmission Control Protocol (TCP) is a standard set of rules used with Internet Protocol 

(IP) to send data in form of packets from source computer to destination computer over the 

internet. TCP is a controller which keeps track of the data divided into small junks called 

packets and ensures end-to-end transmission of data, using certain routing algorithms, 

format of the data, ordering and retransmission in case of failure (Bhargava, Bhargava,  

Mathuria, Gupta & Jyotiyana 2013). 

TCP Congestion Control mechanism is used to ensure the uninterrupted communication 

and better utilization of network resources from source to destination. It provides window 

based end-to-end flow control where on the receiving a message, receiver sends ACK 

message back to sender to notify about correctly receiving a packet and sender updates the 

congestion window size. A window size at the source is always proportional to the allowed 
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transmission rate. In case of congestions, TCP congestion control dissolves congestion by 

asking distributed nodes to reduce window sizes. Sources then update the window sizes to 

avoid more congestion, also congestion measures are updated by channel links. These 

updated measures are feedback to sources using the link. 

TCP Congestion Control Algorithms 

First TCP congestion control algorithm was introduced to the TCP protocol stack in 1988 

by VAN Jacobson followed by three other introduced until 1990 (Sun & Xiaoling. 2012) 

including the slow start algorithm, congestion avoidance algorithm, fast retransmission and 

fast recovery algorithms. These algorithms provide basic architecture of TCP flow control 

and congestion control. Due to the emerging requirements in network transmission area, 

researchers proposed and implemented various improvements including TCP Tohoe, TCP 

Reno, TCP new Reno, TCP SACK (Selective Acknowledgement) and TCP Vegas. Table 2 

shows different congestion avoidance methods: 

Table 2. Congestion Avoidance Methods. 

Variants of TCP Name of Algorithms 
TCP Tahoe Slow start + Fast retransmission 

TCP Reno Fast retransmission + Fast recovery (in 
case of single packet loss) 

TCP New Reno Fast retransmission + Fast recovery (in 
case of multiple packets lost) 

TCP SACK Fast Retransmission + Fast Recovery 
(in case of retransmission of more than 
one lost packet) 

TCP Vegas New retransmission mechanism + 
Modified slow start + New congestion 
avoidance mechanism 

Four TCP core congestion control algorithms are executed at source end and they belong to 

source algorithms in terms of realization (Sun et al. 2012). These algorithms are using 
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adjustable parameters including congestion window (CWND), window slow start threshold 

(ssthresh), delay (RTT) and overtime counter (RTO). In the following section, the core 

algorithms used for TCP Congestion Control and set of rules with the parameters used by 

these algorithms will be reviewed. 

Slow Start and Congestion Avoidance 

In slow start algorithm (see Figure 19), TCP uses ACK received from receiver to adjust 

congestion window (CWND) size. At the start of TCP connection, it enters into a slow 

start-up phase by setting CWND value to 1 for all the connected nodes in a network and 

gradually increases CWND on getting successful ACK from sender. A threshold value is 

set to 65535 bytes. On a certain condition when CWND reaches and overflow to threshold 

value, TCP enters in a congestion avoidance phase.  

Slow start and congestion avoidance algorithms (Bhargava et al. 2013): 

• Declare congestion window (CWND) and bandwidth threshold (ssthresh) variables. 

o Declare CWND, ssthresh 

• Initialize variables. 

o Initialize CWND = 1, ssthresh = 65535 

• Increment CWND value on getting every successful ACK from receiver. 

o CWND = CWND + 1 

• On each RTT, increase CWND value exponentially. 

o CWND = 2 x CWND 

• Entering congestion avoidance phase when 

o CWND >= ssthresh 

• In congestion avoidance phase, reduce the ssthresh to half of CWND and initialize 

CWND to 1 

o ssthresh = CWND / 2 



 

 

o initiaze CWND = 1 

o Start 

• Increases the CWND value linearly infractions until congestion avoidance phase is 

over. 

o CWND = CWND 

Figure 19. Slow start congestion control

Rapid Retransmission and Recovery

In TCP, retransmission timeout counter (RTO) has impact on TCP performance such as it 

has much bigger value then each packet round trip time (RTT) which results in long idle 

time in case of real packet lost. In order to avoid such situation, a new

protocol is introduced which helps in avoiding the wait time instead retransmitting the lost 

packet in quick and efficient manner. In general, when sender receives three same ACK 

from receiver then it decides to retransmit a packet by consi

case, the threshold value is reduced to current congestion window, and CWND is reduced 

to half of the original value. When lost packet retransmission is in progress, TCP does not 

wait for RTT and start recovering data befor

recovery algorithm (see Figure 20

especially for large window.  
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initiaze CWND = 1  

Increases the CWND value linearly infractions until congestion avoidance phase is 

CWND + 1 / CWND 

 

Slow start congestion control. 

Recovery 

In TCP, retransmission timeout counter (RTO) has impact on TCP performance such as it 

has much bigger value then each packet round trip time (RTT) which results in long idle 

time in case of real packet lost. In order to avoid such situation, a new retransmission 

protocol is introduced which helps in avoiding the wait time instead retransmitting the lost 

packet in quick and efficient manner. In general, when sender receives three same ACK 

from receiver then it decides to retransmit a packet by considering it a lost packet. In this 

threshold value is reduced to current congestion window, and CWND is reduced 

to half of the original value. When lost packet retransmission is in progress, TCP does not 

wait for RTT and start recovering data before getting RTT as it is a fast retransmission and 

Figure 20). It allows high throughput under moderate congestion 

 

Increases the CWND value linearly infractions until congestion avoidance phase is 

In TCP, retransmission timeout counter (RTO) has impact on TCP performance such as it 

has much bigger value then each packet round trip time (RTT) which results in long idle 

retransmission 

protocol is introduced which helps in avoiding the wait time instead retransmitting the lost 

packet in quick and efficient manner. In general, when sender receives three same ACK 

dering it a lost packet. In this 

threshold value is reduced to current congestion window, and CWND is reduced 

to half of the original value. When lost packet retransmission is in progress, TCP does not 

e getting RTT as it is a fast retransmission and 

under moderate congestion 
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Fast retransmission and recovery algorithms (Bhargava et al. 2013): 

• On receiving three duplicate ACK in a row, set threshold value to current 

congestion window.  

o ssthresh = CWND 

• Retransmit a missing packet 

• Set congestion window using threshold value.  

o CWND = ssthresh + 3 

• On getting same duplicate ACK each time, increase congestion window by 1.  

o CWND = CWND + 1 

• In case of non-duplicate ACK arrives, set congestion window value using threshold 

and continue with a linear increase such as congestion avoidance. 

o CWND = ssthresh 

 

Figure 20. Fast retransmission and recovery algorithm. 

2.5.2. Queue Management 

In communication networks, hosts understand the behavior of congested router either by 

time-out occurs and sender receives series of same ACK from receiver. In this case, the 

network hosts adjust the data sending rate to reduce the network congestion. At the same 

time, a better queue management is required at router to ensure a free and fare handling of 

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

Retransmit
packet 3
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ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver



48 

 

 

 

network packets coming from all network nodes. A traditional queue management process 

works in a way that when there is network congestion and queue is filled, router drops 

packet from tail of a queue to overcome the congestion. Router also notifies all the 

connected nodes about the congestion and in a result all nodes reduces the data sending rate. 

However, this approach causes Lock out and full Queue problem (Dhadse &Chandavarkar 

2014). To avoid these problems, new queue management algorithms known as Active 

Queue Management have been introduced to ensure better and fair queue management for 

all nodes in a network.  

The main goal of a queue management in network systems is to increase the throughput as 

well as decrease the average packet loss and end-to-end delay. In the following section, the 

definitions of different key indicators for a good network system will be briefly described. 

Queue is a place in a system, where packets arrive for a service, wait for a service if not an 

urgent packet, and leave the system on getting served. In principle, queuing system is 

defined by four basic characteristics in networks such as arrival pattern of packets, service 

pattern of schedules, queue discipline and system capacity. 

Delay is a time elapsed between start and end point of a communication system. Total delay 

is calculated from source to destination including all in between nodes and normally is 

called end to end delay. Delay in a network can happen due to over congestion situation or 

transmission delay of a network. In communication systems, delay insensitive applications 

can be effected badly by a network delay such as audio or video applications which 

requires minimum delay for better quality propagation at receiver. 

Packet loss occurs when receiver does not receive intended packet from sender and hence 

start recovering process. Packet loss affects the throughput of a network. Packets can be 

lost when the queue in a network gets overflow, hence affecting the loss insensitive 

applications. Some applications cannot perform well if end-to-end packet loss between 

nodes is large relative to some threshold value, causing excessive packet loss effecting the 
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certain real time applications. (Koo et al. 2004.) 

End-to-end delay is a sum of delays encountered at every point in a network from source to 

destination. Each such delay consists of two constant components including transmission 

delay at the node and propagation delay on the link to next node. (Koo et al. 2004.) 

Active Queue Management 

Active Queue Management (AQM) ensures reduce number of packets dropped in router by 

keeping the average queue size small. Without AQM, more packets can be dropped when 

queue overflows which results in bad quality of a system. In the following section, the 

traditional TailDrop queue management along with few AQM policies will be reviewed 

which helps in improving the overall performance of a network. 

DropTail 

DropTail simply revolves around first in first out (FIFO) queues without using any 

additional parameters. In case of queue outburst, packets are always dropped from tail 

which results in unfairness of a network. In DropTail, most of the queue shares are used by 

few of the network nodes while others suffer from less utilization of a queue. This results in 

Lock Out and Full Queue problem. The Lock Out is often resulted due to the 

synchronization in a network. As the tail drop only informs connected nodes about the 

congestion when queue is full and packet drop occurs, which results in sudden drop for 

whole of a network and there is no intelligence sharing during the time when queue is not 

full. In this case, handling the full queue size affects all the nodes casing full queue delays. 

Random Early Detection 

Random Early Detection (RED) is a mechanism of AQM which ensures better queue 

management by deducting the congestion in advance. The objective of a RED is to 
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minimize the packet loss and queuing delay as well as avoid global synchronization of 

sources to maintain high link utilization and remove biases against high data rate sources 

(Koo et al. 2004). RED is not specifically designed for certain protocol; however it works 

impressively for the protocols which perceive drops as indication of congestion. TCP is one 

of those where RED performs well. 

In RED, user is required to specify five parameters including maximum buffer size or 

queue limit, minimum threshold, maximum threshold, maximum dropping probability and 

wait factor used to calculate the average queue size (Dhadse et al. 2014). RED works in 

three different zones. 

• Normal operation zone - when average queue size (Qavg) is below minimum 

threshold (minth), there is no packet drop. 

• Congestion avoidance zone - when average queue size (Qavg) is between minimum 

threshold (minth) and maximum threshold (maxth), packets are discarded with certain 

probability Pa. 

• Congestion control region - when average queue size (Qavg) is above maximum 

threshold (maxth), all packets are dropped. 

Here are formulas (Koo et al. 2004) for calculating the average queue size (Qavg) and 

probability (Pa). 

Average queue size:   

Qavg = (1−Wq)·Qavg +Wq ·Q         (22) 

where Q is the current queue length and Wq is a weight parameter, ≤ Wq ≤ 1 

Probability: 

Pa = Pb  / (1 − count · Pb)        (23) 
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And 

Pb = maxp / ( maxth − minth ) . (Qavg − minth )      (24) 

where maxp is a maximum value of Pb when average queue length Qavg is equal to maxth. 

Other AQM policies include BLUE, REM and PI which ensures better congestion control 

and fair queue management for QoS-enabled systems. 

SFQ 

SFQ uses large number of separate FIFO queues to provide fairness in queue management. 
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3. NETWORK SIMULATORS 

Network simulation is an important technique in model era, in which researchers can model 

hypothetical and real life network objects on computer and observe the behavior of the 

underline networks by executing different experiments based on combination of various 

parameters. A simulation can consist of different network entities including hosts, 

interconnections between nodes, connecting devices such as router, switches and bridges, 

configuration systems, mobility models and system level networking protocols. 

In Network research area, implementation and deployment of complete test bed containing 

various network nodes, connecting devices including routers, bridges and switches and data 

links to validate and verify certain networking protocols is very expensive. In this case, 

network simulators are cost and time effective solution to achieve the tasks through 

different network simulations. Network simulators help researchers to test the design of 

new networking protocols or change the existing networking protocols in a controlled and 

reproducible manner (Pan & Jian 2008).  

Network simulators are used by different researchers, industrial scientists and Quality 

Assurance (QA) engineers for testing the performance and validity of different networking 

protocols where visibility of a simulation is irrelevant. In other words, the main objective of 

network simulation is to observe the characteristics and behavior of a network where one 

can simulate, emulate and analyze the end results of network simulations. The network 

research area is very wide where new revolutions as well as innovations are seen every day. 

Different organizations work in parallel in different technologies and contribute in building 

of the network communication platforms where new technologies are evolving every single 

moment. In this case, the progressive growth in network simulators is very important so 

that all the new technologies are immediately available and can be evaluated as soon as 

these become standards for everyone. The growth in network simulators cannot be handled 

by a single organization and contributions from different organizations is essential. It can 
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only be achieved by open platforms of all network simulators such that everyone can work 

and contribute to the development of network simulators and make them up to date with the 

recent technologies. 

Authors (Gupta, Mangesh, Ghonge, Thakare & Jawandhiya 2013) listed some of the 

advantages and disadvantages of network simulators given in Table 3: 

Table 3. Network simulators advantages and disadvantages. 

Advantages Disadvantages 

• Inexpensive 

• Help to gain the knowledge about the 

improvements of a system 

• Help to understand the working 

principle of a system 

• Testbed for evaluating new 

communication protocols 

• Finding bugs and troubleshooting in 

advance  

• Use of analytic and numerical 

techniques for observing the behavior 

of a system  

• Partial simulation for observing parts 

of full model 

• Unclear model reflection to reality 

• High simulation complexity in large 

scale networks 

• Slow compare to reality (1 minute of 

real time can take hours in 

simulations) 

• Hard to determine right level of 

model complexity 

• Uncertain statistical results 

In the following sections, the basic concepts, main features, languages and recent as well as 

future developments of different open source network simulators will be assessed. At the 

end, a comprehensive comparison between different network simulators will be provided 

based on merits and demerits, platforms, cost, license, API, user interface and supported 

network types. 
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3.1. Basic Concepts in Network Simulators 

Understanding of basic concepts in network simulators is essential for everyone especially 

for new researchers so that they can utilize maximum benefits of network simulators and 

produce results approached near to reality. Here, some of the basic concepts to help readers 

are listed. 

3.1.1. Network Simulator and Simulation 

Network simulator is a tool which provides user interface to the users for defining a model 

using diverse network components. User interface can be a command line or graphical user 

interface (GUI). Command line interface requires strong programming skills while GUI 

requires basic knowledge for novel users. In principle, network simulators allow users to 

model any real world model where users can tweak different network properties and 

analyze the result. But in reality, network simulators are not perfect and models rarely 

matches the real world models due to diversity, unpredictable and random nature involved 

in real models. However, network simulators can provide relatively close results which 

gives user a meaningful insight into the network under test and how the parameter changes 

can affect its operation (Pan et al. 2008).  

3.1.2. Network Simulation and Emulation 

Network simulation is a process in which a researcher models range of real world models 

using various network components including nodes, routers, switches, physical links or 

packets and applies mathematical formulas for evaluation. The simulation experiments 

conducted either online or offline in the controlled environments can be observed using 

various combinations of parameters and configuration settings. 

On the other hand, emulation is an extension to simulations where end systems such as 

computers can be attached to simulation models through emulators and act as they are 



55 

 

 

 

connected to real network. A famous NS2 simulator can be used as a limited-functionality 

emulator whereas WANsim is the typical bridge WAN network emulator.  

3.1.3. Discrete Event Simulation 

In network simulation, discrete-event simulation (DES) is a process of modeling the 

operation of a system as discrete sequence of events in time where each event occurs at a 

particular time causing a change in the state of a system (Borboruah & Nandi 2014). In this 

process, continuous events are not possible between two consecutive events; hence state of 

a system can jump between states on specific time intervals. Currently, most of the 

available network simulators are based on discrete-event simulation.   

3.2. Type of Network Simulators 

Network simulators can be classified based on certain criteria such as they are free or 

commercial, open source or proprietary and simple or complex.  

3.2.1. Free and Commercial 

Some of the network simulators are free and provide open source code for researchers. The 

advantage of such simulators is that the source code is available to everyone for 

contributions and researchers can analyze different parts of the software as well as improve 

the functionality or introduce new features based on their requirements. On the other hand, 

different people contribute and make amendments in a source code and there is no single 

organization which governs the development, resulting in diversity and lack of systematic 

and complete documentation which can lead to serious problems. Free and open source 

network simulators include NS2, NS3, OMNET++, SSFNet and J-Sim. 
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Commercial network simulators are proprietary software and source code is not open to 

anyone. Only organization which owns network simulator can manage the source code and 

implement new features. All the users have to pay for a license to use their software as a 

whole or as a partial system where user pays for specific packages. The advantage of 

commercial network simulators is that they come with a well organized, systematic and up-

to-date documentation for end user which is consistently maintained by specialized staff in 

a company. The famous commercial network simulators are OPNET and QualNet. 

3.2.2. Simple and Complex 

Currently, there are penalty of different network simulators available in market ranges from 

simple to complex in nature. The basic functionality in simple simulators allows end users 

to define simple topologies consisting of scenarios, specifying the nodes and links between 

these nodes and generating traffic in a network. GUI enabled network simulators also make 

life easy for end users and they can view underline simulations clearly and can define 

network models using drag and drop features. 

Contrary, complex network simulators provide more room to end users to play with core 

networking protocols by providing them programmatic platform where only skilled 

researchers can effectively work. These simulators are usually text based and provide less 

interactive interface but allow advance customization to the source code.   

3.3. Network Simulator 2 

Network simulator 2 (NS2) is a most eminent object oriented, open source discrete-event 

simulator used in communication research and development. NS2 and extension of NS 

which was developed in 1989 based on REAL network simulator and evolved revolutionary 

over the past couple of years (Pan et al. 2008). NS2 was originally developed at University 

of California, Berkeley for focusing the simulation of IP networks on packet levels. NS2 
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project is now part of the Virtual InterNetwork Testbed (VINT) project which is 

responsible for developing tools for network simulation research (Karl 2005). Currently, 

NS2 is used by large group of organizations in academic research and non-profit groups all 

around the world contributed various packages in a core base. In recent years, NS2 

development is discontinued and NS3 has taken over the place. 

NS2 covers a large number of networking applications, protocols, networking types, 

network elements and traffic models. Researchers use NS2 for the development and 

analysis of various protocols such as TCP and UDP, router queuing policies such as RED, 

ECN and CBQ, unicast and multicast transmissions, multimedia applications and other 

networking resources. 

A platform for NS2 is based on two languages consisting of C++ and OTcl (Tcl script 

language with object oriented extension developed at MIT). NS2 core is based on C++ and 

NS2 frontend is based on OTcl. C++ is an efficient language for writing device drivers and 

low-level applications, the purpose to use C++ in NS2 is to have an efficient mechanism to 

execute simulations which increases the overall performance and reliability of the 

simulations. On the other hand, C++ is not good and easy to use for graphical user 

applications and here OTcl language helps researchers to cover this area. 

Figure 21 illustrates a simplified user view for NS2.  

 
Figure 21. Simplified NS2 user view (Pan et al. 2008). 
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In NS2, OTcl language is used to model networks by defining various network nodes, data 

link connections, routers and network configurations such as queue management, routing 

and congestion control. OTcl provides easy approach to modify and assemble different 

components and change different parameters on the fly to the end users. Considering the 

main principle of these languages, C++ covers the control part as well as OTcl covers data 

part of the simulation implementation. NS2 uses C++ for the implementation and 

compilation of the event scheduler and basic network component objects to reduce packet 

and event processing time. Moreover, C++ is used to implement detailed network protocols 

whereas OTcl is used for providing a controlled way to define different simulation 

scenarios and researchers can schedule different events using the provided C++ event 

scheduler classes. 

In NS2, user defines simulation scenario using network nodes, protocols, network topology, 

specific application and form of required output in OTcl script. OTcl interpreter links the 

written script to compiled C++ components through OTcl linkage that creates one to one 

match of OTcl object for each of C++ object. After the execution of the simulation, the 

simulation results are captured in different ways such as in tracing files which are used to 

analyze the results using different statistical and analytical techniques. NS2 comes with 

network animator (NAM) shown in Figure 22 which displays the visual simulation to the 

end users. 

 

Figure 22. NAM (Karl 2005). 
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3.3.1. Architectural Overview 

NS2 architecture (see Figure 23) consists of the following five parts: 

 

Figure 23. NS2 architecture (Karl 2005). 

Event scheduler is used to schedule simulation events on discrete time intervals, therefore is 

known as discrete-event scheduler (DES). Event scheduling can be any type such as packet-

handling delay events or specific timers use for scheduling certain actions. Figure 24 

shows important component if discrete event scheduler. 

 

Figure 24. Discrete event scheduler (Karl 2005). 

Network components are network elements defined as C++ class hierarchy in NS2. The 

example of OTcl class hierarchy is given in the following figure: 

Event 

scheduler

Network 

components
Tclcl

OTcl library
Tcl 8.0 script 

lanuage
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Figure 25. OTcl class hierarchy (Karl 2005). 

In the OTcl class hierarchy (see Figure 25), TclObject is a super class of all the objects 

whereas NsObject is a super class of Connector and Classifier. Connector class is a parent 

of all the basic network components which have only one output data path whereas 

Classifier class is a super class of advance network components which has multiple output 

data paths. 

Tclcl is used to implement OTcl linkage. 

OTcl is an extension to Tcl/Tk scripting language (Karl2005) for object oriented 

programming. It is used to define the prototype, configuration and control model of the 

simulation. User can define event scheduler, the network topology and data links, traffic, 

errors configurations and tracing options in NS2 OTcl script. 

Tcl 8.0 is a scripting language used for writing OTcl script in NS2. 

3.3.2. NS2 Models and Technologies 

NS2 has a long list of supported models and communication technologies contributed by 

various non-profit organizations around the globe. Though the development of NS2 is 

clogged due to future NS3 but researches are still utilizing existing NS2 models for the 

network research area. 

Table 4 briefly illustrates the available models and technologies in NS2. 
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Table 4. NS2 models and technologies. 

Category Model and technologies 

Routing AODV, AODV-UV, ZRP, AOMDV, IS-IS, RCDS, DLSR, DMCR, 

DYMO, UM-OLSR, ATM, HWMP 

Wired, Wireless 

and Mobility 

ARP, HDLC, GAF, MPLS, LDP MAC: CSMA, Satellite Aloha, 

Queuing: Drop Tail, RED, RIO, SRR, WFQ, REM, IEEE 802.11b, 

IEEE802.15.4, IEEE 802.11 support, IEEE 802.11 PHY-MAC 

design and implementation, IEEE 802.11 PCF, IEEE 802.11 PSM, 

IEEE 802.11e EDSA and CFB simulation model, IEEE 802.11e 

HCCA module, IEEE 802.15.4, IEEE 802.16 model, IEEE 802.16 

model MIRACLE framework, IEEE 802.16 wireless mesh 

networks, NS2-emulation extension (optimized for wireless 

networks,  IR-UWB, TDMA DAMA satellite support, WiMAX,  

CRCN, UCBT Bluetooth, SUNSET underwater networking, 

VANAT, CanuMobiSim, EURANE extensions, BonnMotion, a 

java mobility scenario generator and analyzer, GPRS, BlueHoc, a 

bluetooth extension, CIMS 

Transport TCP Pacing, UDP, DCCP for wired and wireless networks, Linux 

TCP Congestion Control for 12 different congestion control 

algorithms (BIC, CUBIC, HighSpeed TCP, H-TCP, TCP-HYBLA, 

NewReno, Scalable TCP, Vegas, Westwood, TCP Veno, TCP 

Compound and TCP Low-Priority), Network Simulation Cradle, 

TCP Westwood, Extensions to RTP code, Freeze-TCP, Multipath 

TCP, Data Center TCP (DCTCP), TCP ex Machina, SCTP, TCP 

Rate-Halving Algorithm, MFTP, SNACK 

Other models and 

technologies 

Satellite networks, Topology and traffic generation, Differentiated 

services, Integrated services, Scheduling and queue management, 

Multicast, DTN, Application layer 
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NS2 development for new models is almost terminated and no notable enhancements have 

been made during last one decade. However, NS2 is lightly maintained through its active 

mailing list. 

3.4. Network Simulator 3 

Network simulator 3 (NS3) is a next generation simulator which aims to improve existing 

system functionalities and network models of NS2 with the improved software core and 

execution methodologies. NS3 is based on NS2, GTNets and YANS. NS3 development 

work started in 2006 by NSF CISE and INRIA and the first official release was in 2008. 

The main objectives behind the development of NS3 were to provide a different software 

core written in C++ and python scripting interface in order to enhance the simulation 

performance.  Furthermore, other focused areas included the intention to realism and 

software integration with more open source networking software.  

Similar to NS2, NS3 is an open source discrete-event simulator and various organizations 

and researchers are continuously striving to contribute new telecommunication models and 

network protocols implementations, data link layers functionalities and tracing as well as 

analytical methodologies. NS3 is not backward compatible and uses completely different 

programming languages and platform for writing core libraries and network simulations 

compared to NS2. However, a few of the existing NS2 models have already been 

transformed to NS3 and are currently being used. NS3 allows researchers to study and 

evaluate various internet protocols and large scale systems in a controlled environment. 

In Figure 26, NS3 simulation architecture components are listed. 



 

 

Figure 26. NS3 Simulation Architecture (

NS3 core is designed as C++ libraries which can be statistically as well as dynamically 

linked to C++ main program for various network simulations. Python scripting interface is 

used by users as a wrapper to encapsulate C++ modules which 

programming in C++.  For a simulation, user creates a traffic scenario by defining network 

topologies consisting of various network components in either C++ or Python. A traffic 

scenario is attached to C++ core where different NS3 

program. The execution of a simulation can be viewed using 

NetAnim. For the analysis, NS3 provides 

These trace files can be plotted to various g

Authors (Chaudhary et al. 2012) categorized NS3 features in different sections such as 

testbed integration, attribute system, tracing architecture and topology generation. 

According to them, NS3 testbed integration enable

novel protocol stacks and emit network packets over real device drivers. NS3 attribute 

system allows researchers to identify and configure values to the parameters in a simulator. 

These values can be handled as default v

configured values provided at run time from console. Furthermore, NS3 tracing system uses 

call back functions to separate tracing data completely from trace sink and enable 

customization of the tracing or statisti

Authors also emphasizes on a topology building feature of NS3 which allows users to 

design and model simulation scenario using number of stock topology objects implemented 
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NS3 Simulation Architecture (Rajankumar, Nimisha & Kamboj 2014

NS3 core is designed as C++ libraries which can be statistically as well as dynamically 

linked to C++ main program for various network simulations. Python scripting interface is 

used by users as a wrapper to encapsulate C++ modules which are easy to use compared to 

programming in C++.  For a simulation, user creates a traffic scenario by defining network 

topologies consisting of various network components in either C++ or Python. A traffic 

scenario is attached to C++ core where different NS3 models and libraries are linked to the 

program. The execution of a simulation can be viewed using an animator, for example 

analysis, NS3 provides a tracing mechanism which produces trace files. 

These trace files can be plotted to various graphs using different graph tools. 

2012) categorized NS3 features in different sections such as 

testbed integration, attribute system, tracing architecture and topology generation. 

According to them, NS3 testbed integration enables researchers to experiment various 

novel protocol stacks and emit network packets over real device drivers. NS3 attribute 

system allows researchers to identify and configure values to the parameters in a simulator. 

These values can be handled as default values, hard coded in a simulator script or 

configured values provided at run time from console. Furthermore, NS3 tracing system uses 

call back functions to separate tracing data completely from trace sink and enable 

customization of the tracing or statistics output without rebuilding the simulation program. 

Authors also emphasizes on a topology building feature of NS3 which allows users to 

design and model simulation scenario using number of stock topology objects implemented 

2014). 

NS3 core is designed as C++ libraries which can be statistically as well as dynamically 

linked to C++ main program for various network simulations. Python scripting interface is 

easy to use compared to 

programming in C++.  For a simulation, user creates a traffic scenario by defining network 

topologies consisting of various network components in either C++ or Python. A traffic 

models and libraries are linked to the 

animator, for example 

tracing mechanism which produces trace files. 

 

2012) categorized NS3 features in different sections such as 

testbed integration, attribute system, tracing architecture and topology generation. 

s researchers to experiment various 

novel protocol stacks and emit network packets over real device drivers. NS3 attribute 

system allows researchers to identify and configure values to the parameters in a simulator. 
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cs output without rebuilding the simulation program. 

Authors also emphasizes on a topology building feature of NS3 which allows users to 

design and model simulation scenario using number of stock topology objects implemented 



 

 

in C++ libraries. NS3 Stock obj

topologies.  

Figure 28 illustrates NS3 features in end to end simulation starting from reason question to 

simulation visualization and analysis.

Figure 27. NS3 Features (Chaudhar

3.4.1. Architectural Overview

NS3 Internal architecture consists of various components and 

components in detail: 

Figure 28. NS3 Internal Architecture
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illustrates NS3 features in end to end simulation starting from reason question to 

ion visualization and analysis. 

NS3 Features (Chaudhary et al 2012). 

Architectural Overview 

NS3 Internal architecture consists of various components and Figure 28 illustrates these 

NS3 Internal Architecture. 

ects include trees, meshes, stars and other random 

illustrates NS3 features in end to end simulation starting from reason question to 

 

illustrates these 
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The NS3 core contains all the common components used across all protocols, hardware and 

environmental models. NS3 network consists of fundamental network objects including 

packets and nodes. In addition, other network layer components including address types, 

queues and sockets also belong to NS3 network. NS3 core and network are two basic 

platform components which are used not only in all network simulations but also in other 

simulations as well. Other components such as internet, mobility, protocols, applications, 

devices and propagations are subclasses of core components. Helper classes are wrappers 

which encapsulate low level complex API calls for easy use. These classes provide 

convenient ways for python scripts where NS3 core libraries can be imported using these 

helper classes. 

Figure 29 exemplifies NS3 IP stack architecture showing various components working in 

end-to-end communication: 

 

Figure 29. NS3 IP Stack Architecture. 

In NS3 IP stack architecture, nodes are entities which can be static or have mobility nature. 

These nodes contain network devices which transfer packets over a channel over physical 

layer and data link layer phase. Network protocols such as IP and ARP are managed at 

network layer whereas transport protocols such as TCP and UDP are supported at transport 

layer. Network simulation applications are written by end users at application layer. From 

sender to receiver, data travels on certain channels and all application layers are traversed 

in reverse order at receiver. 
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NS3 testbed supports real system integration with the network simulation and Figure 30 

shows brief details for NS3 testbed: 

 

Figure 30. NS3 Testbed. 

NS3 interconnects virtual machines on real machines and testbed interconnects NS3 stacks. 

For simulation visualization, NS3 uses various tools such as NetAnim, ns-3-viz, pyviz and 

iNSpect. Most of these tools are still under development. Figure 31 shows NetAnim 

interface which is most commonly used tool in NS3 community: 

 

Figure 31. NetAnim (NetAnim from ns-3 wiki). 
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NetAnim is based on QT 4 toolkit developed by George F Riley which uses XML trace 

files collected from simulation and animates the results in offline mode. 

3.4.2. NS3 Models and Technologies 

Table 5 illustrates the available model and technologies in NS3. 

Table 5. NS3 Models and Technologies. 
Category Model and technologies 

Routing NAT, BGP, OSPF, RIP, IS-IS, PIM-SM, IGMP, Static (Dijkstra) 

unicast, Static multicast, DSDV, Global (link state), Nix-vector, DSR, 

MANET, OLSR, AODV, VANET 

Wired, Wireless 

and Mobility 

IEEE 802 physical layers, New 802.11 model, Wifi 802.11 links,  Mesh 

802.11s, IEEE 802.11 variants (mesh, QoS), WiMAX 802.16, TDMA, 

CDMA, , GPRS, CSMA, Bridge (802.1D Learning), PPP, Zigbee, 

MPLS, Rayleigh and Rician fading channels, GSM, Jakes composite 

loss model, Friis, Hierarchical, Random direction, RWP, ns-2 Scen-

Gen 

Transport TCP stack emulation (Linux, BSD), UDP, Additional high speed TCP 

variants, DDCP 

Other models 

and 

technologies 

Sockets-like API, Traffic generator, Ping, Echo, Packet sink, Topology 

input reader, Random number generator, Tracing, Unit test, Logging, 

Callback, Error models 

 

Many of the models and technologies for NS3 are under development at the moment and 

major challenges for NS3 are open to solve. Experts from different research organizations 

are voluntarily contributing to NS3 core stack on daily basis which means that new 

components will be added to the NS3 stack in coming years. 
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3.5. OMNET++ 

Objective Modular Network Test-bed in C++ (OMNET++) is an open source, discrete-

event and component based network simulator with GUI support. It is available as free 

software for academic and research use as well as it has commercial license for the 

industry. OMNET++ has a better documentation and support for commercial license as 

dedicated group of experts are paid and work in different areas such as research and 

development, testing, support and documentation for end users. OMNET++ was developed 

by András Varga at the Department of Telecommunications, Technical University of 

Budapest (Erdei Márk et al) in 1997. The primary area of OMNET++ simulations is 

communication networks; however its generic and a flexible architecture allows working 

with other areas such as IT systems, queuing networks, hardware architectures and even 

business processes models as well. 

OMNET++ is based on component architecture where all components, also called as 

modules, are written in C++. High level language (NED) is used to assemble these 

components in simulation scenarios same as OTcl in NS2 and Python in NS3. The modular 

architecture of OMNET++ supports simulation kernel to be embedded into various kinds of 

different end user applications.  Figure 32 illustrates OMNET++ graphical user interface. 

 

Figure 32. OMNET++ GUI. 

OMNET++ works for both wired and wireless networks and offers an Eclipse-based IDE, a 

graphical runtime environment and a host of other tools. It also comes with the extensions 
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for real time simulation, network emulation, database integration, SystemC integration and 

several other functions. 

Here is a list of OMNET++ components in brief.  

 

 

 

 

Simulation kernel library is written in C++ and consists of utility classes for random 

number generation, statistics collection, topology discovery etc. These classes are used to 

define simulation components including simple modules and channels which are assembled 

and configured for simulation models in NED. Simulation programs using NED and C++ 

are written in Eclipse IDE for designing, running and evaluating simulations. Runtime user 

interface environments such as Tkenv and Cmdenv are used for the simulation execution. 

Users can use utilities such as makefile to build and run the simulation from command line. 

OMNET++ has organized documentation and sample programs for learning and support 

researchers. 

  

� Simulation kernel library 

� NED topology description language 

� OMNET++ IDE based on Eclipse platform 

� GUI for simulation execution, links into simulation executable (Tkenv) 

� Command line user interface for simulation execution (Cmdenv) 

� Utilities (makefile creation tool, etc 
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3.5.1. Architectural Overview 

Figure 33 represents OMNET++ architecture of a simulation program: 

 

Figure 33. OMNET++ Architecture. 

In order to simulate any communication network in OMNET++, one has to follow certain 

steps from a start to the end of the simulation experiment. The steps include defining a 

model structure and network topology in NED file, writing active components in C++, 

building a MakeFile and creating a simulation executable using make command. 

Furthermore, writing simulation configurations and parameters in OMNetpp.ini file, 

running a simulation executable and processing the results are the important steps in 

OMNET++. User can also modify configuration parameters, build and run simulation 

executable for any number of times. 

 In Figure 34, summary of all the OMNET++ simulation steps using a flowchart is given. 
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Figure 34. OMNET++ Simulation Process. 

For simulations, OMNET++ includes INET framework which is an open source 

communication networks simulation package. It contains models for various wired and 

wireless networking protocols including TCP, UDP, SCTP, IP, IPv6, Ethernet, PPP, 

802.11, MPLS, OSPF and others. The INET framework uses the same concepts as 

OMNET++ such as modules communicating by message passing. In INET, protocols are 

designed as simple modules with external interface defined in a NED file whereas 

implementation is provided in a C++ class with the same name. The INET framework is 

helpful for the beginners and provides various example models for the simulations. 
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3.5.2. OMNET++ Models and Technologies 

Table 6 provides a list of models and technologies available in OMNET++ INET 

framework. 

Table 6. OMNET++ INET Models and Technologies. 
Category Model and technologies 

Routing Link-state routing, OSPF (INET), OSPF (Quagga), BGP (INET), RIP 

(INET), BGP (Quagga), RIP (Quagga), STP, RSTP, MANET: 

AODV, DYMO-UM, DYMO-FAU, DSDV, DSR, DSR, OLSR 

Wired, Wireless 

and Mobility 

PPP, Ethernet, IEEE 802.11 (INET), IEEE 802.1e, IEEE 802.11 

(MF), IEEE 802.16e (WiMAX), IEEE 802.16 (WiMAX), IEEE 

802.15.4 (LR-WPAN), MPLS, LDP, RSVP-TE, ARP, HIP, DHCP 

Transport TCP (INET), TCP (lwIP), TCP (NSC), UDP, SCTP, RTP, RTCP 

Other models 

and 

technologies 

Traffic generators (CBR/VBR), HTTP traffic generators, File transfer, 

Basic and advance video and voice streaming models, Sensor 

networks, Vehicular networks, Cellular networks, Satellite networks, 

Optical networks, Interconnection networks, NoCs, Cloud 

Computing, HPC clusters and SANs 

 

Due to GUI support and well organized libraries, OMNET++ is popular in academic and 

industrial research for its extensibility and open source code. Online documentation is also 

a good resource for beginners to start working with OMNET++.  

3.6. Comparison of Network Simulators 

In this section, NS2, NS3 and OMNET++ will be compared on the basis of programming 

languages, platforms, memory management, performance, network models, and simulation 
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output. Merits and demerits of using these network simulators in communication network 

research will also be explained. 

All three network simulators core libraries are written in C++ language. In addition, 

different scripting languages are used by each network simulator for network typology 

design and implementation. Figure 35 highlights the common as well as uncommon 

programming languages used by these simulators. 

 

Figure 35. Network Simulators and Programming Languages. 

In addition to programming languages, NS2 and NS3 provides command line interface to 

the user whereas OMNET++ has a graphical user interface where user can drag and drop 

different network elements to design the network topology on the fly.  

Network simulators are supported by different operating system platforms and are not 

available for all operating systems. Figure 36 provides details for platforms support in 

NS2, NS3 and OMNET++. 

 

Figure 36. Network Simulators and Platforms. 
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Memory management is critical in network simulations, therefore special considerations are 

given in the design of NS2, NS3 and OMNET++. NS2 uses basic manual C++ memory 

management functions to utilize memory in best possible way. However, these are old 

methods ad NS2 cannot compete with newly developed network simulations when it comes 

to memory management and utilization. NS3 uses basic manual C++ memory management 

functions such as new, delete, malloc and free. It also uses new techniques such as 

automatic de-allocation of objects using reference counting (track number of pointers to an 

object) to deal with unused packets. 

OMNET++ and NS3 are proved to be better in performance compared to NS2. In NS2, the 

computation time consumed by interfacing Otcl interpreter with C++ is an actual overhead 

which takes time and affects the performance of a simulation. In NS3, the aggregation 

system helps to avoid storage of the unused parameters and reserved header spaces for 

packets. NS3 and OMNET++ use a garbage collection which enhances the memory 

utilization in the simulation of large scale networks without having effects on performance. 

NS2 is the most widely used network simulator as it supports almost all network models. 

Other simulators including NS3 and OMNET++ are in development phase and still lack 

support for numerous number of network models. Table 7 lists all the supported models for 

NS2, NS3 and OMNET++. 

Table 7. Network Simulators and Supported Network Types. 

Network Simulator Supported Network Types 

NS2 • Wired networks 

• Wireless Ad-Hoc networks 

• Wireless managed networks 

• Wired cum wireless networks 

• Wireless sensor networks with the exception that it cannot 

simulate problems of bandwidth or power consumption in these 
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networks 

NS3 • Wired networks 

• Wireless networks 

• Wireless sensor networks 

OMNET++ • Wired networks 

• Wireless managed networks 

For simulation visualization and analysis, NS2 includes a utility called Network Animator 

(NAM) whereas NS3 comes with visualization utility programs known as ns3-viz, pyviz, 

NetAnim. OMNET++ IDE provides a good support for the simulation visualization and 

analysis within a tool. Other tools such as OMVis are also available for OMNET++ 

simulation analyses which focus on the intuitive and spatio-temporal visualization of 

simulation data. 

Merits and demerits of network simulators 

NS2 merits 

� NS2 is most used network simulator in communication network research due to a 

rich collection of network models and technologies. 

� NS2 supports parallel and distributed simulations. 

� Over 50% of ACM and IEEE network simulation research papers cite the use of 

NS2. 

NS2 demerits 

� Development is almost stopped and unmaintained for a long period of time. 

� Lacking the adaptation of modern programming techniques such as smart pointers 

and design patterns therefore has outdated code design. 
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� Network scalability is not well supported raising memory management and 

performance issues for large scale networks. 

� Simulation analysis is difficult due to use of complex tracing system where one 

needs to parse the trace files to extract required results. Trace files contain 

unnecessary information and sometimes miss the required information. 

� Hard to find centralized documentation and tutorials, information is really 

dispersed. 

� Hard to debug the code due to use of bi-languages, especially for Otcl scripting 

language. 

NS3 merits 

� Fast compared to NS2 as everything is designed in C++ with optional python 

scripting support. 

� NS3 is active open source project and is continuously under development for 

enhancements and improvements under the supervision of experts working for 

different organizations voluntarily. 

� Integrations support for external tools such as random mobility generators, traffic 

generators and others. 

� Emulation mode supports integration with real systems which makes NS3 

preferable to use. 

� Attribute system allows end users to either configure simulation parameters within a 

code or provide as command line arguments during run time which makes NS3 

really flexible which helps to change the experiment outputs without building the 

simulation. 

� Good network scalability and suitable for large scale network simulations, resulting 

in improved memory management and performance for network simulations. 

� Use of modern programming techniques such as smart pointers and design patterns. 

� Tutorials and well organized documentation is available. 
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� Easy debugging of a code due to full use of C++. 

NS3 demerits 

� NS3 is still underdevelopment and lacks a lot of models already available in NS2, 

therefore is not recommended for all kind of network simulations. 

� Limited GUI which makes network modeling very complex and time consuming 

task. 

� Even though NS3 is considered to be a next generation of NS2, but it is written 

from scratch and therefore lacks backward compatibility with NS2. 

OMNET++ merits 

� Support simulations for large scale networks. 

� Use modern programming techniques such as design patterns. 

� Modular structure where modules are used as components and the definition is 

separated from the implementation. 

� Modules are reusable and can be used as combinations in various scenarios. 

� Due to use of generic and flexible architecture, OMNET++ makes a successful use 

in IT systems, queuing networks and hardware architectures along with 

communication networks. 

� GUI interface and design of NED is easy to use. 

� Ready to use simulation library known as INET framework. 

� Provide parallel simulation support to the end users. 

� Good animation and tracing support for data visualization and analysis. 

� Well maintained documentation, tutorials and support from a group of dedicated 

experts hired for a single organization. 
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OMNET++ demerits 

� OMNET++ is relatively new in growth and does not contain all the network models 

with certain features, therefore in some cases not recommended for use. 

� No contributions from external organizations therefore speed of new features 

implementation and enhancement is slow compared to other open source network 

simulators. 

� Free academic license has fewer features compared to commercial license. 
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4. EXPERIMENTS AND ANALYSIS 

This chapter contains details about the experiments and analysis conducted for NS2 and 

NS3 network simulators. In the first part of the chapter, the performance evaluation metrics 

is described which is used for number of versatile experiments. Second part illustrates the 

details about the underlined system and software used for experiments. Third part lists all 

the chosen models for experiments, whereas fourth part provides details about all the 

experiments and analysis performed for NS2 and NS3 network simulators. 

4.1. Performance Evaluation Metrics 

Before proceeding further to experiments, the details about the performance evaluation 

matrix used in experiments are described which provides information about the different 

key indicators used to evaluate networking models in chosen network simulators. For the 

evaluation, we have considered the productivity, responsiveness, utilization, packet loss, 

congestion window utilization and queue management characteristics of a network. Table 8 

provides details about the performance evaluation metrics used in the experiments. 

Table 8. Performance Evaluation Metrics. 

Category Metric Units 

Productivity Node throughput 

Network throughput 

Packet delivery ratio 

Mega bits per second (Mbps) / 

Kilo bytes per second (KBps) 

Packet delivery percentage 

Responsiveness Average end-to-end delay Milliseconds (ms) 

Utilization Congestion Control CWND 

Losses Packet loss Packet lost percentage 

Queue Management Queue drop (DropTail, RED, SFQ) Packet lost percentage 
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Node throughput is a measure of packets received at specific node. 

Network throughput is a measure of packets received by all receiving nodes in a network. 

Packet delivery ratio is a measure of a packets received at receiver compared to packets 

sent from source node.  
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Average end-to-end delay is a measure of an average time difference between sending and 

receiving time of all the received packets at destination nodes. It is calculated as follow: 
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Congestion control is used by TCP protocol to utilize the channel more appropriately for all 

the connected nodes. It ensures the maximum utilization of a channel by gradually 

increasing the packet sending rates until congestion is occurred in a network which results 

in congestion avoidance phase. Congestion control window size is managed by source 

nodes which increases or decreases the window size based on channel availability. 

Packet loss is a measure of finding the difference between no. of packets sent by source 

node and received by a destination node.  
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4.2. System and Software 

All the experiments are performed on Linux system and latest software versions are used 

for NS2 and NS3. The underlying system and software details are given in Table 9. 

Table 9. System and Software. 

System and Software Details 

Operating system  Linux Ubuntu 14.04 LTS 

 Intel Core i5-4310U CPU @ 2.00GHz x 4 

 64-bit 

NS2  ns-allinone-2.35 

NS3  ns-allinone-3.21 

4.3. Network models 

Four different networking models are chosen including two wired and two wireless 

networking models. In the experiments, different scenarios are made using these models 

and applied various algorithms and mathematical formulas in order to get various values 

fulfilling the performance evaluation metrics. Table 10 provides the details about different 

scenarios used in this thesis. 

Table 10. Network Scenarios. 

Network Scenario 

Wired • S1 Star Network  

• S2 Star Network and Large Simulation Time 

• S3 Star Network and Queue Types  

Wireless • S1 Simple Ad-hoc Network 

• S2 Complex Ad-hoc Network 
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4.4. Simulations 

In the following sections, the results about all the simulation experiments with appropriate 

analysis are provided and executed for wired and wireless networks using NS2 and NS3 

network simulators. These results are based on comparative, qualitative and mathematical 

analysis conducted using different mathematical formulas, communication standards and 

programming algorithms. 

4.4.1. Wired Network 

4.4.1.1. S1 Star Network 

Here a local area office network (see Figure 37) is selected where all the client computers 

connect to server systems through router in a wired network. 

 

Figure 37. Star Office Network (point to point). 
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Configurations 

Star network: six computers, two routers, printer, fileserver and scanner 
Simulation time: 100 second 
Transport protocol: UDP, TCP 
Applications: FTP, CBR 
TCP agent: Newreno (e.g. Agent/TCP/Newreno etc) 
UDP agent: UDP (e.g. Agent/UDP etc) 
Sink: DelAck, Null (e.g. Agent/TCPSink/DelAck)  
TCP packet size: 552 
UDP packet size: 512 
Queue: DropTail 
Queue size: default 50 
Computer (1-6): 1Mb 10ms 
Router (1-2): 5Mb 50ms 
Router2-printer: 1Mb 10ms 
Router2-fileserver: 3Mb 10ms 
Router2-scanner: 1Mb 10ms 

Experiment execution 

In this scenario, six network computers are connected to server systems including printer, 

scanner and file server. These computers connect to LAN router which further connects to 

server router. Server router connects all the network hosts to the printer, scanner and file 

server. Communication in a network by passes through LAN and server routers. All the 

computers in a network have 1Mb channel bandwidth with 10ms delay. LAN and server 

routers have 5Mb bandwidth and 10ms delay. Channel bandwidth for printer and scanner is 

1Mb with 10ms delay whereas fileserver shares 3Mb channel bandwidth with 10ms delay.  

Computer A and Computer B use TCP transmission with FTP packet generation 

application and connects to printer. Computer C and Computer D connects to scanner using 

the same TCP transmission with FTP packet generation application. Computer E and 

Computer F uses UDP with CBR application and connects to file server. 



84 

 

 

 

 

Figure 38. S1 Star simulation in NAM. 

 In Figure 38, computer A, B, C and D uses TCP transmission, therefore the congestion 

window configurations are configured for these nodes. The congestion window threshold is 

8000 and packet size is 552 bits. Packet size for computer E and F is set to 512 bits with 1.0 

mb date rate.   

After implementing a NS2 TCL script and NS3 C++ application program, the simulation 

was executed for 100 seconds. 

Analysis 

After the execution, we have calculated congestion window, node and network throughout, 

average end-to-end delay, packet delivery ratio and average packet loss by running 

different perl scripts for NS2 and NS3 output trace files.  

Congestion Window (CWND) 

First, NS2 and NS3 congestion window information for all the TCP sources in separated 

graphs (see Figure 39 &  Figure 40) is presented. These graphs show that the congestion 
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window for NS3 has higher values than NS2 congestion window ensuring a better 

utilization of channel in NS3 compared to NS2.  

 

Figure 39. S1 Star Network (Congestion Window NS2). 

 

Figure 40. S1 Star Network (Congestion Window NS3). 

For node by node analysis, the information for each node is combined into separate graphs 

for NS2 and NS3 and results are shown in Figure 41.  

 

Figure 41. S1 Star Network (Congestion Window NS2, NS3) – Computer A. 
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Comparison for Computer A for NS2 and NS3 shows that NS3 congestion window 

increases more efficiently than NS2 which is an indication of better channel utilization in 

NS3 compared to NS2. 

Comparison for other computers shows similar results as Computer A in the following 

graphs (see Figure 42, Figure 43 and Figure 44).  

 

Figure 42. S1 Star Network (Congestion Window NS2, NS3) – Computer B. 

 

Figure 43. S1 Star Network (Congestion Window NS2, NS3) – Computer C. 

 

Figure 44. S1 Star Network (Congestion Window NS2, NS3) – Computer D.  
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Throughput 

In this experiment, node and network throughput is calculated for all the receiving nodes in 

NS2 and NS3 simulation. Node throughput is observed for Router LAN, Router Server, 

Printer, File Server and Scanner, whereas network throughput is calculated for the whole 

network and compared for NS2 and NS3. Mean and standard deviation for network 

throughout are also calculated. 

 

Figure 45. S1 Star NS2 Node throughput. 

 

Figure 46. S1 Star NS3 Node Throughput. 
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are used for Printer and Scanner connections. CBR rate was high around 1.0 Mbps and data 

packet size was 512 which resulted in high throughput at File Server. On the other hand 

FTP data rate was based on TCP congestion window with packet size 552 which resulted in 

low throughput at Printer and Scanner. 

For comparison between NS2 and NS3, the network throughput with mean and standard 

deviation is calculated and results are shown in the Figure 47, Figure 48 and Table 11. 

 

Figure 47. S1 Star Network Throughput Comparison. 

Table 11. S1 Star Network Throughput Mean and Standard Deviation. 

  Time count Throughput 7 (Mbps) Throughput 8(Mbps) 

NS2 100 0.50675051 0.10414388 
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Figure 48. S1 Star Network Throughput Mean and Standard Deviation. 
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average end-to-end delay which makes NS3 better in terms of network delay compared to 

NS2. 

 

Figure 49. S1 Star End-to-End Delay for NS2, NS3. 

Packet Delivery Ratio 

In the experiments, the packet delivery ratio is measured for NS2 and NS3 and Figure 50 

shows the results: 

 

Figure 50. S1 Star Packet Deliver Ratio for NS2, NS3. 
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Packet delivery ratio for TCP packets in NS3 is enhanced compared to NS2 while packet 

delivery ratio for UDP packets in NS3 lack behind NS2 UDP packets. But as a whole 

network, NS3 provides high packet delivery ratio 99.8% compared to NS2 99.7%. However 

the difference is very small and findings are concluded that both NS2 and NS3 performance 

in terms of packet delivery ratio is at same level.   

Packet Loss 

In comparison for packet loss (see Figure 51) in TCP and UDP packets, NS2 looses more 

TCP packets than UDP packets compared to NS3. However, as a whole packet loss in NS2 

is noticeable compared to NS3 which provides minimum packet loss percentage.  

 

Figure 51. S1 Star Packet Loss for NS2, NS3. 
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Configurations 

Star network: six computers, two routers, printer, fileserver and scanner 
Simulation time: 500 second 
Transport protocol: UDP, TCP 
Applications: FTP, CBR 
TCP agent: Newreno (e.g. Agent/TCP/Newreno etc) 
UDP agent: UDP (e.g. Agent/UDP etc) 
Sink: DelAck, Null (e.g. Agent/TCPSink/DelAck)  
TCP packet size: 552 
UDP packet size: 512 
Queue: DropTail 
Queue size: default 50 
Computer (1-6): 1Mb 10ms 
Router (1-2): 5Mb 50ms 
Router2-printer: 1Mb 10ms 
Router2-fileserver: 3Mb 10ms 
Router2-scanner: 1Mb 10ms 

Experiment execution 

In this scenario, six network computers are connected to server systems including printer, 

scanner and file server. These computers connect to LAN router which further connects to 

server router. Server router connects all the network hosts to the printer, scanner and file 

server. Communication in a network by passes through LAN and server routers. All the 

computers in a network have 1Mb channel bandwidth with 10ms delay. LAN and server 

routers have 5Mb bandwidth and 10ms delay. Channel bandwidth for printer and scanner is 

1Mb with 10ms delay whereas fileserver shares 3Mb channel bandwidth with 10ms delay. 

Computer A and Computer B use TCP transmission with FTP packet generation 

application and connects to printer. Computer C and Computer D connects to scanner using 

same TCP transmission with FTP packet generation application. Computer E and Computer 

F uses UDP with CBR application and connects to file server. 

Computer A, B, C and D uses TCP transmission, therefore the congestion window 

configurations are implemented for these nodes where congestion window threshold is 
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8000 with packet size 552 bits. Packet size for Computer E and F is set to 512 bits with 1.0 

mb date rate.   

After implementing a NS2 TCL script and NS3 C++ application program, the simulation 

was executed for 500 seconds.  

Analysis 

After the execution, the congestion window, node and network throughout, average end-to-

end delay, packet delivery ratio and average packet loss are calculated by running different 

perl scripts over NS2 and NS3 output trace files. As the network model is same as of S1 

Star, few of the important results are presented. 

Congestion Window (CWND) 

In Figure 52 and Figure 53, congestion window is compared for Computer A and B in 

NS2 and NS3 which shows that congestion window for nodes in NS3 sometimes touches 

70 while the maximum boundary observed for NS2 nodes is approximately close to 60.  

 

Figure 52. S2 Star Network (Congestion Window NS2). 
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Figure 53. S2 Star Network (Congestion Window NS3). 

Comparison for Computer A between NS2 and NS3 shows that the NS3 congestion 

window increases more efficiently than NS2 which is an indication of a better channel 

utilization in NS3 compared to NS2. Figure 54 provides node by node comparison. 

 

Figure 54. S2 Star Network (Congestion Window NS2, NS3) – Computer A. 
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Figure 55. S2 Star Network (Congestion Window NS2, NS3) – Computer B. 
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Considering the congestion window graphs, it is concluded that the congestion window in 

NS3 provides better utilization of the channel compared to NS2 even with the large 

simulation time experiments. 

Throughput 

In this experiment, the network throughput with mean and standard deviation is compared 

for NS2 and NS3. The network throughput comparison shows that NS3 performs well 

compared to NS2 for a large simulation time. Here the network throughput for NS2 is 

approximately 0.2 times higher than NS2. Mean and standard deviation of the network 

throughput are also measured.  

Figure 56 illustrates results of network throughput in NS2 and NS3. 

 

Figure 56. S2 Star Network Throughput Comparison. 
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Table 12. S2 Star Network Throughput Mean and Standard Deviation. 

  Time count Throughput 7 (Mbps) Throughput 8(Mbps) 

NS2 500 0.501366 0.096775 

NS3 500 0.561552 0.062542 

 

 

Figure 57. S1 Star Network Throughput Mean and Standard Deviation. 
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Figure 58. S2 Star End-to-End Delay for NS2, NS3. 

Packet Delivery Ratio 

In the experiments, the packet delivery ratio is calculated for NS2 and NS3. With a large 

simulation time, the packet delivery ratio for TCP packets in NS3 is enhanced compared to 

NS2 while the packet delivery ratio for UDP packets in NS3 lack behind the UDP packets 

in NS2. But as a whole network, NS3 provides high packet delivery ratio 99.9% compared 

to NS2 99.83%. However the difference is very small and it is concluded that both NS2 and 

NS3 performance in terms of the packet delivery ratio is at same level. Figure 59 shows the 

results for the packet delivery ratio. 

 

Figure 59. S2 Star Packet Deliver Ratio for NS2, NS3. 
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Packet Loss 

In comparison for the packet loss in TCP and UDP packets, NS2 looses more TCP packets 

than UDP packets compared to NS3. However, as a whole, the packet loss in NS2 is 

noticeable compared to NS3 which provides a minimum packet loss percentage. The 

comparison for a packet loss is given in Figure 60.  

 

Figure 60. S2 Star Packet Loss for NS2, NS3. 
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Configurations 

Star network: six computers, two routers, printer, fileserver and scanner 
Simulation time: 100 second 
Transport protocol: UDP, TCP 
Applications: FTP, CBR 
TCP agent: Newreno (e.g. Agent/TCP/Newreno etc) 
UDP agent: UDP (e.g. Agent/UDP etc) 
Sink: DelAck, Null (e.g. Agent/TCPSink/DelAck)  
TCP packet size: 552 
UDP packet size: 512 
Queue: DropTail | RED | SFQ 
Queue size: default 50 
Computer (1-6): 1Mb 10ms 
Router (1-2): 5Mb 50ms 
Router2-printer: 1Mb 10ms 
Router2-fileserver: 3Mb 10ms 
Router2-scanner: 1Mb 10ms 

Experiment execution 

In this scenario, six network computers are connected to server systems including printer, 

scanner and file server. These computers connect to LAN router which further connects to 

server router. Server router connects all the network hosts to the printer, scanner and file 

server. Communication in a network travels through LAN and server routers. All the 

computers in a network have 1Mb channel bandwidth with 10ms delay. LAN and server 

routers have 5Mb bandwidth and 10ms delay. Channel bandwidth for printer and scanner is 

1Mb with 10ms delay whereas fileserver shares 3Mb channel bandwidth with 10ms delay.  

Computer A and Computer B use TCP transmission with a FTP packet generation 

application and connects to printer. Computer C and Computer D connects to a scanner 

using same TCP transmission with a FTP packet generation application. Computer E and 

Computer F uses UDP with a CBR application and connects to the file server. 
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Computer A, B, C and D uses TCP transmission, therefore the congestion window is 

configured for these nodes. The congestion window threshold is 8000 and the packet size is 

552 bits. The packet size for Computer E and F is set to 512 bits with 1.0 mb date rate.   

For the experiment, three different queue types such as DropTail, RED and SFQ are used to 

observe behavior of underlying network. 

After implementing a NS2 TCL script and NS3 C++ application program, the simulation 

was executed for 100 seconds.  

Analysis 

After the execution, the congestion window and packet loss are calculated for each TCP 

source node. As the network model is same as S1 Star, results are provided (see Figure 61 

to Figure 66) only for Computer A and Computer B using DropTail, RED and SFQ in NS2 

and NS3. 

Congestion Window (CWND) 

DropTail 

 

Figure 61. S3 Star Network (DropTail Congestion Window NS2). 
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Figure 62. S3 Star Network (DropTail Congestion Window NS3). 

RED 

 

Figure 63. S3 Star Network (RED Congestion Window NS2). 

 

Figure 64. S3 Star Network (RED Congestion Window NS2). 
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SFQ 

 

Figure 65. S3 Star Network (SFQ Congestion Window NS2). 

 

Figure 66. S3 Star Network (SFQ Congestion Window NS3). 
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In comparison with NS2 and NS3, SFQ is a best queue for handling network traffic. 

However, sometimes it behaves strangely with one or more nodes where the congestion 

window remains under a minimum congestion control threshold. On the other side, SFQ 

increases the congestion window fairly and efficiently for all the other connected nodes 

which results in an improved network performance by all means. 

Packet Loss 

For the queue analysis, packet loss is computed for each source node in a network using 

DropTail, RED and SFQ queue types. Table 13 shows the computed results for NS2 and 

NS3: 

Table 13. S3 Star Packet Loss Results for DropTail, RED & SFQ. 

DropTail 

NS2 

 
Comp. A Comp. B Comp. C Comp. D Comp. E Comp. F 

Packets send 14445 14673 17390 17882 73120 72727 

Packets drop 46 46 39 44 7964 16331 

Packet drop % 0.32 0.31 0.22 0.25 10.89 22.45 

NS3 

 
Comp. A Comp. B Comp. C Comp. D Comp. E Comp. F 

Packets send 15252 17252 14952 15247 83524 83495 

Packets drop 42 50 37 27 6055 16073 

Packet drop % 0.28 0.29 0.25 0.18 7.25 19.25 

RED 

NS2 

 
Computer 
A Computer B 

Computer 
C Computer D 

Computer 
E Computer F 

Packets send 15640 14660 14973 14982 72939 72917 

Packets drop 56 53 62 62 10784 13560 

Packet drop % 0.36 0.36 0.41 0.42 14.79 18.6 

NS3 

 
Comp. A Comp. B Comp. C Comp. D Comp. E Comp. F 

Packets send 16242 16298 16324 15834 83524 83495 

Packets drop 50 47 57 67 11426 13810 

Packet drop % 0.31 0.29 0.35 0.42 13.68 16.54 
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SFQ 

NS2 

 
Comp. A Comp. B Comp. C Comp. D Comp. E Comp. F 

Packets send 30530 324 31152 14982 65880 65915 

Packets drop 31 30 30 62 12172 12173 

Packet drop % 0.1 9.26 0.1 0.41 18.48 18.47 

NS3 

 
Comp. A Comp. B Comp. C Comp. D Comp. E Comp. F 

Packets send 32621 32542 32492 31985 67524 67622 

Packets drop 33 33 32 67 11168 11043 

Packet drop % 0.1 0.1 0.1 0.21 16.54 16.33 

 

In the following section, the results are visualized with respect to different queue types and 

network simulators: 

 

Figure 67. S3 Star DropTail Packet loss for NS2, NS3. 
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In a DropTail (see Figure 67), Computer F is impacted mostly and encountered higher 

packet loss in NS2 and NS3. Packet loss for Computer E is relatively less than Computer 

A. The difference in the packet loss between Computer E and F is approximately 12% in 

NS2 and NS3. 

 

Figure 68. S3 Star RED Packet loss for NS2, NS3. 
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Figure 69. S3 Star SFQ Packet loss for NS2, NS3. 

In Figure 69, SFQ has high improvements in terms of reduced differences in the packet 
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Considering the figures and graphs, it is concluded that SFQ is proved to be an impressive 

queue type and provides fairness in network simulation. However, sometimes it behaves 

strangely in NS2 and drops packets for a certain node all the time. Example of such node is 

Computer B in the NS2 simulation which has a very high packet loss percentage compared 

to the other nodes in a network. 
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4.4.2. Wireless Networks 

4.4.2.1. S1 Simple Office Ad-hoc Network 

In this experiment, a simple wireless office ad-hoc network consisting of four nodes 

connected on ad hoc basis is selected and implemented. These nodes are either laptops or 

mobile devices as shown in Figure 70. 

 

Figure 70. S1 Simple Office Ad-hoc Network. 

Configurations 

a) AODV with TwoRayGround 

# Define options 
set val(chan)  Channel/WirelessChannel;  # channel type 
set val(prop)            Propagation/TwoRayGround; # radio-propagation model 
set val(netif)           Phy/WirelessPhy;   # network interface type 
set val(mac)             Mac/802_11;    # MAC type 
set val(ifq)             Queue/DropTail/PriQueue;     # interface queue type 
set val(ll)              LL;                            # link layer type 
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b) AODV with FreeSpace 

c) DSDV with TwoRayGround 

set val(ant)             Antenna/OmniAntenna;          # antenna model 
set val(ifqlen)          50;     # max packet in ifq 
set val(nodeCount)      4;     # number of mobile nodes 
set val(rp)              AODV;     # routing protocol 
set val(x)               500;        # X dimension of topography 
set val(y)               400;        # Y dimension of topography   
set val(stop)  20;     # time of simulation end 

# Define options 
set val(chan)  Channel/WirelessChannel;  # channel type 
set val(prop)            Propagation/FreeSpace;             # radio-propagation model 
set val(netif)           Phy/WirelessPhy;   # network interface type 
set val(mac)             Mac/802_11;    # MAC type 
set val(ifq)             Queue/DropTail/PriQueue;     # interface queue type 
set val(ll)              LL;                            # link layer type 
set val(ant)             Antenna/OmniAntenna;          # antenna model 
set val(ifqlen)          50;     # max packet in ifq 
set val(nodeCount)      4;     # number of mobile nodes 
set val(rp)              AODV;     # routing protocol 
set val(x)               500;        # X dimension of topography 
set val(y)               400;        # Y dimension of topography   
set val(stop)  20;     # time of simulation end 

# Define options 
set val(chan)  Channel/WirelessChannel;  # channel type 
set val(prop)            Propagation/TwoRayGround; # radio-propagation model 
set val(netif)           Phy/WirelessPhy;   # network interface type 
set val(mac)             Mac/802_11;    # MAC type 
set val(ifq)             Queue/DropTail/PriQueue;     # interface queue type 
set val(ll)              LL;                            # link layer type 
set val(ant)             Antenna/OmniAntenna;          # antenna model 
set val(ifqlen)          50;     # max packet in ifq 
set val(nodeCount)      4;     # number of mobile nodes 
set val(rp)              DSDV;     # routing protocol 
set val(x)               500;        # X dimension of topography 
set val(y)               400;        # Y dimension of topography   
set val(stop)  20;     # time of simulation end 
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d) DSR with TwoRayGround 

 

Experiment execution 

In the first experiment, network consists of four wireless node including two laptops and 

two mobile phones. These nodes were connected using TCP protocol with FTP 

applications. Laptop A was connected to Laptop B and Mobile A was connected to Mobile 

B through WLAN IEEE 802.11 network. All the nodes in a network have mobility 

characteristics. The initial positions of the nodes were defined at time 0.0 and all nodes 

were placed at a distance from each other. At time 0.1, 0.2, 0.3 and 0.4 Laptop A, Mobile 

A, Mobile B and Laptop B started to move to a new destination point respectively. In the 

middle of the simulations, both source laptop and mobile nodes became close to receiver 

nodes and then moved away again gradually. The simulation area was set to 500 X 400 and 

nodes moved within the range of 20 seconds.  Figure 71 shows S1 simple office ad hoc 

network in NAM.  

# Define options 
set val(chan)  Channel/WirelessChannel;  # channel type 
set val(prop)            Propagation/TwoRayGround; # radio-propagation model 
set val(netif)           Phy/WirelessPhy;   # network interface type 
set val(mac)             Mac/802_11;    # MAC type 
set val(ifq)             CMUPriQueue;   # interface queue type 
set val(ll)              LL;                            # link layer type 
set val(ant)             Antenna/OmniAntenna;          # antenna model 
set val(ifqlen)          50;     # max packet in ifq 
set val(nodeCount)      4;     # number of mobilenodes 
set val(rp)              DSR;     # routing protocol 
set val(x)               500;        # X dimension of topography 
set val(y)               400;        # Y dimension of topography   
set val(stop)  20;     # time of simulation end 
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Figure 71. S1 Simple Office Ad-hoc Network in NAM. 

Analysis 

For the evaluation of performance evaluation metrics, different configurations are used for 

different propagation models such as TwoRayGround and FreeSpace for comparing the 

results. A selected network is also analyzed for different routing protocols such as AODV, 

DSDV and DSR. For the evaluation, the congestion window and network throughput are 

calculated for NS2 and NS3 simulations. 

TwoRayGround and FreeSpace 

First, the simulation is executed for TwoRayGround and FreeSpace propagation model 

using AODV routing protocol in NS2 and NS3, and results are compared. 

Congestion Window (CWND) for TwoRayGround 

The results show almost symmetrical results for NS2 and NS3 using AODV routing 

protocol with TwoRayGround propagation model. However, to some extent, NS3 results 
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are better than NS2 (see Figure 72). In the simulation, the congestion window for nodes 

started to increase as soon as nodes find valid route to the destination. In NS3, the route 

was found around 5.75 milliseconds when the congestion window started to increase while 

in NS2, nodes spent more time in the destination discovery and the congestion window 

started to increase around 6.10 milliseconds. 

 

Figure 72. S1 Simple Office Ad-hoc Network (CWND for TwoRayGround). 

Congestion Window (CWND) for FreeSpace 

 

Figure 73. S1 Simple Office Ad-hoc Network (CWND for FreeSpace. 

As the definition of FreeSpace propagation model suggests, the congestion window for 

AODV using a FreeSpace propagation model (see Figure 73) started to increase quite 

earlier than TwoRayGround Model due to less error probability and channel noises. In 
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FreeSpace, nodes in a network discovered each other at start and the congestion window 

started to increase in a quick fashion. After reaching 20, the congestion window for both 

NS2 and NS3 progressed relatively in a slow speed until the simulation ended. In 

comparison, NS2 and NS3 results are similar to each other. However, the NS3 congestion 

window size becomes proportionally higher compared to NS2 as long as simulation time is 

increased. 

Throughput 

In the experiment, the network throughput with mean and standard deviation is calculated 

for NS2 and NS3 simulation using TwoRayGround and FreeSpace propagation models (see 

Figure 74 and Figure 75).  

 

Figure 74. S1 Simple Office Ad-hoc Network (Network Throughput TwoRayGround). 

 

Figure 75. S1 Simple Office Ad-hoc Network (Network Throughput FreeSpace). 
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Using a TwoRayGround (see Figure 76) and FreeSpace (see Figure 77) propagation model 

in NS2 and NS3, the network throughput mean is higher for NS3 compared to NS2 which 

shows that NS3 provides more efficiency in transmitting data for a large simulation time 

and allow better throughput for underlying network. However, the standard deviation for 

NS2 using a FreeSpace model is better compared to NS3 and shows fewer variations in the 

network throughput. In comparison between TwoRayGround and FreeSpace models, it is 

evident that the FreeSpace propagation generates better throughput and fewer fluctuations 

in a data transmission. 

 

Figure 76. S1 Simple Office Ad-hoc Network (Mean & Std Dev. TwoRayGround). 

 

Figure 77. S1 Simple Office Ad-hoc Network (Mean & Std Dev. FreeSpace). 
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Routing Protocols 

Next the behavior of different routing algorithms used in ad hoc networks is analyzed. For 

the comparison, the simulation for AODV, DSDV and DSR routing protocols in NS2 and 

NS3 was executed. In the experiments, the congestion control window and network 

throughput are calculated and visualized.  

Congestion Window (CWND) AODV 

 

Figure 78. S1 Simple Office Ad-hoc Network (Congestion Window AODV). 

Congestion Window (CWND) DSDV 

 

Figure 79. S1 Simple Office Ad-hoc Network (Congestion Window DSDV). 
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Congestion Window (CWND) DSR 

 

Figure 80. S1 Simple Office Ad-hoc Network (Congestion Window DSR). 

When comparing the congestion windows for all three routing protocols, it is proved that 

AODV performs better in comparison with DSDV and DSR. In AODV (see Figure 78), 

the congestion window started to grow around 6 seconds. DSDV (see Figure 79) 

performed inadequately and the congestion window started to increase around 15 seconds 

of the simulation which shows it took more time to construct a routing table compared to 

other two protocols. In terms of performance, DSR (see Figure 80) is proved to be a middle 

level protocol compared to AODV and DSDV. 

4.4.2.2. S2 Complex Office Ad-hoc Network 

In the experiment, the complex wireless office ad-hoc network (see Figure 81) consisting 

of eight moving nodes connecting with each other on ad-hoc basis is selected and 

implemented. In addition, a stationary node is introduced in a network which reacts as a 

central hub and supports fast and efficient routing connectivity among other nodes in a 

network. All nodes are either laptops or mobile devices. 



 

 

Figure 81. S2 Complex Office Ad

Configurations 

a) AODV with TwoRayGround

# Define options 
set val(chan)  Channel/WirelessChannel;
set val(prop)            Propagation/TwoRayGround;
set val(netif)           Phy/WirelessPhy;
set val(mac)             Mac/802_11;
set val(ifq)             Queue/DropTail/PriQueue;   
set val(ll)              LL;                         
set val(ant)             Antenna/OmniAntenna;        
set val(ifqlen)          50; 
set val(nodeCount)         8; 
set val(rp)              AODV; 

116 

 

Office Ad-hoc Network. 

AODV with TwoRayGround 

Channel/WirelessChannel;  # channel type 
Propagation/TwoRayGround;              # radio-propagation model
Phy/WirelessPhy;   # network interface type
Mac/802_11;    # MAC type 
Queue/DropTail/PriQueue;     # interface queue type
LL;                            # link layer type 
Antenna/OmniAntenna;          # antenna model 

    # max packet in ifq
    # number of mobile nodes
     # routing protocol 

 

propagation model 
# network interface type 

# interface queue type 

# max packet in ifq 
# number of mobile nodes 
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b) AODV with FreeSpace 

 

c) DSDV with TwoRayGround 

 

set val(x)               700;        # X dimension of topography 
set val(y)               600;        # Y dimension of topography   
set val(stop)  100;     # time of simulation end 

# Define options 
set val(chan)  Channel/WirelessChannel;  # channel type 
set val(prop)            Propagation/FreeSpace;              # radio-propagation model 
set val(netif)           Phy/WirelessPhy;   # network interface type 
set val(mac)             Mac/802_11;    # MAC type 
set val(ifq)             Queue/DropTail/PriQueue;     # interface queue type 
set val(ll)              LL;                            # link layer type 
set val(ant)             Antenna/OmniAntenna;          # antenna model 
set val(ifqlen)          50;     # max packet in ifq 
set val(nodeCount)         8;     # number of mobile nodes 
set val(rp)              AODV;     # routing protocol 
set val(x)               700;        # X dimension of topography 
set val(y)               600;        # Y dimension of topography   
set val(stop)  100;     # time of simulation end 

# Define options 
set val(chan)  Channel/WirelessChannel;  # channel type 
set val(prop)            Propagation/TwoRayGround;              # radio-propagation model 
set val(netif)           Phy/WirelessPhy;   # network interface type 
set val(mac)             Mac/802_11;    # MAC type 
set val(ifq)             Queue/DropTail/PriQueue;     # interface queue type 
set val(ll)              LL;                            # link layer type 
set val(ant)             Antenna/OmniAntenna;          # antenna model 
set val(ifqlen)          50;     # max packet in ifq 
set val(nodeCount)         8;     # number of mobile nodes 
set val(rp)              DSDV;     # routing protocol 
set val(x)               700;        # X dimension of topography 
set val(y)               600;        # Y dimension of topography   
set val(stop)  100;     # time of simulation end 
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d) DSR with TwoRayGround 

 

Experiment execution 

In the experiment, the network consists of eight wireless nodes including four laptops and 

four mobile phones. These nodes were connected using TCP protocol with FTP application. 

In addition, one stationary node is added in a network which reacts as central hub and helps 

all connected nodes for data transmission. Laptop A and B were connected to Laptop C and 

D respectively and Mobile A and B were connected to Mobile C and D through WLAN 

IEEE 802.11 network. All the nodes in a network have mobility characteristics except 

stationary node in a center. The initial positions of the nodes were defined at time 0.0 and 

all nodes were placed at a distance from each other. During the simulation, all the laptops 

and mobile nodes moved from one position to another and tried to send messages to the 

connected nodes. In the middle of the simulation, all source laptops and mobile nodes 

reached near to receiver nodes and then stated to move away gradually. The simulation area 

was set to 700 X 600 and nodes moved within area in the range of 100 seconds. Figure 82 

illustrate S2 complex office ad hoc network in NAM. 

# Define options 
set val(chan)  Channel/WirelessChannel;  # channel type 
set val(prop)            Propagation/TwoRayGround; # radio-propagation model 
set val(netif)           Phy/WirelessPhy;   # network interface type 
set val(mac)             Mac/802_11;    # MAC type 
set val(ifq)             CMUPriQueue;   # interface queue type 
set val(ll)              LL;                            # link layer type 
set val(ant)             Antenna/OmniAntenna;          # antenna model 
set val(ifqlen)          50;     # max packet in ifq 
set val(nodeCount)         8;     # number of mobilenodes 
set val(rp)              DSR;     # routing protocol 
set val(x)               700;        # X dimension of topography 
set val(y)               600;        # Y dimension of topography   
set val(stop)  100;     # time of simulation end 
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Figure 82. S2 Complex Office Ad-hoc Network in NAM. 

Analysis 

For the evaluation of performance evaluation metrics, different configurations were used 

for routing protocols such as AODV, DSDV and DSR with TwoRayGround propagation 

model. The underlying network is analyzed for different routing protocols including 

AODV, DSDV and DSR. For the evaluation, the congestion window and network 

throughput are calculated for NS2 and NS3. However, the most important results conducted 

in NS2 are provided here including the congestion control and network throughout. 

AODV 

First the simulation for an AODV routing protocol with TwoRayGround model in NS2 was 

executed, and results are compared. Figure 83 shows simulation graph for the congestion 

window and network throughput using xgraph. 
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Congestion Window (CWND) 

 

Figure 83. S2 Complex Office Ad-hoc Network (Congestion Window AODV). 

In a complex network with TwoRayGround propagation model, the network congestions is 

observed at various points during the first and the last 20 seconds of the simulation. In the 

simulation, mobile 3 (Laptop A) had maximum throughput around 95 seconds when all 

other nodes were distance apart from other nodes and the network was used only by mobile 

3 (Laptop A) and mobile 1 (Mobile A) nodes. Between 30 to 80 seconds, the congestion 

window size for mobile 1 (Mobile A), mobile 2 (Mobile B) and mobile 4 (Laptop B) was 

high ensuring the maximum  network throughput during this time. 

Throughput 

In the experiment, the network throughput (see Figure 84) with NS2 simulation is 

calculated for the whole network and results are compared.  

 

Figure 84. S2 Complex Office Ad-hoc Network (Network Throughput AODV). 



121 

 

 

 

At the middle of a simulation, the network throughput using AODV routing protocol shows 

high throughput for all the connected nodes. During this time, the nodes had minimum 

distance to the other nodes. Also during the last couple of seconds, two nodes had high 

throughput as other nodes were not transmitting at this time. 

DSDV 

Secondly, simulation for a DSDV routing protocol with TwoRayGround model in NS2 was 

executed, and results are compared. Figure 85 and Figure 86 show the simulation graphs 

for the congestion window and network throughput using xgraph respectively. 

Congestion Window (CWND) 

 

Figure 85. S2 Complex Office Ad-hoc Network (Congestion Window DSDV). 

As discussed earlier that DSDV is worst among other routing protocols, the graph (see 

Figure 85) shows that the congestion window for only mobile 1 (Mobile A) and mobile 2 

(Mobile B) increased during the simulation at certain time. Other nodes could not find the 

destination node information; hence congestion window for such nodes remained at the 

initial value all the time. 

Throughput 

In this experiment, the network throughput in NS2 simulation is calculated for a network 

and results are compared.  
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Figure 86. S2 Complex Office Ad-hoc Network (Network Throughput DSDV). 

The network throughput using DSDV routing protocol reflects the congestion control 

window size given above and shows that only two nodes were able to send data during the 

whole simulation. 

DSR 

Thirdly, the simulation is executed for a DSR routing protocol with TwoRayGround model 

in NS2, and results are compared. Figure 87 and Figure 88 show the simulation graphs for 

the congestion window and network throughput using xgraph respectively. 

Congestion Window (CWND) 

 

Figure 87. S2 Complex Office Ad-hoc Network (Congestion Window DSR). 

In a complex network with TwoRayGround propagation model, the network congestion 

was observed at the middle of the simulation. At start, mobile 2 (Mobile A) and mobile 3 
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(Laptop A) had a high congestion window size allowing them to send packets at higher 

speed. As long as other nodes in a network started to send data, the congestion occurred and 

the congestion window for mobile 2 and mobile 3 were reduced to initial positions. During 

the middle of the simulation, all nodes started to send data at same time which reflected on 

the congestion window for all sending nodes. During the last 10 seconds, all the nodes 

except mobile 1 (Mobile A) and mobile 3 (Laptop A) stopped to send data which resulted 

to increase the congestion window size for mobile 1 and mobile 2.  

Throughput 

In this experiment, the network throughput is calculated in NS2 simulation. Network 

throughput is calculated for a whole network and results are compared.  

 

Figure 88. S2 Complex Office Ad-hoc Network (Network Throughput DSR). 

The network throughput using DSR routing protocol reflects the congestion control 

window size and shows that all the sending nodes were able to send data during the whole 

simulation. During the middle of the simulation, the increase in a throughput for all the 

sending nodes can be seen from the graph, whereas during the end of simulation time, only 

two of the nodes where able to send data in a network. 
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Comparison AODV, DSDV and DSR 

For comparison among routing protocols, mean and the standard deviation for these 

simulations calculated and results are presented in Figure 89. 

 

Figure 89. S2 Complex Office Ad-hoc Network (Comparison Network Throughput). 

In the complex Office Ad-hoc Network with long simulation time, DSR routing protocol 

generated the highest average network throughput compared to AODV and DSDV. On the 

other hand, DSDV is proved to be a really poor routing protocol which gave a very 

minimum average network throughput. In comparison, AODV is comparable with DSR 

which performed effectively in the simulations. Considering the variations in throughput, 

all three routing protocols are almost at the same level with the reasonable standard 

deviation.  
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5. CONCLUSION AND FUTURE WORK 

After completing the experiment part and considering the theoretical part in this thesis, it is 

concluded that use of network simulators in the field of communication systems is really 

valuable and cost-effective. These simulators provide support for various real time models 

with the possibility of customization which can be used to evaluate new emerging protocols 

and technologies.  

Comparing these simulators with respect to time and space complexity, NS3 is proved to be 

the fastest due to use of C++ code and also requires less memory compared to NS2 which 

uses abstract level OTCL programming language, requiring more resources during the 

building and running process of a simulation. Use of OMNET++ is user friendly due to use 

of built-in toolbox and drag and drop features which makes it preferable for researchers 

with limited understanding of programming paradigm. In comparison for usage complexity, 

NS2 is easy to use due to OTCL programming language compared to NS3 which requires 

deep knowledge of C++ programming language features such as pointers, pointer functions, 

inheritance, abstract data types and other programming features.  

After running different simulations using performance evaluation metrics, it is concluded 

that NS3 simulation time, and output values in all the simulations were better in 

comparison with NS2. In wired network simulations, the experiments are executed for a 

star network using TCP and UDP protocols with CBR and FTP applications where 

congestion window, throughput, end-to-end delay, and packet delivery and drop ratios 

resulted in higher and smooth values for NS3. The increase in the simulation time also 

shows the improvements in NS3 results whereas NS2 performance decreases as soon as 

simulation time is increased. In comparison to the transport layer protocol, UDP is fast and 

consumes less time to reach the destination compared to TCP, resulting in a less end-to-end 

delay in both NS2 and NS3. Comparing CBR with FTP applications, CBR produces higher 

throughput due to the constant transmission rate. 
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In wireless simulation, same improved behavior is observed in NS3 compared to NS2 

where the calculation of performance evaluation metrics resulted in better performance for 

NS3. For the experiments, different propagation models are used such as TwoRayGround 

and FreeSpace in simple and complex wireless office networks where FreeSpace resulted in 

a better network throughput and less packet loss in a network ensuring a better overall 

performance. In addition to propagation models, different routing protocols are evaluated 

such as AODV, DSDV and DSR for both simple and complex office wireless networks. 

From the results, it is concluded that AODV is more consistent in establishing connections 

in a network and produces high network throughput. DSDV is worst in all which produces 

minimum network throughput. DSR proved to be as close as AODV and produces similar 

network throughput compared to AODV but it is not consistent in establishing routing 

information resulting in a high end-to-end delay. 

Considering all above, it is concluded that NS3 is a network simulator for future academic 

use and in coming years it will fully replace NS2 due to the high performance, available 

features, network models and documentation. On the other side, OMNET++ is leading and 

recommended in commercial industries due to better use, support and documentation. 

In the future, one can simulate the same experiments with OMNET++ and other network 

simulators for comparing the results with NS2 and NS3. In this thesis, wired and wireless 

networks are evaluated with LAN characteristics. In the future, performance evaluation 

metrics can be executed for advanced communication technologies such as LTE, 3G, 4G, 

WiMAX, COAP and ZigBee.  One enhancement would be to combine the available wired 

and wireless networks in this thesis to form a wired-wireless network, execute the 

performance evaluation metrics and observe the behavior of various network simulators.  
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