34,133 research outputs found

    Efficient and Secure Chaotic S-Box for Wireless Sensor Network

    Get PDF
    International audienceInformation security using chaotic dynamics is a novel topic in the wireless sensor network (WSN) research field. After surveying analog and digital chaotic security systems, we give a state of the art of chaotic S-Box design. The substitution tables are nonlinear maps that strengthen and enhance block crypto-systems. This paper deals with the design of new dynamic chaotic S-Boxes suitable for implementation on wireless sensor nodes. Our proposed schemes are classified into two categories: S-Box based on discrete chaotic map with floating point arithmetic (cascading piecewise linear chaotic map and a three-dimensional map) and S-Box based on discrete chaotic map with fixed-point arithmetic (using discretized Lorenz map and logistic–tent map). The security analysis and implementation process on WSN are discussed. The proposed methods satisfy Good S-Box design criteria and exceed the performance of Advanced Encryption Standard static S-Box in some cases. The energy consumption of different proposals and existing chaotic S-Box designs are investigated via a platform simulator and a real WSN testbed equipped with TI MSP430f1611 micro-controller. The simulations and the experimental results show that our proposed S-Box design with fixed-point arithmetic Lorenz map has the lowest energy-consuming profile compared with the other studied and proposed S-Box design

    Fractal dimension evolution and spatial replacement dynamics of urban growth

    Full text link
    This paper presents a new perspective of looking at the relation between fractals and chaos by means of cities. Especially, a principle of space filling and spatial replacement is proposed to explain the fractal dimension of urban form. The fractal dimension evolution of urban growth can be empirically modeled with Boltzmann's equation. For the normalized data, Boltzmann's equation is equivalent to the logistic function. The logistic equation can be transformed into the well-known 1-dimensional logistic map, which is based on a 2-dimensional map suggesting spatial replacement dynamics of city development. The 2-dimensional recurrence relations can be employed to generate the nonlinear dynamical behaviors such as bifurcation and chaos. A discovery is made that, for the fractal dimension growth following the logistic curve, the normalized dimension value is the ratio of space filling. If the rate of spatial replacement (urban growth) is too high, the periodic oscillations and chaos will arise, and the city system will fall into disorder. The spatial replacement dynamics can be extended to general replacement dynamics, and bifurcation and chaos seem to be related with some kind of replacement process.Comment: 17 pages, 5 figures, 2 table

    Integrated chaos generators

    Get PDF
    This paper surveys the different design issues, from mathematical model to silicon, involved on the design of integrated circuits for the generation of chaotic behavior.ComisiĂłn Interministerial de Ciencia y TecnologĂ­a 1FD97-1611(TIC)European Commission ESPRIT 3110

    A Novel Latin Square Image Cipher

    Full text link
    In this paper, we introduce a symmetric-key Latin square image cipher (LSIC) for grayscale and color images. Our contributions to the image encryption community include 1) we develop new Latin square image encryption primitives including Latin Square Whitening, Latin Square S-box and Latin Square P-box ; 2) we provide a new way of integrating probabilistic encryption in image encryption by embedding random noise in the least significant image bit-plane; and 3) we construct LSIC with these Latin square image encryption primitives all on one keyed Latin square in a new loom-like substitution-permutation network. Consequently, the proposed LSIC achieve many desired properties of a secure cipher including a large key space, high key sensitivities, uniformly distributed ciphertext, excellent confusion and diffusion properties, semantically secure, and robustness against channel noise. Theoretical analysis show that the LSIC has good resistance to many attack models including brute-force attacks, ciphertext-only attacks, known-plaintext attacks and chosen-plaintext attacks. Experimental analysis under extensive simulation results using the complete USC-SIPI Miscellaneous image dataset demonstrate that LSIC outperforms or reach state of the art suggested by many peer algorithms. All these analysis and results demonstrate that the LSIC is very suitable for digital image encryption. Finally, we open source the LSIC MATLAB code under webpage https://sites.google.com/site/tuftsyuewu/source-code.Comment: 26 pages, 17 figures, and 7 table
    • 

    corecore