6,944 research outputs found

    WxBS: Wide Baseline Stereo Generalizations

    Full text link
    We have presented a new problem -- the wide multiple baseline stereo (WxBS) -- which considers matching of images that simultaneously differ in more than one image acquisition factor such as viewpoint, illumination, sensor type or where object appearance changes significantly, e.g. over time. A new dataset with the ground truth for evaluation of matching algorithms has been introduced and will be made public. We have extensively tested a large set of popular and recent detectors and descriptors and show than the combination of RootSIFT and HalfRootSIFT as descriptors with MSER and Hessian-Affine detectors works best for many different nuisance factors. We show that simple adaptive thresholding improves Hessian-Affine, DoG, MSER (and possibly other) detectors and allows to use them on infrared and low contrast images. A novel matching algorithm for addressing the WxBS problem has been introduced. We have shown experimentally that the WxBS-M matcher dominantes the state-of-the-art methods both on both the new and existing datasets.Comment: Descriptor and detector evaluation expande

    Exploratory study to explore the role of ICT in the process of knowledge management in an Indian business environment

    Get PDF
    In the 21st century and the emergence of a digital economy, knowledge and the knowledge base economy are rapidly growing. To effectively be able to understand the processes involved in the creating, managing and sharing of knowledge management in the business environment is critical to the success of an organization. This study builds on the previous research of the authors on the enablers of knowledge management by identifying the relationship between the enablers of knowledge management and the role played by information communication technologies (ICT) and ICT infrastructure in a business setting. This paper provides the findings of a survey collected from the four major Indian cities (Chennai, Coimbatore, Madurai and Villupuram) regarding their views and opinions about the enablers of knowledge management in business setting. A total of 80 organizations participated in the study with 100 participants in each city. The results show that ICT and ICT infrastructure can play a critical role in the creating, managing and sharing of knowledge in an Indian business environment

    Multimodal optical diagnostics of the microhaemodynamics in upper and lower limbs

    Get PDF
    The introduction of optical non-invasive diagnostic methods into clinical practice can substantially advance in the detection of early microcirculatory disorders in patients with different diseases. This paper is devoted to the development and application of the optical non-invasive diagnostic approach for the detection and evaluation of the severity of microcirculatory and metabolic disorders in rheumatic diseases and diabetes mellitus. The proposed methods include the joint use of laser Doppler flowmetry, absorption spectroscopy and fluorescence spectroscopy in combination with functional tests. This technique showed the high diagnostic importance for the detection of disturbances in peripheral microhaemodynamics. These methods have been successfully tested as additional diagnostic techniques in the field of rheumatology and endocrinology. The sensitivity and specificity of the proposed diagnostic procedures have been evaluated.<br/

    Convolution-based free-form deformation for multimodal groupwise registration

    Get PDF
    Producción CientíficaRecently, an efficient implementation of convolution-based free form deformations (FFD) has been proposed for both groupwise 3D monomodal and 2D pairwise multimodal registrations. However, there is still an unmet need in the field for groupwise -D multimodal registration with L > 2. In this correspondence, we address this need and present a solution for achieving accurate registration using two popular metrics: Renyi entropy and PCA2.Ministerio de Economía, Industria y Competitividad (TEC2017-82408-R and PID2020-115339RB-I00)ESAOTE Ltd. (18IQBM

    Learning from Millions of 3D Scans for Large-scale 3D Face Recognition

    Full text link
    Deep networks trained on millions of facial images are believed to be closely approaching human-level performance in face recognition. However, open world face recognition still remains a challenge. Although, 3D face recognition has an inherent edge over its 2D counterpart, it has not benefited from the recent developments in deep learning due to the unavailability of large training as well as large test datasets. Recognition accuracies have already saturated on existing 3D face datasets due to their small gallery sizes. Unlike 2D photographs, 3D facial scans cannot be sourced from the web causing a bottleneck in the development of deep 3D face recognition networks and datasets. In this backdrop, we propose a method for generating a large corpus of labeled 3D face identities and their multiple instances for training and a protocol for merging the most challenging existing 3D datasets for testing. We also propose the first deep CNN model designed specifically for 3D face recognition and trained on 3.1 Million 3D facial scans of 100K identities. Our test dataset comprises 1,853 identities with a single 3D scan in the gallery and another 31K scans as probes, which is several orders of magnitude larger than existing ones. Without fine tuning on this dataset, our network already outperforms state of the art face recognition by over 10%. We fine tune our network on the gallery set to perform end-to-end large scale 3D face recognition which further improves accuracy. Finally, we show the efficacy of our method for the open world face recognition problem.Comment: 11 page

    Efficient convolution-based pairwise elastic image registration on three multimodal similarity metrics

    Get PDF
    Producción CientíficaThis paper proposes a complete convolutional formulation for 2D multimodal pairwise image registration problems based on free-form deformations. We have reformulated in terms of discrete 1D convolutions the evaluation of spatial transformations, the regularization term, and their gradients for three different multimodal registration metrics, namely, normalized cross correlation, mutual information, and normalized mutual information. A sufficient condition on the metric gradient is provided for further extension to other metrics. The proposed approach has been tested, as a proof of concept, on contrast-enhanced first-pass perfusion cardiac magnetic resonance images. Execution times have been compared with the corresponding execution times of the classical tensor product formulation, both on CPU and GPU. The speed-up achieved by using convolutions instead of tensor products depends on the image size and the number of control points considered, the larger those magnitudes, the greater the execution time reduction. Furthermore, the speed-up will be more significant when gradient operations constitute the major bottleneck in the optimization process.Ministerio de Economía, Industria y Competitividad (grants TEC2017-82408-R and PID2020-115339RB-I00)ESAOTE Ltd (grant 18IQBM
    • …
    corecore