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a b s t r a c t 

Recently, an efficient implementation of convolution-based free form deformations (FFD) has been pro- 

posed for both groupwise 3D monomodal and 2D pairwise multimodal registrations. However, there is 

still an unmet need in the field for groupwise L -D multimodal registration with L ≥ 2 . In this correspon- 

dence, we address this need and present a solution for achieving accurate registration using two popular 

metrics: Renyi entropy and PCA2. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 
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. Introduction 

Image registration is the process of aligning multiple images 

f the same object to a common coordinate system. This process 

nvolves applying an image transformation, which can be either 

igid or non-rigid [1] . The registration process can be performed 

airwise (PW) or groupwise (GW), where PW refers to aligning 

wo images independently, while GW involves aligning a whole 

et of images jointly. Additionally, the images to be aligned may 

ave the same intensity properties or differ; each case requires dif- 

erent metrics to measure image similarity, thus leading to either 

onomodal or multimodal registration procedures [1,2] . 

Free form deformations (FFDs) are widely used to model non- 

igid transformations, particularly in medical imaging [3,4] . We re- 

ently proposed an efficient convolution-based implementation of 

FDs [5] for groupwise non-rigid registration of 3D monomodal 

mages using the sum of squared differences as the image sim- 

larity measure. Additionally, in Menchón-Lara et al. [6] , we ad- 

ressed the problem of pairwise multimodal registration in 2D. In 

his work, we identified a sufficient condition for the gradient met- 

ic to be expressed in terms of convolutions and showed that our 

pproach can be applied to commonly used elastic regularization 

erms and their gradients 

In this correspondence, we address the unmet problem of 

roupwise multimodal non-rigid registration in L -dimensional im- 

ges. Specifically, we focus on two popular multimodal metrics: 
∗ Corresponding author. 

E-mail address: rmenchon@lpi.tel.uva.es (R.-M. Menchón-Lara) . 
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he PCA2 metric proposed in Huizinga et al. [7] , and the Renyi En- 

ropy metric used in Cordero-Grande et al. [8] . We will demon- 

trate that these metrics meet the sufficient condition identified in 

enchón-Lara et al. [6] that makes them suitable for a convolu- 

ional formulation. 

The remainder of this paper is organized as follows: 

ection 2 provides background information on image registra- 

ion, with a focus on convolution-based formulations for efficient 

mplementation. In Section 3 , we demonstrate that the proposed 

onvolution-based formulation applies to the two multimodal 

etrics mentioned earlier. Section 4 presents the registration 

esults. Finally, Section 5 concludes the paper by summarizing 

he main contributions. Mathematical details are provided in 

ppendix A . 

. Background 

This section briefly introduces the fundamentals of image reg- 

stration, focusing on the techniques used in the paper. Specifi- 

ally, in Section 2.1 the FFD model is discussed, both in its orig- 

nal form and its equivalent convolutional implementation. Then, 

n Section 2.2 we discuss GW multimodal registration, posed as an 

ptimization problem. A cost function is defined to naturally ob- 

ain its gradient, which leads to the sufficient condition mentioned 

arlier. 

.1. Convolution-based FFD 

FFD defines the spatial transformation for a spatial point in the 

mage ( x ∈ X ⊂ R 

L ) from a grid of control points u as Rueckert and
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

https://doi.org/10.1016/j.sigpro.2023.109093
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2023.109093&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:rmenchon@lpi.tel.uva.es
https://doi.org/10.1016/j.sigpro.2023.109093
http://creativecommons.org/licenses/by-nc-nd/4.0/


R.-M. Menchón-Lara, F. Simmross-Wattenberg, M. Rodríguez-Cayetano et al. Signal Processing 210 (2023) 109093 

Fig. 1. Graphical interpretation of convolutional implementation of FFD transformations in 1D domain. 
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ljabar [4] , Lee et al. [9] 

 

′ = T θ(x ) = x + 

∑ 

u ∈N (x ) 

( 

L ∏ 

l=1 

B 

(
x l − p u l 

�l 

)) 

θu , (1) 

here B stands for the B-spline function, 1 N ( x ) denotes the set of

ontrol points in the vicinity of x , θu = { θu 1 , . . . , θu L } represents a

eformation associated to control point u , p u l is the location of a 

iven control point in X along dimension l, and �l is the con- 

rol point spacing along dimension l. Finally, θ is the set of θu , 

 ∈ N (x ) . 

Based on the even symmetry and compact support of B-splines, 

nd by defining the grid of control points on a discrete Carte- 

ian coordinate system, the original tensor product formulation in 

q. (1) can be implemented with convolutions [5] . This idea is de- 

icted in Fig. 1 , where the equivalence of tensor product and con- 
1 We assume third order B-spline functions, due to their good balance between 

unction smoothness and support region. 

c

e

2 
olutions for a 1D transformation at a generic point x 0 is shown, 

onsidering a control point spacing � = 3 . The influence of each 

ontrol point is limited to a radius R = (E + 1)�/ 2 , where E = 3

epresents the B-spline function order, due to its compact support 

roperty. Therefore, as shown in Fig. 1 (a), only the four nearest 

ontrol points are involved in the calculation of T (x 0 ) . Alterna- 

ively, the function �(x ) can be defined as a series of impulses po- 

itioned at the locations of control points and adjusted by the re- 

pective deformations θu . The transformed point T (x 0 ) can then be 

omputed by convolving �(x ) with the B-spline function B (x/ �) 

valuated at the point x 0 , as shown in Fig. 1 (b). It is worth noting

hat both implementations, the original tensor product formulation 

n Eq. (1) and the convolution-based implementation using �(x ) 

nd B (x/ �) , are completely equivalent. 

The extension to 2D is straightforward, as shown in Menchón- 

ara et al. [6] . The 2D transformation can be expressed as two 

onsecutive 1D discrete convolutions with zero extension, where 

ach convolution is performed along a spatial dimension (refer to 
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Fig. 2. Convolutional formulation for FFD transformations in 2D scenarios. 
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ig. 2 ). Notably, the first convolution is only evaluated in the rows 

r columns that contain control points. 

Likewise, the L -D extension is straightforward due to the sepa- 

ability property of convolutions. Figure 3 illustrates the 3D case, 

here the 3D tensor product can be reduced to a series of 1D 

onvolutions along each coordinate axis. The following steps show 

ow this is done: (i) a 1D convolution is performed along the x 3 -

xis, evaluated only at positions (p u 1 , p u 2 ) ( Fig. 3 (a)); (ii) a second

D convolution is performed along the x 2 -axis, only evaluated at 

oints p u 1 ( Fig. 3 (b)); and finally, (iii) a third 1D convolution is

erformed along the x 1 -axis, evaluated across the entire Cartesian 

rid ( Fig. 3 (c)). 
3 
.2. Groupwise multimodal registration 

Consider a set of N images I = { I 1 , . . . , I N } , where each image

 n (x n ) is defined on a finite image domain x n = (x 1 n , . . . , x 
L 
n ) ∈ X n ⊂

 

L , with 1 ≤ n ≤ N. In the context of GW registration, the ob- 

ective is to determine an optimal set of spatial transformations 

 � = { T θn 
: x ′ n = T θn 

(x ) ∈ X n , 1 ≤ n ≤ N} that map the coordinates

f each material point in a common reference space (i.e., x ∈ X )

o its corresponding coordinates in X n , with 1 ≤ n ≤ N. The regis- 

ered sequence is then defined as I � = { I θ1 
, . . . , I θN 

} , with I θn 
(x ′ n ) =

 n ( T θn 
(x )) , 1 ≤ n ≤ N. Figure 4 illustrates this process for the case

f L = 2 . 



R.-M. Menchón-Lara, F. Simmross-Wattenberg, M. Rodríguez-Cayetano et al. Signal Processing 210 (2023) 109093 

Fig. 3. Convolutional implementation for 3D FFD transformations. 
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The set of deformation parameters, � = { θ1 , . . . , θN } , is opti- 

ised by minimizing a cost function that is typically composed of 

 term D( �) related to the grade of misalignment between the 

mages —the registration metric— and a regularization term R ( �) 

hat promotes displacement fields that are physically realistic. Con- 

equently, the problem can be formulated as: 

ˆ = argmin �{D( �) + R ( �) } . (2) 
4 
he definition of R leads to the classification of registration meth- 

ds, including elastic, fluid, diffusion, or curvature registration [2] . 

n the case of a multimodal problem, the registration metric D
ust be able to handle inhomogeneous intensity levels. This is 

ecessary since different acquisition devices or image dynamics 

ay result in varying intensity ranges, such as shadowing in natu- 

al landscapes or contrast changes in medical images. 

In optimization-based registration methods, the problem de- 

cribed in Eq. (2) is iteratively solved, and the metric gradient 

ith respect to the deformation parameter set ( ∇D( �) ) needs to 

e evaluated at each iteration. This computation is typically the 

ost time-consuming part of the registration process. We showed 

n Menchón-Lara et al. [6] that the gradient can be efficiently com- 

uted using convolutions if the partial derivative of the registration 

etric with respect to each component, θn,u l 
, of the transformation 

arameters contains terms with the following structure: 

 

 ∈X 
�D (x ) 

∂ I θn 
(x ) 

∂T n,l 

∂T n,l (x ) 

∂θn,u l 

. (3) 

. GW multimodal metrics 

We analyze in this Section two well-known multimodal metrics 

uitable for GW multimodal image registration: the Renyi entropy 

8] and the PCA2 metric [7] . Our analysis demonstrates that these 

etrics satisfy the condition outlined in Eq. (3) . 

.1. Renyi entropy 

Renyi entropy was used as a sparsity-promoting metric by 

ordero-Grande et al. [8] for the alignment of contrast-enhanced 

rst-pass perfusion cardiac MRI. This metric is based on the as- 

umption that intensity variations of corresponding points in a 

ime image sequence lead to a sparse representation in a properly 

elected frame given by a certain decomposition matrix. Specifi- 

ally, the Renyi entropy of the normalized variable ˆ z k = z 2 
k 
/ ‖ z ‖ 2 

2 
,

ith 1 ≤ k ≤ K, is defined as 

 Renyi (x ) = 

1 

1 − α
log 

( 

K ∑ 

k =1 

ˆ z αk 

) 

, (4) 

here z is a sparse representation of the vector of corresponding 

ntensities, y = [ y 1 . . . y N ] 
T = 

[
I θ1 

(x ) . . . I θN 
(x ) 

]T 
, 

 = W · y (5) 

ith W ∈ R 

K×N , for K ≥ N, representing a wavelet decomposition 

atrix. Cordero-Grande et al. [8] recommend the application of an 

ndecimated wavelet transform with a second order Daubechies 

ecomposition and K = 7 N. The metric D( �) in Eq. (2) is then

efined as 

 Renyi ( �) = 

∑ 

x ∈X 
D Renyi (x ) . (6) 

Demonstrating that this metric satisfies Eq. (3) is straightfor- 

ard, as the metric defined on the overall image (as shown in 

q. (6) ) is simply the sum of the metric defined at each spatial 

osition x ∈ X , i.e., 

∂D Renyi ( �) 

∂θn,u l 

= 

∑ 

x ∈X 

∂D Renyi (x ) 

∂y n 
· ∂y n (x ) 

∂T n,l 

· ∂T n,l (x ) 

∂θn,u l 

= 

∑ 

x ∈X 
�n 

Renyi 
(x ) · ∂ I θn 

(x ) 

∂T n,l 

· ∂T n,l (x ) 

∂θn,u l 

, (7) 

ith �n 

Renyi 
(x ) defined as 
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Fig. 4. Scheme of spatial transformations in 2D groupwise multimodal image registration. 
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Renyi 
(x ) = 

2 α

(1 − α) · ‖ z ‖ 

2 
2 

· ∑ 

k 

ˆ z α
k 

K ∑ 

k =1 

( 

W k,n · z k · ˆ z α−1 
k 

− ˆ z αk 

K ∑ 

q =1 

W q,n · z q 

) 

, (8) 

here he have omitted the dependence on x through z k for sim- 

licity. 

.2. PCA2 metric 

Huizinga et al. introduced the PCA2 metric for quantitative MRI 

n Huizinga et al. [7] . The metric operates on the premise that in-

ensities of corresponding points undergo changes following a low- 

imensional model. Hence, when an image becomes misaligned, 

here is a mismatch in the model, which the metric aims to quan- 

ify. Specifically, for an N -image set, the degree of this mismatch is 

uantified by 

 PCA2 

( �) = 

N ∑ 

j=1 

j · λ j , (9) 

here λ j , refers to the j th eigenvalue of the correlation matrix 

 ∈ R 

N×N of the transformed images (note that λ j > λ j+1 ). The cor- 

elation matrix can be defined as Huizinga et al. [7] 

 = 

1 

|X | − 1 

�−1 (M − M ) T (M − M ) �−1 
, (10) 

here |X | is the number of per-image elements, M ∈ R 

|X |×N is a

atrix that contains the transformed images { I θn 
, n = 1 , . . . , N} as

olumn vectors, � is a diagonal matrix with the standard devia- 

ions of each column of M , and M = ( 1 N M1 N ) 1 
T 
N 

, where 1 N is an

-column vector of ones. 

The derivative of PCA2 with respect to the deformation param- 

ters can be expressed as Huizinga et al. [7] , van der Aa et al. [10] 
5 
∂D PCA2 

( �) 

∂θn,u l 

= 

N ∑ 

j=1 

j υT 

j 

∂ C 

∂θn,u l 

υ j , (11) 

here υ j stands for the j th eigenvector of C . Albeit a matrix de- 

cription of this expression based on the formulation in Eq. (10) is 

etailed in Huizinga et al. [7] , our focus will be on Eq. (11) to

heck whether the sufficient condition is satisfied. Specifically, 

 = 

⎡ 

⎣ 

ρ1 , 1 ρ1 , 2 . . . ρ1 ,N 

. . . 
. . . 

. . . 
. . . 

ρN, 1 ρN, 2 . . . ρN,N 

⎤ 

⎦ (12) 

ith 

i, j = 

1 

|X | − 1 

∑ 

x ∈X 

(
I θi 

(x ) − μi 

σi 

)(
I θ j 

(x ) − μ j 

σ j 

)
, 1 ≤ i, j ≤ N , 

(13) 

here μn , σn stand for the average and standard deviation of I θn 
, 

espectively. 

Calculating the PCA2 gradient requires the derivative of the 

orrelation matrix, which, in turn, needs the computation of the 

erivatives of the correlation coefficients. For a detailed formula- 

ion of these derivatives, please refer to Appendix A . The outcome 

f these calculations is: 

∂ρi,n 

∂θn,u l 

= 

∑ 

x ∈X 
�i,n 

PCA2 

(x ) 
∂ I θn 

(x ) 

∂T θn,l 

∂T θn,l 
(x ) 

∂θn,u l 

(14) 

ith 

i,n 

PCA2 

(x ) = 

1 

(|X | − 1) σn 

[(
I θi 

( x ) − μi 

σi 

)
− ρi,n 

(
I θn 

( x ) − μn 

σn 

)]
.

(15) 
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Fig. 5. Results for groupwise registration of dynamic cardiac perfusion MRI using PCA2 metric: (a) Example image frame with selected vertical profile (red line); (b) temporal 

profile on the original sequence; (c) temporal profile of the registered sequence using the proposed method; (d) temporal profile of the registered sequence using elastix; 

(e) mean perfusion curves at blood-pool (solid) and myocardium (dashed) after registration with the proposed convolutional method (blue) and Elastix (red); (f) boxplot of 

GW registration times on CPU in minutes for the dataset described in Menchón-Lara et al. [6] using the proposed convolutional implementation, the classical tensor product 

formulation, and Elastix. 
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ence, Eq. (11) becomes 

∂D PCA2 

( �) 

∂θn,u l 

= 

∑ 

x ∈X 

[ 

N ∑ 

j=1 

j · υT 

j �PCA2 

(x ) υ j 

] 

︸ ︷︷ ︸ 
�D (x ) 

∂ I θn 
(x ) 

∂T θn,l 

∂T θn,l 
(x ) 

∂θn,u l 

(16) 

ith �PCA2 (x ) a N × N matrix whose (i, n ) element is �i,n 

PCA2 
(x ) .

. Results 

To illustrate the method’s performance, we evaluated the PCA2 

etric using the cardiac perfusion MRI dataset described in 

enchón-Lara et al. [6] . We employed the nonlinear conjugate gra- 

ient descent algorithm using MATLAB R2020a . For the sake of 

omparison, we used Elastix 2 as reference. It was adapted to GW 
2 http://elastix.isi.uu.nl/ 

6 
peration mode using a single resolution level, random coordinate 

ndersampling strategy, and adaptive stochastic gradient descent 

ptimization. Figure 5 shows an example of an aligned sequence. 

igure 5 (b)–(d) show the temporal intensity profiles correspond- 

ng to the red line marked in Fig. 5 (a) for both the original non

egistered sequence, and the aligned sequences using our convolu- 

ional method and Elastix, respectively. The mean perfusion curves 

n the blood-pool and in the myocardium obtained after registra- 

ion using both tools are shown in Fig. 5 (e). Finally, Fig. 5 (f) shows

oxplots of the execution times with tensor products, Elastix and 

ur method. Figure 6 shows average perfusion curves from pixels 

t the standard zones defined in the myocardium. In this case, to- 

ether with the unregistered sequence (solid black), Elastix (solid 

ed) and our method (solid blue), the results of PW registration 

ith different images used as a reference are also shown in yellow 

otted lines, which reveal the dependence on the selected refer- 

nce. GW approaches (Elastix and ours) eliminate this undesirable 

ffect. 

http://elastix.isi.uu.nl/


R.-M. Menchón-Lara, F. Simmross-Wattenberg, M. Rodríguez-Cayetano et al. Signal Processing 210 (2023) 109093 

Fig. 6. Myocardial perfusion curves for the image in Fig. 5 (a) in the standard zones considered for perfusion analysis. Mean perfusion curves obtained after groupwise image 

registration using the proposed method with PCA2 metric (blue solid lines) can be compared with the corresponding curves obtained after GW Elastix registration (red 

dashed lines) and after PW convolutional registration using normalized cross correlation metric and different reference images (yellow dotted lines). The original curves 

from the non-aligned sequence are also included (black dashed lines). 
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. Conclusions 

This work addresses the efficient implementation of FFD-based 

egistration. The implementation relies on a reformulation of spa- 

ial transformations and gradients via simple 1D convolutions that 

re successively applied along each dimension of the image do- 
7 
ain. This method led to significant run time reductions on both 

W monomodal [5] and PW 2D multimodal [6] registration. In this 

orrespondence we addressed the extension of the convolutional 

trategy for L -D GW multimodal non-rigid registration, which has 

een missing thus far. To accomplish this, we studied two multi- 

odal GW metrics: Renyi entropy [8] , and PCA2 [7] . Our analysis 



R.-M. Menchón-Lara, F. Simmross-Wattenberg, M. Rodríguez-Cayetano et al. Signal Processing 210 (2023) 109093 

r

i

s

D

c

i

C

M

F

i

r

&

–

m

d

D

A

E

R

1

A

w

a

= 

=

w

T

F  

s

ρ

R

[

eveals that both metrics satisfy the sufficient condition identified 

n Menchón-Lara et al. [6] for the application of the convolutional 

trategy. 
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ppendix A. Convolution-based PCA2 gradient 

The derivatives of the correlation coefficients ρi, j , 1 ≤ i, j ≤ N

ith respect to each element of the deformation parameters ( θn,u l 
) 

re detailed here. Note that ρi, j = ρ j,i , and therefore, 
∂ρi,n 

∂θn,u l 

= 

∂ρn,i 

∂θn,u l 

, 1 ≤ i ≤ N. We can express these derivatives as 

∂ρi,n 

∂θn,u l 

∣∣∣∣
i 
 = n 

= 

1 

|X | − 1 

∑ 

x ∈X 

[(
I θi 

(x ) − μi 

σi 

)
· ∂ 

∂θn,u l 

(
I θn 

(x ) − μn 

σn 

)]

 

1 

|X | − 1 

∑ 

x ∈X 

(
I θi 

(x ) − μi 

σi 

)
· 1 

σ 2 
n 

·
[(

∂ I θn 
(x ) 

∂θn,u l 

− ∂μn 

∂θn,u l 

)
σn 

− ∂σn 

θn,u l 

· (I θn 
(x ) − μn ) 

]
, (A.1) 
8 
here 

∂μn 

∂θn,u l 

= 

1 

|X | 
∑ 

x ∈X 

∂ I θn 
(x ) 

∂θn,u l 

, and 

∂σn 

θn,u l 

= 

1 

|X | − 1 

∑ 

x ∈X 

(
I θn 

(x ) − μn 

σn 

)
∂ I θn 

(x ) 

∂θn,u l 

. 

herefore, the derivatives in Eq. (A.1) can be expressed as 

∂ρi,n 

∂θn,u l 

= 

∑ 

x ∈X 

1 

(|X | − 1) σn 

[(
I θi 

(x ) − μi 

σi 

)
− ρi,n 

(
I θn 

(x ) − μn 

σn 

)]
︸ ︷︷ ︸ 

�i,n 

PCA2 

∂ I θn 
(x ) 

∂T θn,l 

∂T θn,l 
(x ) 

∂θn,u l 

. (A.2) 

or diagonal elements (i = n ) , the derivatives turn out to be null,

ince 

n,n = 

1 

|X | − 1 

∑ 

x ∈X 

(I θn 
(x ) − μn ) 

2 

σ 2 
n 

= 

σ 2 
n 

σ 2 
n 

= 1 . (A.3) 
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