546 research outputs found

    Coherent Quantum Filtering for Physically Realizable Linear Quantum Plants

    Full text link
    The paper is concerned with a problem of coherent (measurement-free) filtering for physically realizable (PR) linear quantum plants. The state variables of such systems satisfy canonical commutation relations and are governed by linear quantum stochastic differential equations, dynamically equivalent to those of an open quantum harmonic oscillator. The problem is to design another PR quantum system, connected unilaterally to the output of the plant and playing the role of a quantum filter, so as to minimize a mean square discrepancy between the dynamic variables of the plant and the output of the filter. This coherent quantum filtering (CQF) formulation is a simplified feedback-free version of the coherent quantum LQG control problem which remains open despite recent studies. The CQF problem is transformed into a constrained covariance control problem which is treated by using the Frechet differentiation of an appropriate Lagrange function with respect to the matrices of the filter.Comment: 14 pages, 1 figure, submitted to ECC 201

    Solving the generalized Sylvester matrix equation AV+BW=EVF via a Kronecker map

    Get PDF
    AbstractThis note considers the solution to the generalized Sylvester matrix equation AV+BW=EVF with F being an arbitrary matrix, where V and W are the matrices to be determined. With the help of the Kronecker map, some properties of the Sylvester sum are first proposed. By applying the Sylvester sum as tools, an explicit parametric solution to this matrix equation is established. The proposed solution is expressed by the Sylvester sum, and allows the matrix F to be undetermined

    Factorized solution of generalized stable Sylvester equations using many-core GPU accelerators

    Full text link
    [EN] We investigate the factorized solution of generalized stable Sylvester equations such as those arising in model reduction, image restoration, and observer design. Our algorithms, based on the matrix sign function, take advantage of the current trend to integrate high performance graphics accelerators (also known as GPUs) in computer systems. As a result, our realisations provide a valuable tool to solve large-scale problems on a variety of platforms.We acknowledge support of the ANII - MPG Independent Research Group: "Efficient Hetergenous Computing" at UdelaR, a partner group of the Max Planck Institute in Magdeburg.Benner, P.; Dufrechou, E.; Ezzatti, P.; Gallardo, R.; Quintana-OrtĂ­, ES. (2021). Factorized solution of generalized stable Sylvester equations using many-core GPU accelerators. The Journal of Supercomputing (Online). 77(9):10152-19164. https://doi.org/10.1007/s11227-021-03658-y101521916477

    Guaranteed passive parameterized macromodeling by using Sylvester state-space realizations

    Get PDF
    A novel state-space realization for parameterized macromodeling is proposed in this paper. A judicious choice of the state-space realization is required in order to account for the assumed smoothness of the state-space matrices with respect to the design parameters. This technique is used in combination with suitable interpolation schemes to interpolate a set of state-space matrices, and hence the poles and residues indirectly, in order to build accurate parameterized macromodels. The key points of the novel state-space realizations are the choice of a proper pivot matrix and a well-conditioned solution of a Sylvester equation. Stability and passivity are guaranteed by construction over the design space of interest. Pertinent numerical examples validate the proposed Sylvester realization for parameterized macromodeling

    New optimization methods in predictive control

    No full text
    This thesis is mainly concerned with the efficient solution of a linear discrete-time finite horizon optimal control problem (FHOCP) with quadratic cost and linear constraints on the states and inputs. In predictive control, such a FHOCP needs to be solved online at each sampling instant. In order to solve such a FHOCP, it is necessary to solve a quadratic programming (QP) problem. Interior point methods (IPMs) have proven to be an efficient way of solving quadratic programming problems. A linear system of equations needs to be solved in each iteration of an IPM. The ill-conditioning of this linear system in the later iterations of the IPM prevents the use of an iterative method in solving the linear system due to a very slow rate of convergence; in some cases the solution never reaches the desired accuracy. A new well-conditioned IPM, which increases the rate of convergence of the iterative method is proposed. The computational advantage is obtained by the use of an inexact Newton method along with the use of novel preconditioners. A new warm-start strategy is also presented to solve a QP with an interior-point method whose data is slightly perturbed from the previous QP. The effectiveness of this warm-start strategy is demonstrated on a number of available online benchmark problems. Numerical results indicate that the proposed technique depends upon the size of perturbation and it leads to a reduction of 30-74% in floating point operations compared to a cold-start interior point method. Following the main theme of this thesis, which is to improve the computational efficiency of an algorithm, an efficient algorithm for solving the coupled Sylvester equation that arises in converting a system of linear differential-algebraic equations (DAEs) to ordinary differential equations is also presented. A significant computational advantage is obtained by exploiting the structure of the involved matrices. The proposed algorithm removes the need to solve a standard Sylvester equation or to invert a matrix. The improved performance of this new method over existing techniques is demonstrated by comparing the number of floating-point operations and via numerical examples

    A computational method for reduced-order observers in linear systems

    Get PDF

    Low computational complexity model reduction of power systems with preservation of physical characteristics

    Get PDF
    A data-driven algorithm recently proposed to solve the problem of model reduction by moment matching is extended to multi-input, multi-output systems. The algorithm is exploited for the model reduction of large-scale interconnected power systems and it offers, simultaneously, a low computational complexity approximation of the moments and the possibility to easily enforce constraints on the reduced order model. This advantage is used to preserve selected slow and poorly damped modes. The preservation of these modes has been shown to be important from a physical point of view and in obtaining an overall good approximation. The problem of the choice of the socalled tangential directions is also analyzed. The algorithm and the resulting reduced order model are validated with the study of the dynamic response of the NETS-NYPS benchmark system (68-Bus, 16-Machine, 5-Area) to multiple fault scenarios

    Optimal Control of Two-Player Systems with Output Feedback

    Full text link
    In this article, we consider a fundamental decentralized optimal control problem, which we call the two-player problem. Two subsystems are interconnected in a nested information pattern, and output feedback controllers must be designed for each subsystem. Several special cases of this architecture have previously been solved, such as the state-feedback case or the case where the dynamics of both systems are decoupled. In this paper, we present a detailed solution to the general case. The structure of the optimal decentralized controller is reminiscent of that of the optimal centralized controller; each player must estimate the state of the system given their available information and apply static control policies to these estimates to compute the optimal controller. The previously solved cases benefit from a separation between estimation and control which allows one to compute the control and estimation gains separately. This feature is not present in general, and some of the gains must be solved for simultaneously. We show that computing the required coupled estimation and control gains amounts to solving a small system of linear equations
    • …
    corecore