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Abstract—A novel state-space realization for parameterized
macromodeling is proposed in this paper. A judicious choice of
the state-space realization is required in order to account for
the assumed smoothness of the state-space matrices with respect
to the design parameters. This technique is used in combination
with suitable interpolation schemes to interpolate a set of state-
space matrices, and hence the poles and residues indirectly, in
order to build accurate parameterized macromodels. The key
points of the novel state-space realizations are the choice of a
proper pivot matrix and a well-conditioned solution of a Sylvester
equation. Stability and passivity are guaranteed by construction
over the design space of interest. Pertinent numerical examples
validate the proposed Sylvester realization for parameterized
macromodeling.

Index Terms—Sylvester equation, parameterized macromodel-
ing, state-space matrices, rational approximation, interpolation.

I. INTRODUCTION

DURING a typical design process of electromagnetic (EM)
systems, design space exploration, design optimization,

and sensitivity analysis are usually performed , and this
requires multiple simulations for different design parameter
values (e.g., layout features). Parameterized macromodels are
valuable tools to efficiently and accurately perform these
design activities, while avoiding new measurements or sim-
ulations for each new parameter configuration. Parameterized
macromodels are multivariate models that describe the com-
plex behavior of EM systems, typically characterized by fre-
quency (or time) and several geometrical and physical design
parameters, such as layout or substrate features. Recently,
parameterized macromodeling techniques able to guarantee
overall stability and passivity have been proposed in [1]–
[4]. The techniques described in [1] and [2] are based on
the interpolation of a set of univariate macromodels, called
root macromodels. This interpolation process of input-output
systems leads to parameterization of the residues, but unfortu-
nately not of the poles. Passive interpolation of the state-space
matrices of a set of root macromodels is proposed in [3] and
[4], providing an increased modeling capability with respect
to [1] and [2], due to the parameterization of both poles and
residues. Unfortunately, these methods are sensitive to issues
related to the interpolation of state-space matrices [5], such
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as the smoothness of the state-space matrices as a function of
the parameters.

In this paper, we propose a novel state-space realization
that is suitable to build accurate parameterized macromodels.
The direct parameterization of poles and residues is avoided,
due to their potentially non-smooth behavior with respect to
the design parameters. The Vector Fitting (VF) technique is
initially used to build a set of root macromodel for differ-
ent combinations of design variables. Stability for each root
macromodel is enforced by pole flipping [6], while passivity is
checked and enforced by means of standard techniques (e.g.,
[6]–[9]). A conversion from a pole-residue form obtained by
means of VF to a Sylvester realization is computed for each
root macromodel. The key points of the Sylvester realization
is the choice of a pivot or reference matrix and the obtention
of a well-conditioned solution to the Sylvester equation. Since
the same pivot matrix is used for all state-space realizations
of the root macromodels, smooth variations of the state-space
matrices with respect to the design parameters can be expected.
The state-space matrices obtained from the Sylvester realiza-
tion are used to obtain matrix solutions of the linear matrix
inequalities (LMIs) pertaining to the positive-real or bounded-
real lemma [10], and this information is then used to perform a
passivity preserving interpolation of the state-space matrices.
The computations can be carried out using the solution of
LMIs or algebraic Riccati equations (AREs) to generate a
descriptor state-space format that preserves positive-realness
or bounded-realness. Finally, suitable interpolation schemes
are used to build accurate parameterized macromodels which
preserve stability and passivity.

Pertinent numerical examples validate the proposed
Sylvester realization for macromodeling based on interpolation
of state-space matrices.

II. PARAMETERIZED MACROMODELING

Starting from a set of data samples {(s, p⃗)k,H(s, p⃗)k}, a
set of frequency-dependent rational models is built for an
initial selection of design space points by means of system
identification techniques [11], in our case the VF technique [6].
The result of this initial procedure is a set of rational univariate
macromodels, called root macromodels. Each root macromodel
is related to a design space point p⃗k = (p(1)k1

, ..., p(M)
kM

) . Two
data grids are used in the modeling process: an estimation
grid and a validation grid. The estimation grid is utilized
to build the root macromodels that, combined with suitable
interpolation schemes , are able to provide stable and passive
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parameterized macromodels. The validation grid is utilized
to assess the interpolation capability of the parameterized
macromodel and its capability of describing the system under
study in points of the design space previously unused for the
construction of the root macromodels.

Suppose we have a set of root macromodels Sp⃗k , k =
1, ...,N with given minimal realizations

Sp⃗k ≡
[

Ap⃗k Bp⃗k
Cp⃗k D p⃗k

]
, (1)

state-space equations

ẋ = Ap⃗k x+Bp⃗k u (2)
y = Cp⃗k x+D p⃗k u (3)

and transfer functions

Hp⃗k(s) =Cp⃗k(sI −Ap⃗k)
−1Bp⃗k +D p⃗k . (4)

We assume in this paper that all realizations Sp⃗k have the
same McMillan degree n [12] and number of ports m ≤ n. We
further suppose that all matrices Ap⃗k are Hurwitz stable i,e;
every eigenvalue of Ap⃗k has strictly negative real part [13].
We propose a generic parameterized realization of the form

S (p⃗)≡
[

A(p⃗) B(p⃗)
C(p⃗) D(p⃗)

]
(5)

with p⃗ = (p⃗(1), ..., p⃗(M)). The models S p⃗k can be considered
as snapshots of S (p⃗). Sp⃗k should be able to accurately model
the system behavior as a function of the complex frequency s
and the vectorial parameter p⃗ while guaranteeing stability and
passivity over the design space of interest.

III. STATE-SPACE REALIZATION FOR PARAMETERIZED
MACROMODELING

To obtain accurate parameterized macromodels by interpo-
lation of the state-space matrices, the choice of the state-space
realization is fundamental.

In this section, we will discuss the well-known Gilbert re-
alization, balanced realization and barycentric realization, and
then the proposed novel Sylvester realization, preceded by an
important subsection on passive parameterized interpolation.

A. Gilbert Realization

The minimal state-space realization problem for linear time
invariant (LTI) systems was first stated by Gilbert [14], who
gave an algorithm for transforming a transfer function into a
system of differential equations. The approach , of Gilbert is
based on partial-fraction expansions.

H(s) = R0,p⃗k +
N

∑
n=1

Rn,p⃗k

s− zn,p⃗k

(6)

where Rn,p⃗k and s− zn,p⃗k are respectively the model residues
and poles, with R0,p⃗k being the direct coupling constant. The
poles and the residues are stamped directly in the A(p⃗) and
C(p⃗) matrices using the Gilbert realization [14]. It is well-
known that model poles and residues are very sensitive to
even small variations of the design parameters, resulting in

quite irregular variations of each pole in the design space,
e.g. bifurcation effects [15]. Since poles and residues may
present a highly non-smooth behavior with respect to the
design parameters, achieving a reasonable accuracy in pa-
rameterized macromodels built by interpolation of state-space
matrices becomes difficult, due to the fact that pole and residue
trajectories as a function of p⃗ are not well defined.

B. Balanced Realization

A minimal and stable realization is called balanced [16],
[17], if the controllability and observability Gramians [16] are
equal and diagonal. Every minimal system can be brought into
balanced form. The balanced realization can be implemented
using the Matlab function balreal. This routine uses the
eigendecomposition of the product of the observability and
controllability Gramians to construct the balancing transfor-
mation matrix.

The most interesting properties of balanced realizations is
associated with the uniqueness properties of the balancing
transformation [18]. As the eigenvalues (real and nonnegative)
of the product of the controllability and observability Grami-
ans, are distinct, then the balancing transformation matrix is
unique. If, on the other hand, two or more eigenvalues are
repeated, then their corresponding eigenvectors can be rotated
arbitrarily in the corresponding eigenspace. Thus as stated in
[5], [18], [19], uniqueness is guaranteed up to a sign and it may
affect the smoothness of the state-space matrices as functions
of the design parameters.

C. Barycentric Realization

In what follows, the barycentric realization [15], [20] is
described. The transfer function of the macromodel related
to a generic point p⃗ = (p(1)k1

, ..., p(M)
kM

) in the design space is
converted from the rational pole residue form

H(s) = R0,p⃗k +
N

∑
n=1

Rn,p⃗k

s− zn,p⃗k

(7)

obtained by means of VF, into the barycentric realization [15],
[21]

H(s) =
F0,p⃗k +∑N

n=1 Fn,p⃗k ϕn(s)

f0,p⃗k +∑N
n=1 fn,p⃗k ϕn(s)

(8)

with basis function

ϕn(s) =
1

s−an
, n = 1, ...,N (9)

and where the barycentric basis poles {an}N
n=1 are fixed and

do not depend on p⃗k. The barycentric realization (8) can be
split into a numerator and a denominator, i.e;

H(s) =
Np⃗k(s)
∆p⃗k(s)

(10)

where

Np⃗k(s) = F0,p⃗k +
N

∑
n=1

Fn,p⃗k ϕn(s) (11)

∆p⃗k(s) = f0,p⃗k +
N

∑
n=1

fn,p⃗k ϕn(s) (12)
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This factorization can be seen as a special case of the so called
right coprime factorization [22]. A state-space realization for
each root macromodel is obtained by means of (11)-(12).
First, we construct two separate state-space realizations for
the numerator and denominator. We have

Np⃗k(s) =

[
Ãnum

p⃗k
B̃num

p⃗k
C̃num

p⃗k
D̃num

p⃗k

]
(13)

∆p⃗k(s) =

[
Ãden

p⃗k
B̃den

p⃗k
C̃den

p⃗k
D̃den

p⃗k

]
(14)

where
• Anum

p⃗k
= Aden

p⃗k
= blkdiag{anIP}, n = 1, ...,N, where IP is

the identity matrix of order P
• Bnum

p⃗k
= Bden

p⃗k
= [IP, ..., IP]

T is a block-column matrix ob-
tained by stacking N identity matrices IP

• Cnum
p⃗k

= [F1,p⃗k , ...,FN,p⃗k ]

• Cden
p⃗k

= [ f1,p⃗k IP, ..., fN,p⃗k IP]
• Dnum

p⃗k
= F0,p⃗k

• Dden
p⃗k

= f0,p⃗k IP

Remark that, in case some of the basis poles in the set of
{an}N

n=1 are complex, the above state-space matrices are com-
plex. However, standard state-space coordinate transformations
can be applied such that the resulting realization is real. The
matrix Anum

p⃗k
= Aden

p⃗k
can be seen as a pivot matrix for the

barycentric realization. Although the denominator function
(12) is scalar, its realization has been chosen to have P ports,
in order to be compatible in size with the realization of (11).
We have

H(s) = Np⃗k(s)∆p⃗k(s)
−1IP (15)

Then after some standard manipulations [15], we can write
the final state-space realization of (10) as

H(s) =
[

Ãp⃗k B̃p⃗k
C̃p⃗k D̃ p⃗k

]
(16)

with

Ãp⃗k = Aden
p⃗k

−Bden
p⃗k

(Dden
p⃗k

)−1Cden
p⃗k

(17a)

B̃p⃗k = Bden
p⃗k

(Dden
p⃗k

)−1 (17b)

C̃p⃗k =Cnum
p⃗k

−Dnum
p⃗k

(Dden
p⃗k

)−1Cden
p⃗k

(17c)

D̃p⃗k = Dnum
p⃗k

(Dden
p⃗k

)−1 (17d)

The barycentric realization (17) for each root macromodel
can be computed using different methods. The robustness of
the conversion is an important aspect. The computation of
the barycentric realization (17) requires the identification of
the matrices Cnum

p⃗k
and Cden

p⃗k
, which can be found using any of

the approaches described below.

1) Pole placement approach:
An interesting and robust approach to compute the
barycentric realization uses a pole placement technique
[23]. The matrix

Ãp⃗k = Aden
p⃗k

−Bden
p⃗k

(Dden
p⃗k

)−1Cden
p⃗k

(18)

requires the identification of Cden
p⃗k

which can be computed
using the technique proposed in [23]. Another interesting
approach based on the solution of a Sylvester equation
can be found in [24]. Some assumptions concerning ob-
servability and controllability must be satisfied for these
approaches and for the uniqueness of the solution [23],
[24]. The matrix Cden

p⃗k
is used to place the eigenvalues

of the Ãp⃗k matrix, and therefore the poles of the root
macromodels in such a way that they are equal to zn,p⃗k .
Once Cden

p⃗k
is obtained, the next step is to compute the

Cnum
p⃗k

matrix. Each block Fn,p⃗k , n = 1, ...,N can be easily
computed by means of [15]

Fn,p⃗k = fn,p⃗k H(an). (19)

2) Linear system approach:
The matrix Cden

p⃗k
is computed solving a linear system

in [15] . This approach uses the solution of a linear
system that contains the products of poles and becomes
ill-conditioned if the order of the system is high and the
bandwidth of interest is large. Once Cden

p⃗k
is obtained, the

computation of Cnum
p⃗k

is done as in the pole placement
approach described above.

1) Passive Parameterized Interpolation: When the macro-
model is utilized in a circuit simulator for transient analysis,
stability and passivity are the fundamental properties to be
guaranteed. It is known that while a passive system is also
stable, the reverse is not necessarily true. A passive system
denotes a system that is incapable of generating energy, and
hence one that can only absorb energy from the sources used
to excite it [25]. Passivity is an important property to satisfy
because stable, but not passive macromodels can produce
unstable systems when connected to other stable, even passive,
loads.

The interpolation of state-space matrices does not result in
the preservation of stability and passivity over the design space
even if the root macromodels (1) are stable and passive. First
, we need to define what we mean by passive interpolation.
Since each root macromodel Sp⃗k is passive, the bounded real
lemma or positive real lemma [25] states that this is the case
if there exists a positive definite symmetric matrix Ppk such
that the (LMI) [20], [26], [27]

Lp⃗k =

 AT
p⃗k

Ppk +Ppk Ap⃗k P⃗pk Bp⃗k CT
p⃗k

(Ppk Bp⃗k)
T −I DT

p⃗k
Cp⃗k Dp⃗k −I

≤ 0 (20)

for S-parameters [28] or

Lp⃗k =

[
AT

p⃗k
P⃗pk + P⃗pk Ap⃗k P⃗pk Bp⃗k −CT

p⃗k
(P⃗pk Bp⃗k −CT

p⃗k
)T −D p⃗k −DT

p⃗k

]
≤ 0 (21)

for Y-parameters is satisfied.
Solving the LMI can be replaced by equivalently solving an

ARE, which is known to be a more efficient approach [29],
[30] as the number of operations required to solve a Riccati
equation is O(n3), while the cost of solving an equivalent LMI
is O(n6). Thus for high orders it is advisable to solve using
ARE as it is computationally cheaper in comparison with LMI.
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For the S-parameters and Y-parameters , the AREs can
respectively be written as

AT
p⃗k

P⃗pk + P⃗pk Ap⃗k +CT
p⃗k

Cp⃗k +

(P⃗pk Bp⃗k +CT
p⃗k

D p⃗k)Ws(P⃗pk Bp⃗k +CT
p⃗k

D p⃗k)
T = 0 (22)

and

AT
p⃗k

P⃗pk + P⃗pk Ap⃗k +(P⃗pk Bp⃗k −CT
p⃗k
)Wa(P⃗pk Bp⃗k −CT

p⃗k
)T = 0 (23)

if Ws = (Im −DT
p⃗k

D p⃗k)
−1 and Wa = (Dp⃗k +DT

p⃗k
)−1 exist, i.e;

(Im −DT
p⃗k

Dp⃗k)> 0 and Dp⃗k +DT
p⃗k
> 0.

Once the matrix P⃗pk is obtained for each root macromodel,
it is possible to convert the transfer function from the form
(4) to the descriptor state-space form

Hp⃗k(s) =Cp⃗k(sP⃗pk − P⃗pk Ap⃗k)
−1P⃗pk Bp⃗k +D p⃗k . (24)

which will be useful for obtaining the passive parameterized
interpolation.

Next, consider a positive interpolation kernel [31] µpk(p⃗)
satisfying [32]

µpk(p⃗)≥ 0, µpk(p⃗l) = δpk,l

∑pk
µpk(p⃗) = 1 (25)

We assume that the interpolation kernel only depends on the
design space grid points and not on the values of the functions
to be interpolated. The kernel computation does not require
the solution of a linear system to impose the interpolation
constraints. In what follows, each interpolation kernel µpk(p⃗),
is selected as in piecewise linear interpolation.

It is straightforward to prove that, if each state-space matrix
is interpolated by a positive interpolation scheme with an
interpolation kernel that depends locally on the data points,
this is equivalent with the interpolation of the LMI (20) with
the same interpolation scheme i.e;

L (p⃗) =
N

∑
pk=1

µpk(p⃗)Lpk (26)

Hence if we parameterize all entries of the
P⃗pk A p⃗k , P⃗pk Bp⃗k ,Cp⃗k ,D p⃗k , P⃗pk matrices as

P(p⃗)A(p⃗) = (PA)(p⃗) =
N

∑
k=1

µpk(p⃗)P⃗pk Ap⃗k (27a)

P(p⃗)B(p⃗) = (PB)(p⃗) =
N

∑
k=1

µpk(p⃗)P⃗pk Bp⃗k (27b)

C(p⃗) =
N

∑
k=1

µpk(p⃗)Cp⃗k (27c)

D(p⃗) =
N

∑
k=1

µpk(p⃗)Dp⃗k (27d)

P(p⃗) =
N

∑
k=1

µpk(p⃗)P⃗pk (27e)

it is seen by inspection that the parameterization
(PA)(p⃗),(PB)(p⃗),C(p⃗),D(p⃗),P(p⃗) thus obtained is passive.
Since any non-negative linear combination of positive

(negative) semi-definite real matrices is a positive (negative)
semi-definite real matrix, stability and passivity are preserved
over the entire design space. Similar results can be obtained
for admittance and impedance representations [3].

The problem with the passive parameterized interpola-
tion procedure for the Gilbert and balanced realizations are
twofold. First, there are 5 interpolation equations (27) to
be satisfied. Secondly the interpolation technique yields by
construction the discrete macro-model Sp⃗k for p⃗= p⃗k, it is not
at all sure that the interpolated matrices A(p⃗),B(p⃗),C(p⃗),D(p⃗)
(or related descriptor form) will behave smoothly between
the nodes p⃗k. The reason for this is that minimal realizations
are all equivalent modulo a similarity transformation, i.e., two
realizations related by[

Ãp⃗k B̃p⃗k
C̃p⃗k D̃p⃗k

]
=

[
X−1Ap⃗k X X−1Bp⃗k

Cp⃗k X Dp⃗k

]
(28)

where X is any nonsingular matrix, yield the same transfer
function

Hp⃗k(s)=Cp⃗k(sI−Ap⃗k)
−1Bp⃗k +Dp⃗k = C̃p⃗k(sI−Ãp⃗k)

−1B̃p⃗k +D̃ p⃗k
(29)

It is also important to note that the interpolation of state-
space matrices allows a higher modeling capability than the
interpolation of transfer functions [1], [2], but unfortunately
these methods are sensitive to issues related to the smoothness
of the state-space matrices as a function of the parameters.

In the next subsections, we describe the proposed Sylvester
realization.

D. Sylvester Realization

For the Sylvester realization we propose the following state-
space feedback realization with feedback matrix F and pivot
matrix Ã.

ẋ = Ãx+ B̃p⃗k v (30a)

y = Ĉp⃗k x+ D̃ p⃗k v (30b)
v = −Fx+u (30c)

where Ã is a fixed n×n pivot matrix and F is a fixed m×n
state-space feedback matrix. This realization can be written as

R p⃗k ≡
[

Ã− B̃p⃗k F B̃p⃗k

Ĉp⃗k − D̃ p⃗k F D̃ p⃗k

]
=

[
Ã− B̃p⃗k F B̃p⃗k

C̃p⃗k D̃p⃗k

]
(31)

For Rp⃗k and Sp⃗k to be equivalent requires the existence of
nonsingular matrices Xk such that

Ã− B̃p⃗k F = X−1
k Ap⃗k Xk (32a)

B̃p⃗k = X−1
k Bp⃗k (32b)

C̃p⃗k =Cp⃗k Xk (32c)

is needed.
By eliminating (32b) from (32a) we obtain the Sylvester

equation
Ap⃗k Xk −XkÃ+Bp⃗k F = 0 (33)

for the unknown matrix Xk. We need the following
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Theorem 1: The Sylvester equation (33) has a unique
nonsingular solution Xk provided the pair (Ap⃗k ,Bp⃗k) is
controllable, the pair (Ã,F) is observable, and the intersection
of the eigenspectra of Ap⃗k and Ã is empty.

Proof: See [24], [33].
Note that Sylvester equations are routinely solved by the

Matlab function lyap and has a computational cost of O(n3).
Remark 1: The Sylvester realizations given the pivot matrix

Ã and feedback matrix F, are all unique by construction.
For the choice of Ã we can take a block-diagonal or block-
Jordan matrix [24] , which never shares eigenvalues with any
of the Ap⃗k matrices. This can be accomplished by choosing
the eigenvalues of Ã close to the imaginary axis (see also
the numerical simulations), similarly to Anum

p⃗k
and Aden

p⃗k
in (11)

and (12). The choice of F is subject to the requirement that
the pair (Ã,F) has to be observable. In this paper we have
considered F as Bnum

p⃗k
= Bden

p⃗k
as described in Section III-C

with proper transformation. More generally speaking, F can
be chosen quite freely, or its choice can be embedded in the
overall Sylvester algorithm [34]. It is important to choose the Ã
and F matrices properly to have a well-conditioned Sylvester
equation solution.

The Sylvester realization state-space matrices generate their
own LMIs as (20) for S-parameters and as in (21) for Y-
parameters, i.e; (Ã− B̃p⃗k F)T P̃⃗pk + P̃⃗pk(Ã− B̃p⃗k F) P̃⃗pk B̃p⃗k C̃T

p⃗k
(P̃⃗pk B̃p⃗k)

T −I D̃T
p⃗k

C̃p⃗k D̃ p⃗k −I

≤ 0

(34)
for S-parameters and[

(Ã− B̃p⃗k F)T P̃⃗pk + P̃⃗pk(Ã− B̃p⃗k F) P̃⃗pk B̃p⃗k −C̃T
p⃗k

(P̃⃗pk B̃p⃗k −C̃T
p⃗k
)T −D̃ p⃗k − D̃T

p⃗k

]
≤ 0

for Y-parameters. The ARE can also be similarly be recast.
It is then parameterized as in the four last equations of (27),

i.e.,

P̃(p⃗)B̃(p⃗) = ˜(PB)(p⃗) =
N

∑
k=1

µk(p⃗)P̃⃗pk B̃p⃗k (35a)

C̃(p⃗) =
N

∑
k=1

µk(p⃗)C̃p⃗k (35b)

D̃(p⃗) =
N

∑
k=1

µk(p⃗)D̃p⃗k (35c)

P̃(p⃗) =
N

∑
k=1

µk(p⃗)P̃⃗pk (35d)

The first equation of (27) has no counterpart in equations (35),
since it is easy to show that

(P̃[Ã− B̃F ])(p⃗) =
N

∑
k=1

µpk(p⃗)P̃⃗pk [A−B(p⃗k)F ] (36)

Finally, the parameterized Sylvester realization in descriptor
format is then simply generated by the interpolated matri-
ces (P̃Ã)(p⃗),(P̃B̃)(p⃗),C̃(p⃗), D̃(p⃗), P̃(p⃗) and the parameterized

transfer function is

Hp⃗(s) = C̃p⃗(sP̃(p⃗)− P̃(p⃗)Ã(p⃗))−1P̃B̃(p⃗)+ D̃(p⃗) (37)

Remark 2: Note that, even if passivity is not required, the
Sylvester realizations Rp⃗k can be very useful for parameter-
ization. Suppose the interpolation kernel K (p⃗k, p⃗) = µpk(p⃗)
is not necessarily positive, but satisfies partition of unity i.e.,

∑
pk

µpk(p⃗) = 1, µpk(p⃗l) = δpk,l (38)

Then it is clear that the interpolation procedure

B̃(p⃗) =
N

∑
pk=1

µpk(p⃗)B̃p⃗k (39a)

C̃(p⃗) =
N

∑
pk=1

µpk(p⃗)C̃p⃗k (39b)

D̃(p⃗) =
N

∑
pk=1

µpk(p⃗)D̃p⃗k (39c)

is a very simple way to generate a parameterized macromodel.

IV. NUMERICAL EXAMPLES

In the following examples, we show the importance of the
state-space realization. We validate the novel Sylvester real-
ization approach, by a comparison with the standard Gilbert,
balanced and barycentric realizations. The pole placement
approach described in Section III-C [24] is used for the
barycentric realization as it gives more robust solution in
comparison to the linear system approach [15].

A. Two Coupled Microstrip with Variable Spacing (CM)

Two coupled microstrips (length L=2cm) are considered
in this example. The cross-section is shown in Fig.1. The

Fig. 1. CM: Two coupled microstrips.

conductors have a width W of 500 µm and the height h of
the dielectric is 800 µm. A bivariate macromodel is built as
a function of the spacing S between the microstrips and the
frequency , f req. Their corresponding ranges are shown in
Table I.

TABLE I
CM: PARAMETERS OF THE COUPLED MICROSTRIPS

Parameter Min Max
Frequency ( f req) 20 MHz 4 GHz
Spacing (S) 1 mm 3 mm

The scattering parameters were obtained by means of a full-
wave solver based on the Partial Element Equivalent Circuit
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method [20] over a grid of 200× 15 samples, for frequency
and spacing respectively. We have built root macromodels for
8 values of the spacing by means of VF, each with an order
equal to 8.

As described in Section III-D, a pivot matrix and a
feedback matrix must be chosen such that a well-conditioned
solution is obtained for the Sylvester equation (33). We use
a pivot matrix based on the set of poles {an}N

n=1, chosen as
follows

an =−α + jβ , an =−α − jβ

where, α = β/100.
Also, since the eigenvalues of the pivot matrix and those of

the root macromodels obtained from Gilbert realization must
not be the same, we choose the poles very close to the imag-
inary axis as shown in Fig.2. The feedback matrix is chosen
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Fig. 2. CM: Eigenvalues of the pivot matrix and the root macromodels
obtained from Gilbert realization.

as described in Section III-D. A similarity transformation is
then performed using the Sylvester solution to obtain the state-
space matrices of the Sylvester realization.

Then the four realizations are converted to a passive descrip-
tor state-space form using LMI (34) as described in Section III
with the help of CVX [35]. A bivariate macromodel is then
obtained by linear interpolation of the corresponding state-
space matrices. The parameterized macromodel obtained by
the Sylvester realization is shown in Fig.3 .

Fig.4 compares S11(s,S) and its macromodel using the pro-
posed realization for the spacing values S = {1.08,2.08,2.91}
mm that have not been used for the generation of the root
macromodels.

The error plot in Fig.5 shows the absolute error at the
validation points for the different realizations. It can be seen
that the proposed Sylvester realization method gives a more
accurate parametric macromodel with an absolute maximum
error of −55.77 dB in comparison with the other realiza-
tion techniques. The error plot of barycentric realization and
the proposed technique is almost similar, but the proposed
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Fig. 3. CM: Magnitude of the bivariate macromodel S11(s,S) (Sylvester
realization for each root macromodel).
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Fig. 4. CM: Magnitude of the bivariate macromodel of S11(s,S) (S =
{1.08,2.08,2.91} mm using the Sylvester realization.
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Fig. 5. CM: Error comparison for the different realizations.

technique is computationally cheaper in comparison with
barycentric realization.

Table II compares the accuracy and CPU time needed for
the four realizations. As the initial set of data samples are
built using the VF technique, the root macromodels are in
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TABLE II
CM: COMPARISON OF THE DIFFERENT TECHNIQUES

Technique Maximum Error (dB) CPU time (sec)
Gilbert -0.505 -
Balanced 3.134 0.115
Barycentric -55.032 0.281
Sylvester -55.766 0.095

the standard Gilbert form. Thus II gives the CPU time for
the transformation from the Gilbert state-space form to the
respective state-space realization forms. It can be noted, that
the proposed Sylvester realization is accurate and has the least
computation.
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Fig. 6. CM: Model poles as a function of spacing for the root macromodels.

The distribution of the poles is shown in Fig.6 ; a bifurcation
effect on a couple of poles is visible with two real poles
moving towards each other and becoming a complex conjugate
pole-pair, causing the slope of the corresponding trajectory to
become discontinuous. This example shows that direct param-
eterization of the poles should be avoided due to potentially
non-smooth behavior with respect to the design parameters.
The effect of the bifurcation for the Gilbert realization can be
seen in Fig.7.
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Fig. 7. CM: Magnitude of the bivariate macromodel S11(s,S) using the
Gilbert realization.

In order to verify the properties of the parameterized
macromodel using Sylvester realization, we check the poles
of the parameterized macromodel over a dense sample (i.e;
200 samples) of the spacing S and is seen in Fig.8 that the
real part of the poles are negative and thus the system is stable.
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Fig. 8. CM: Poles of the bivariate macromodel S(s,S) using the Sylvester
realization.

The H∞ [36] of the system for the same dense samples of
the spacing S is plotted in Fig.9 and is found to be always
less than 1 which shows that the system is passive.
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Fig. 9. CM: H∞ for the bivariate macromodel S(s,S) uisng the Sylvester
realization.

Thus the proposed Sylvester realization is able to provide
a more accurate parameterized macromodel than the Gilbert
realization and balanced realization, and a computationally
cheaper model in comparison with barycentric realization.
Also by using an LMI along with the Sylvester realization
a stable and passive parameterized macromodel is obtained.

B. Folded Stub Notch Filter with Variable Length and Variable
Spacing (NF)

A folded stub microwave notch filter on a substrate with
relative permitivity εr = 9.6 and a thickness of 0.635 mm is
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modeled in this example. The layout of this filter is shown in
Fig.10.

Fig. 10. NF: Layout of the folded stub notch filter.

The spacing S and the length L of the stub are chosen as
design variables in addition to frequency. Their corresponding
ranges are shown in Table III.

TABLE III
NF: PARAMETERS OF THE FOLDED STUB NOTCH FILTER

Parameter Min Max
Frequency ( f req) 2 GHz 4 GHz
Length (L) 5 mm 10 mm
Spacing (S) 0.5 mm 0.7 mm

The scattering parameters were computed with advanced
design system (ADS) momentum over a grid of 11 × 11
samples, for length and spacing respectively. We have built
root macromodels for 6×6 values of the length and spacing
respectively by means of VF, each with an order 6.

As in the previous example , a pivot matrix and feedback
matrix are found, and the eigenvalues of the pivot matrix and
of the root macromodels are different as shown in Fig.11.
Then a similarity transformation is done using the Sylvester
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Fig. 11. NF: Eigenvalues of the pivot matrix and the root macromodels
obtained from Gilbert realization.

solution to obtain the state-space matrices of the Sylvester
realization. In order to convert the state-space matrices to a
passive descriptor state-space form , we solve the LMI (34)
using CVX [35] for the three realizations.

Thus, an accurate trivariate macromodel is obtained by the
multilinear interpolation of the corresponding state-space ma-
trices. Fig.12 shows the parameterized macromodel obtained
using the Sylvester realization .

Fig.13 compares S12(s,L,S) and its macromodel for the
length values L = {5.5,6.5,7.5,8.5} mm that have not been
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Fig. 12. NF: Magnitude of the trivariate macromodel S12(s,L,S) for S =
0.5mm using Sylvester realization.
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Fig. 13. NF: Magnitude of the trivariate macromodel for S = 0.6 mm of
S12(s,L,S) (L = {5.5,6.5,7.5,8.5} mm) using Sylvester realization.

used for the generation of the root macromodels using the
Sylvester realization.

As in the case of the two coupled microstrips , in this
example also we can see from the error plot in Fig.14 that the
proposed realization method gives an accurate parameterized
macromodel with an absolute maximum error of −43.62 dB.

TABLE IV
NF: COMPARISON OF THE DIFFERENT TECHNIQUES

Technique Maximum Error (dB) CPU time (sec)
Gilbert -21.201 -
Balanced 9.718 0.891
Barycentric -45.552 0.963
Sylvester -43.617 0.378

While the barycentric realization provides a slightly better
accuracy than the Sylvester-based realization, but it results to
be computationally more expensive as shown in Table IV.

Fig.15 shows the parameterized macromodel using balanced
realization , and we note that the behavior is very erratic in
comparison with Fig.12. This is due to the abrupt changes in
the elements of the state-space matrices obtained through the
balanced realization.
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Fig. 14. NF: Error comparison for the different state-space realizations.
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Fig. 15. NF: Magnitude of the trivariate macromodel S12(s,L,S) using
balanced realization for each root macromodel).

The behavior of one of the elements in the matrix Ap⃗k is
shown in Fig. 16. The figure compares the behavior of the
corresponding element in Sylvester realization and can be seen
to have a smooth variation.
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Fig. 16. NF: An entry of the A p⃗.

In order to verify the stability and passivity of the parame-
terized macromodel using the Sylvester realization, we check

its poles over a dense sampling (i.e; of 200 × 200 samples of
the spacing S and length L). In Fig.17 we can see that the real
part of the poles is always negative and therefore the system
is stable.
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Fig. 17. NF: Poles of the trivariate macromodel S(s,L,S) using Sylvester
realization.

For passivity similar to the previous example , the H∞ of
the system is plotted in Fig.18 and it is found to be less than
1 for all cases.

5
6

7
8

9
10

0.5

0.55

0.6

0.65

0.7
0.996

0.997

0.998

0.999

1

Length (mm)

Spacing (mm)

M
ax

(s
in

gu
la

r 
va

lu
es

)

Fig. 18. NF: H∞ of the trivariate macromodel S(s,L,S) using the Sylvester
realization.

Thus the proposed Sylvester realization is able to provide a
more accurate parameterized macromodel in comparison to
Gilbert realization and balanced realization, and a compu-
tationally cheaper parameterized macromodel in comparison
with barycentric realization. The stability and passivity of the
system can be preserved by solving LMI and by using suitable
interpolation schemes.

V. CONCLUSION

This paper proposes a novel state-space realization for
parameterized macromodeling based on interpolation of state-
space matrices. A judicious choice of the state-space realiza-
tion is required to account for the generally assumed smooth-
ness of the state-space matrices with respect to the parameters.
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Suitable interpolation schemes along with Sylvester realization
are used to interpolate a set of root state-space matrices
in order to build accurate parameterized macromodels. The
essential aspects of this novel realization are to find a proper
pivot matrix and to obtain a well-conditioned solution for a
Sylvester equation. The numerical examples and related com-
parison results show that the proposed Sylvester realization
provides very accurate parameterized macromodel with a low
computation cost. The stability and passivity of the system can
be preserved with the help of LMI and by the use of proper
interpolation schemes.
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