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Abstract—A data-driven algorithm recently proposed to solve
the problem of model reduction by moment matching is ex-
tended to multi-input, multi-output systems. The algorithm is
exploited for the model reduction of large-scale interconnected
power systems and it offers, simultaneously, a low computational
complexity approximation of the moments and the possibility
to easily enforce constraints on the reduced order model. This
advantage is used to preserve selected slow and poorly damped
modes. The preservation of these modes has been shown to be
important from a physical point of view and in obtaining an
overall good approximation. The problem of the choice of the so-
called tangential directions is also analyzed. The algorithm and
the resulting reduced order model are validated with the study
of the dynamic response of the NETS-NYPS benchmark system
(68-Bus, 16-Machine, 5-Area) to multiple fault scenarios.

Index Terms—Dynamic equivalents, model reduction of power
systems, coherency, model reduction from data.

I. INTRODUCTION

The problem of model reduction [1] consists in finding a
simplified model of a given complex mathematical description
maintaining at the same time some key properties of the
original system. Since the mathematical models used to describe
power systems can easily reach hundreds of states, inputs
and outputs, the simulation of power systems for dynamic
analysis, trajectory sensitivity analysis and control design is a
computationally intensive task. As the computational power has
advanced, the complexity of these mathematical descriptions
and the complexity of the simulated scenarios have increased
as well. This trend, which is not unique of power systems,
has maintained the computational needs at the top or over
the available possibilities [2, Section 5.7]. Hence, the model
reduction problem, sometimes also referred as the problem of
dynamic equivalencing [3], is central to modern research on
power systems. At the basis of the use of dynamic equivalencing
in power systems there is the idea of distinguishing between
a study area, the description of which is maintained in full
detail, and an external area, consisting of the remaining part
of the network, which is reduced. The study area can be
precisely analyzed and controlled while still considering the
interaction of the interconnection of such area with a less
faithful representation of a larger external area. Thus, when
doing model reduction of power systems the main aim is having
a dynamic behavior of the interconnection between the reduced
order model and the study area as close as possible to the one
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of the original nonlinear power system. In other words, we
are interested in the faithful reproduction of the behavior of
the system for a specific class of input signals, neglecting the
behavior outside the operating conditions.

Historically, coherency-based methods have been used in
model reduction of power systems, see e.g. [4]–[12] and [3],
[13] for a comparison of different coherency-based methods.
These methods are based on the physical properties of the
electrical machines connected to the network. The idea is to
find coherent generators, i.e. machines which behave similarly
when the same input is applied. Once coherent generators are
identified a dynamic equivalent generator is used to replace
them. In recent years, the power system community has started
to be interested in reduction techniques based on mathematical
properties instead of physical ones, see e.g. [14]–[25]. One of
the reasons of this interest is the flexibility of having a reduction
technique that is not based on the physics of the generators and,
as a consequence, the possibility of reducing networks with
renewable energy sources. Among these methods, balanced
truncation and Krylov projectors have been successfully used
in power systems reduction, see e.g. [3], [26], [27]. One of
the drawbacks of the techniques based on Krylov projections,
also called moment matching methods, is the difficulty in
enforcing or preserving specific properties of the system to be
reduced. Since the moment matching technique is completely
decoupled from the physics of the system, the real applicability
of the reduced order models is limited. For instance, one would
expect that the preservation of some physical characteristics,
such as some specific modes, is of paramount importance.
Poorly damped modes, also called electromechanical modes
[28], are important in the small-signal stability analysis of
a power system since they are responsible for most of the
oscillating behavior. Similarly slow modes characterize how
fast the response of the system reaches the steady-state. While
previous attempts to maintain these modes are essentially ad
hoc, since with the classical Krylov methods it is very hard to
preserve a certain set of eigenvalues, the problem of assigning
a prescribed set of modes has been alleviated in [29].

In a preliminary version of this paper [30], the model
reduction techniques presented in [29] have been applied for
the first time to power systems. In particular, these methods
have been used to assign arbitrary eigenvalues to the reduced
order model i.e. maintaining slow and poorly damped modes.
Therein it has been shown that it is not necessary to increase
the order of the reduced order model to improve the quality
of the approximation of the system: to achieve this goal it
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may be sufficient to select a different set of eigenvalues to
be preserved in the reduced order model. Moreover, in the
paper it is also shown that increasing the order of the reduced
model gives no guarantee of improving significantly the quality
of the approximation if the wrong set of eigenvalues are
preserved. The results of [30] give a physical justification
to a mathematical deduction, since the resulting reduced order
model is better both in terms of approximation error and
physical properties.

In the present paper we shift the focus from demonstrating
the reasons that justify a new approach to the problem of
model reduction of power systems to the actual detailed
description of the method. We begin giving a solid theoretical
foundation. Power systems are not only described by a large
number of states, but they have also a high number of
inputs and outputs. Thus, the problem of model reduction
of multi-input, multi-output (MIMO) systems is described
in the framework of the so-called tangential interpolation
problem. An algorithm to approximate the tangential directions
is given and connections with previous published results are
drawn. Since classical efficient Krylov algorithms suffer the
drawback of not preserving specific modes, we present here
a low computational complexity algorithm for the model
reduction of MIMO systems which is able to preserve specific
properties. Originally devised for single-input, single-output
(SISO) systems for which the mathematical description is
unknown [31], the algorithm is here extended to MIMO systems.
The algorithm, exploiting the inputs and outputs of the system
instead of operations on large matrices, offers a computationally
efficient method to approximate reduced order models. Note
also that this algorithm lays the foundations to achieve model
reduction by moment matching directly from time-domain
measurements. This would complement recent results obtained
with coherency-based methods in which frequency-domain
measurements are used to achieve model reduction, see e.g. [32],
[33] in which phasor measurements units are used to determine
reduced order models. The simulation section illustrates the
performance of the algorithm, the design of the reduced order
model and the dynamic behavior of the interconnection of the
study area with the approximated model.

The rest of the paper is organized as follows. In Section II
we provide some preliminaries. In particular, in Section II-B
we introduce the problem of the reduction of MIMO systems
and the role of tangential interpolation. In Section III we
derive the algorithm for the approximation of the moments
of MIMO systems whereas in Section IV an heuristic to
approximate the tangential directions is given. In Section V-A
we describe the nonlinear model which represents the study area
of the power system and the linear model which represents the
external area. In Section V-B a complete algorithmic overview
summarizes the method. In Section V-C the NETS-NYPS
benchmark system is described. In Section V-D the reduced
order model is designed. In Section V-E the use of the algorithm
is illustrated and in Section V-F the fault response of the
interconnection between the study area and the reduced order
model is simulated in multiple scenarios.

Notation. We use standard notation. C<0 denotes the set
of complex numbers with negative real part; C0 denotes the

Fig. 1. Diagrammatic illustration of Theorem 1. The first term on the right-hand
side (solid circled/red) describes the steady-state response of the interconnected
system, whereas the second term (dashed circled/green) the transient response.

set of complex numbers with zero real part. The symbol I
denotes the identity matrix and σ(A) denotes the spectrum of
the matrix A ∈ Rn×n. The symbol ||A|| indicates the induced
Euclidean matrix norm. The vectorization operator is denoted
by vec(A). Given a list of n elements ai, diag(ai) indicates a
diagonal matrix with diagonal elements equal to the ai’s. The
superscript > denotes the transposition operator and ι indicates
the imaginary unit.

II. PRELIMINARIES ON THE MODEL REDUCTION BY
MOMENT MATCHING

A. SISO Systems

Consider a linear SISO continuous-time system described
by the equations

ẋ = Ax+Bu, y = Cx, (1)

with state x(t) ∈ Rn, input u(t) ∈ R, output y(t) ∈ R, state
matrix A ∈ Rn×n, input matrix B ∈ Rn×1 and output matrix
C ∈ R1×n. Let W (s) = C(sI − A)−1B : C 7→ C be the
associated transfer function and assume that (1) is minimal,
i.e. controllable and observable1.

Definition 1. [1, Chapter 11] Let si ∈ C \ σ(A). The 0-
moment of system (1) at si is the complex number η0(si) =
C(siI − A)−1B. The k-moment of system (1) at si is the
complex number ηk(si) = (−1)k

k!

[
dk

dsk
(C(sI −A)−1B)

]
s=si

,
with k ≥ 1 integer.

The model reduction technique by moment matching is
based on the idea of interpolating a certain number of points
ηk(si) on the complex plane: a reduced order model is such
that its transfer function (and derivatives of this) takes the
same values of the transfer function (and derivatives of this)
of system (1) at si. In [34], [35], a characterization of the
moments of system (1) has been given in terms of the solution
of a Sylvester equation. The importance of this formulation is
that it establishes, through the Sylvester equation, a relation
between the moments and the steady-state response of the
output of a specific system. These observations, which resulted
in several developments in the area of model reduction by
moment matching, see e.g. [36]–[41], are summarized in the
following result and illustrated in Fig. 1.

Theorem 1. [29] Consider system (1) and suppose si ∈ C \
σ(A), for all i = 1, . . . , η. Consider any non-derogatory2 matrix

1See, for instance, [1] for the definitions of transfer function, controllability
and observability.

2A matrix is non-derogatory if its characteristic and minimal polynomials
coincide.
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S ∈ Rν×ν with characteristic polynomial p(s) =
∏η
i=1(s −

si)
ki , where ν =

∑η
i=1 ki,. Then there exists a one-to-one

relation between the moments η0(s1), . . . , ηk1−1(s1), . . . ,
η0(sη), . . . , ηkη−1(sη) and
• the matrix CΠ, where Π ∈ Rn×ν is the unique solution

of the Sylvester equation

AΠ +BL = ΠS, (2)

for any L ∈ R1×ν such that the pair (L, S) is observable;
• the steady-state response, provided σ(A) ⊂ C<0, of the

output y of the interconnection of system (1) with the
system

ω̇ = Sω, u = Lω, (3)

for any L and ω(0) such that the triple (L, S, ω(0)) is
minimal.

Remark 1. The reduction technique based on this notion of
moment consists in the interpolation of the steady-state response
of the output of the system: a reduced order model is such that
its steady-state response is equal to the steady-state response
of the output of the interconnected system (provided it exists).

Remark 2. The method can be applied to systems which are
not minimal, but in this case the resulting reduced order models
describe only the controllable and observable subsystems.
This is not at all a restriction but a sensible feature of any
model reduction method. In fact, note that not only any
Krylov method reduces the minimal subsystems (since these
methods interpolate the transfer function) but unobservable and
uncontrollable modes are the first candidates for elimination
also for other methods. For instance, the balanced truncation
method eliminates the less controllable and less observable
modes. Since no controller or observer can be designed for such
modes, when we want to economize on the order of the system
it is natural to disregard these modes. See [1] for a thorough
analysis of the relation between controllability, observability,
the problem of model reduction and, more in general, the
problem of “realization” (obtaining a state-space model). For a
specific analysis of the problem of quantifying controllability
and observability in power systems see [42]–[44].

B. MIMO Systems

Consider a linear MIMO continuous-time, system described
by the equations

ẋ = Ax+Bu, y = Cx, (4)

with x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, A ∈ Rn×n, B ∈
Rn×m and C ∈ Rp×n. Let W (s) = C(sI − A)−1B : C 7→
Cp×m be the associated transfer function and assume that (4) is
minimal. If we characterize the moments of this MIMO system
as in Definition 1, we have mpν interpolation conditions (the
mp components of W at ν points), whereas the dimensions of
CΠ is only pν. While a possible solution to this problem is to
inflate the order of the reduced order model, this substantially
increases the dimension of the model and the reduction may
even lose sense if mν ≥ n, which is a likely situation in the
analysis of power systems. A workaround to this drawback

consists in “merging” some of the conditions together. However,
the merging of the interpolation conditions has to be done in a
specific way to preserve the information of the original single
moments. This is the idea behind the tangential interpolation
approach, initially proposed in [45]. The tangential interpolation
approach can be embedded in the framework we have presented
with a redefinition of moment.

Definition 2. Let si ∈ C\σ(A) and li ∈ Rm×1. The k-moment
of system (4) at si along li is a vector of p complex numbers
defined as ηk(si) = (−1)k

k!

[
dk

dsk
W (s)

]
s=si
li, with k ≥ 0 integer.

Hence, the moment matching conditions become [46], [47]

(−1)k

k!

[
dk

dsk
W (s)

]
s=si

li =
(−1)k

k!

[
dk

dsk
Ŵ (s)

]
s=si

li, (5)

with i = 1, . . . , ν, where Ŵ (s) is the transfer function of the
reduced order model.

Remark 3. The pν tangential interpolation conditions (5)
are weaker than the original pmν matching conditions. Since
this approach consists in replacing m equations with one, the
resulting model is not in general as good as a model which
interpolates all the m conditions. This is the price to pay to
maintain the order of the reduced order model independent
from the number of inputs. Moreover, this suggests that the
selection of the vectors li is fundamental to obtain a reliable
reduced order model.

Remark 4. In [26] the authors report the block Krylov
approach of [48]. This approach, predating the development of
the tangential interpolation theory in [45], inflates the dimension
of the reduced order model to satisfy the pmν matching
conditions. However, the authors recognize this drawback
and do not use this method in the application part of the
paper. In fact, claiming “in order to limit the size of the
Krylov subspaces, we consider that the matrix B [...] is the
sum of the input matrices” they are applying a single input
algorithm on an approximated system. They also recognize
that “in general, such kind of heuristics for economy in the
size of the base [...] does not work well”. Interestingly, a
theoretical explanation for the poor general performance can
be given revisiting their approximated approach in the tangential
framework. It can be easily shown that adding the columns
of the matrix B corresponds to using moment matching with
tangential directions li = [1 . . . 1]>. Thus, the performance
can be improved selecting different directions, i.e. applying the
method to a linear combination of the columns of B instead
of the simple addition.

Exploiting Definition 2, Theorem 1 can be adapted to the
MIMO case. Let L = [l1 l2 . . . lν ] ∈ Rm×ν , li ∈ Rm×1,
i = 1, . . . , ν, be such that the pair (L, S) is observable. Then
the moments of the system are in one-to-one relation with CΠ,
with Π ∈ Rn×ν the unique solution of the Sylvester equation
(2). Finally, the family of systems [29]

ξ̇ = (S −GL)ξ +Gu, ψ = CΠξ, (6)

with S −GL ∈ Rν×ν , G ∈ Rν×m and CΠ ∈ Rp×ν contains
all the models of dimension ν interpolating the moments of
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system (4) at S if G is such that σ(S) ∩ σ(S − GL) = ∅.
Hence, we say that system (6) is a model of (4) at S. System
(6) is a reduced order model of system (4) at S if ν < n.

Remark 5. All the models that can be obtained using Krylov
projectors are encoded in the family of systems (6) [29]. Thus
the models obtained with the two approaches are equivalent.
The advantage of this formulation is that the family of
systems (6) is parametrized in G, which allows to set with
ease several properties of the reduced order model, as shown
in [29]. For instance, setting the eigenvalues of the reduced
order model is an easy task, whereas with the classic Krylov
method this is rather difficult.

Remark 6. The family of systems (6) represents reduced order
models of system (4) for any matrix L, i.e. for any tangential
direction. However, as already remarked, the quality of the
approximation depends on the choice of L. We also note that the
tangential directions depend upon the reduced order model and
the reduced order model depends upon the tangential directions.
Thus, the determination of the directions is a difficult problem.

Remark 7. In the interpolation framework, algorithms have
been proposed to iteratively approximate the vectors li, see
e.g. [24]. However, these solutions do not allow one to chose
the interpolation points nor to preserve a prescribed set of
eigenvalues. While these algorithms work well when specific
physical properties are not important, they are somewhat limited
in the case of power systems for which the preservation of
slow and poorly damped modes is fundamental for giving a
physical meaning to the reduced order models [30].

III. A LOW COMPLEXITY ALGORITHM FOR THE
COMPUTATION OF THE MOMENTS

In this section we extended to MIMO systems an algorithm
recently proposed for the computation of the moments of a
SISO system from input/output data [31], [39]. Although the
algorithm has been primarily devised to compute the moments
when the matrices A, B, C are not available, it has also the
advantage of being a computationally fast method for the
approximation of the moments of a system.

Remark 8. We do not claim that the algorithm we are
presenting here can be used to approximate the moments
from actual input/output data of power systems. In fact, for a
power system, which is a nonlinear system, we do not have
any guarantee on the approximation given by the algorithm
when measurements generated by such nonlinear system are
used. However, in addition to propose this algorithm for the
fast computation of the moments, this paper lays also the
foundations to solve the problem of input/output reduction
from real time-domain data in two ways: the input/ouput data
of a power system can be filtered by means of a linear filter;
the nonlinear version of the algorithm proposed in [40] can
be extended to MIMO systems and used with the measured
data. However, the use of these methods for the reduction
of power systems is not trivial. For the aims of this paper,
we limit ourself to use the algorithm just as a mean to
approximate the moments without solving equation (2), which
is computationally expensive.

In the next theorem3 we make some technical assumptions
for which we clarify the meaning here. Assuming σ(A) ⊂ C<0

implies that the system is stable. Assuming that the triple
(L, S, ω(0)) is minimal implies that it is always possible to find
a sequence {tk} of sampling times ti, with limk→∞ tk =∞,
such that rank

([
ω(tk−ν+1) . . . ω(tk)

])
= ν, see [49].

Theorem 2. Consider the interconnection of system (4) with
the signal generator (3). Assume σ(A) ⊂ C<0, σ(S) ⊂ C0

and that the triple (L, S, ω(0)) is minimal. Define the time-
snapshots R̃k ∈ Rgν×ν and Υ̃j

k ∈ Rgν as

R̃k =
[
ω(tk−w+1) . . . ω(tk−1) ω(tk)

]>
and

Υ̃j
k =

[
yj(tk−w+1) . . . yj(tk−1) yj(tk)

]>
,

where yj(ti) is the j-th row of y(ti). If g = 1, the matrix R̃k
has full rank and

vec(C̃jΠk) = (R̃>k R̃k)−1R̃>k Υ̃j
k, (7)

is an approximation of CjΠ, with Cj the j-th row of C, i.e.
there exists a sequence {tk} such that the equation

lim
k→∞

C̃jΠk = CjΠ,

hold.

Then a MIMO version of the algorithm proposed in [31]
can be formulated.

Algorithm 1. Let k be a sufficiently large integer. Select
ηj > 0, with j = 1, . . . , p sufficiently small. Select g ≥ 1

(recall that gν is the number of rows of R̃k).
1: Construct the matrices R̃k and Υ̃j

k.
2: If rank

(
R̃k

)
= ν then compute C̃jΠk solving equa-

tion (7).
Else increase g.

If k − gν < 0 then restart the algorithm selecting a
larger initial k.

3: If
∣∣∣∣∣∣C̃jΠk − C̃jΠk−1

∣∣∣∣∣∣ > ηj
tk−tk−1

for some ηj then
k = k + 1 go to 1.

4: Stop.

Remark 9. If g = 1 the matrix R̃k is full rank. However,
in practice numerical approximations in the computation of
R̃k may cause loss of rank. For this reason we formulate
the algorithm with the possibility of increasing the number
of measurements. As a consequence Algorithm 1 gives a
least square approximation of the moments. According to
our experience, good values of g can usually be selected as
1 ≤ g ≤ 10 depending on the system. In the simulations
presented in this paper g = 4.

Remark 10. For SISO systems, the algorithm has a compu-
tational complexity of4 O(gν2.373), whereas the Arnoldi or
Lanczos procedures for the approximation of the moments

3The proof can be found in the Appendix.
4We use the computational complexity of the fastest algorithm [50] for the

inversion and multiplication of matrices.
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have a computational complexity of O(νn2), with n� ν [1,
Section 14.1] (both complexities are multiplied by p in the
MIMO case).

IV. APPROXIMATION OF L

In this section we present a heuristic that can be used to
construct the matrix L of the signal generator (3).

Algorithm 2. Let r = 1 and j = 1. Consider Cj the j-th row
of C, Br the r-th column of B and lri the r-th element of li.

1) Consider the system (A, B̃ = B1, C1) and design a
reduced order model with l1i = 1 for i = 1, . . . , ν, i.e.
select the interpolation points and the desired eigenvalues
of the reduced order model to achieve the desired
approximation of the resulting SISO system.

2) If r < m then r = r + 1. Using the same interpolation
points and desired eigenvalues compute a reduced order
model of the multi-input system (A, B̃ = [B̃ Br], C1)
as minlri ||W − Ŵ ||H2 , where || · ||H2 is the H2 norm5.
Repeat.
Else with the obtained matrix L, the same interpolation
points and desired eigenvalues compute a reduced order
model of (A,B,C).

3) Stop.

This heuristic is justified by the observation that L is involved
in combining m elements. Thus, we may expect that we
can ignore the fact that the system is multi-output in the
approximation of L. In addition, one can expect that the
set of interpolation points and prescribed eigenvalues which
have been selected to obtain a desired approximation on the
truncated SISO system can be used on the MIMO system. This
is justified by the observation that we still want to maintain
an approximation on the truncated system as close as possible
to the one we have designed. As a consequence of these
observations, the approximation of the mν elements of L has
been reduced to the problem of determining m−1 independent
scalars lri .

Remark 11. There is no guarantee that this heuristic works in
general. However, our simulations have shown that the resulting
L is at least locally optimal with respect the H2 norm. A small
variation of any of the obtained elements of L causes a rapid
increase of the error norm.

V. APPLICATION TO POWER SYSTEMS

A. Power system model

We describe a power system composed of nm-machines
and nb-bus with the classical model, see [52], [53], which is
normally used in the literature of model reduction of power
systems, see e.g. [3], [26], [27]. The model is described by the

5See [51, Chapter 2] for the definition of H2 norm.

differential equations

δ̇i = ωi − ωs,
2Hi

ωs
ω̇i = TMi

−Di(ωi − ωs)− E2
iGii

−Ei
nm∑

j=1, j 6=i

(EjGij cos(δi − δj) + EjBij sin(δi − δj)) ,

(8)
with i = 1, . . . , nm, where δi and ωi are the rotor angle
and angular velocity, respectively, of the i-th machine, ωs is
the reference angular velocity, Hi and Di are the inertia and
damping coefficients, respectively, of the i-th machine, Ei is
the internal voltage of the i-th machine, Yij = Gij + ιBij is
the admittance between the machines i and j, Gii is the self-
conductance of the i-th machine and TMi

is the mechanical
input power of the i-th machine.

In the literature on model reduction of power systems the
study area and the external area are sometimes modeled as
two separate entities interconnected each other with np-tie-
lines, see e.g. [3], [26]. However, this is a somewhat strong
approximation. In fact, note that if the two power systems,
study area and external area, are interconnected then we have a
unique large power system and the power flow analysis which
defines the parameters of system (8) has to be updated. Using
the tie-lines only to exchange the input and output of the two
systems gives the considerable simplification that the number
of inputs and outputs corresponds to the arbitrary number of
tie-lines.

On the contrary, in this paper the division in study area and
external area is a pure exercise of labeling. In fact, the whole
power system is described by equations (8) and the division in
study and external area can be done over every region of the
power system using the actual buses as interconnecting lines
between the two areas. This approach has the advantage of
improving the fidelity of the simulation of the power system.
The drawback is that the number of inputs of the external
area corresponds to the number of machines of the study area
and the number of outputs of the external area corresponds to
the number of machines of the external area, and vice-versa.
However, since with the considered method the dimension of
the reduced order model does not depend upon the number of
inputs and outputs, a large number of inputs and outputs is not
an issue for the technique we are presenting.

Thus, consider an external areas composed of em-machines
and a study areas composed of sm-machines, with sm + em =
nm. The study area is described by system (8) for i = em +
1, . . . , sm. The input of the study area (output of the external
area) is δj , with j = 1, . . . , em. The external area is described
by the linearization of system (8) around an equilibrium point,
namely[

∆δ̇
∆ω̇

]
=

[
0 I
A21 A22

] [
∆δ
∆ω

]
+

[
0
B2

]
∆u,

y =
[
C1 0

] [ ∆δ
∆ω

]
,

(9)

where ∆δi = δi − δ0i , ∆ωi = ωi − ω0
i , with i = 1, . . . , em,

∆uj = uj − u0j = δj − δ0j , with j = em + 1, . . . , nm,
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(δ0, ω0, u0) is an equilibrium point and the remaining ma-
trices are defined as A21 = ωs diag(2Hi)

−1K, A22 =
−ωs diag(2Hi)

−1 diag(Di) and B2 = ωs diag(2Hi)
−1Z,

with

Kij = EiEjBij cos(δ0i − δ0j )− EiEjGij sin(δ0i − δ0j ), (10)

for i = 1, . . . , em, j = 1, . . . , em and j 6= i,

Kii =

em+sm∑
j=1, j 6=i

−EiEjBij cos(δ0i − δ0j ) +EiEjGij sin(δ0i − δ0j ),

(11)
for i = 1, . . . , em, and

Zik = EiEkBik cos(δ0i − δ0k)−EiEkGik sin(δ0i − δ0k), (12)

for i = 1, . . . , em and k = em + 1, . . . , sm.

B. Algorithmic overview

The steps of the method are summarized in the flowchart in
Fig. 2. We start determining a linearized model of the power
system. Note that the linear model is (9) if we use the classical
model (8), but it can be different if we use a more complex
original model. We then inspect the frequency response W (ιω̂)
(e.g. the Bode plot) and we order in a list Σ the frequencies
si at which preeminent features, e.g. frequency peaks, appear.
We inspect the spectrum of the matrix A and we determine the
slowest and poorly damped modes. We order these modes in a
list Λ. We generate the data y(t) and ω(t), and we determine
CΠη using Algorithm 1 applied to (A, B̃ = B1, C1). We
determine the reduced order model (6) assigning the eigenvalues
from the list Λ, e.g. using the function “pole” of MATLAB.
If the SISO reduced order model obtained is not satisfactory,
e.g. by comparing the Bode plot, we increase the order of the
reduced order model and repeat the previous steps. Otherwise
we generate a MIMO reduced order model using Algorithm 2.
If the MIMO reduced order model obtained is not satisfactory
we increase the order of the reduced order model and repeat
the previous steps. Otherwise we stop.

C. NETS-NYPS system

The theory presented in Sections II and III is validated
on the interconnected New England test system (NETS) and
New York test system (NYPS) 68-bus, 16-machine, 5-area
power system, see [28]. The study area, composed of the
machines 14, 15 and 16, is interconnected with the bus-lines
18-50, 18-49 and 41-40 to the external area, composed of the
machines from 1 to 13. The separation in study and external
area follows the geographical distribution of the power system
and the tie-lines are actual bus-lines of the power system. The
system to be reduced has n = 26, m = 3, p = 13. The
parameters of system (8) have been computed in MATLABTM

as follows. With the script Init MultiMachine.m, which can be
downloaded from [28], the line data, the power flow results,
the generator direct axis transient reactance and the inertia
values Hi of the machines have been generated. Following the
theory presented in [52], see also [53], we have computed the
reduced bus admittances Yij , the equilibrium voltages Ei and
the equilibrium angles δi. The mechanical input powers TMi

Determine a linearized model, e.g. (9)

Inspect W (ιω̂) of (9) and order
the frequency features in Σ

Inspect σ(A) and order the modes in Λ

Choose ν and σ(S) from Σ

Generate y, ω. Determine CΠη of the
SISO subsystem with Algorithm 1

Determine the ROM (6) assigning
the eigenvalues σ(F ) from Λ

Is the SISO
approximation

satisfying?
Increase ν

Apply Algorithm 2

Is the MIMO
approximation

satisfying?

Stop

yes

no

no

yes

Fig. 2. Algorithmic overview of the method.

have been computed from these quantities and equations (8)
written at the equilibrium point. The damping coefficients
Di have been generated with the function rand. Finally, the
quantities of the linearized system have been computed directly
from (10)-(12).

D. Design of the reduced order model

The selection of the interpolation points and of the eigen-
values of the reduced order model has been done exploiting
the analysis in [30]. Therein it has been shown that good
time-domain performance can be obtained with a reduced
order model of order between 6 and 12 if the correct
slow and poorly damped modes are preserved. System (9)
has been simulated with the input generated by the signal
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Fig. 3. Eigenvalues of the linear system (9) (crosses) and of the reduced order
model (6) (squares). The dash-dotted lines represent the 10% damping ratio.
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Fig. 5. Magnitude of the elements W1,1 (top), W10,2 (middle) and W11,3

(bottom) of the transfer matrix of system (9) (solid lines) and of the reduced
order model (dotted lines).

generator (3). The matrix of the generator has been selected
as S = diag(S0, 2.12 S̄, 2.79 S̄, 3.42 S̄, 5 S̄), with S0 =[

0, 1; 0, 0
]

and S̄ =
[

0, 1; −1 0
]
, which corresponds

to choosing the interpolation points at 0 (zero and first order
moment), 0.3374 Hz, 0.444 Hz, 0.5443 Hz and 0.7958 Hz (all
zero order moments). The reduced order model is computed
with L approximated using Algorithm 2 and CΠ approximated
with Algorithm 1. The resulting reduced order model has order
ν = 10. We determine the six least damped and the four
slowest eigenvalues of system (9) and we assign them to the
reduced order model (6). In Fig. 3 the eigenvalues of system (9)
are represented with crosses, whereas the eigenvalues of the
reduced order model are depicted with squares. In the figure
the modes in the area between the two dash-dotted lines are
well damped (more than 10% damping ratio), whereas the
others are considered poorly damped [28].
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Fig. 6. First scenario - Large: angular velocities of the study area when this
is connected to the nonlinear system describing the external area (solid lines)
and when it is connected to the reduced order model (dotted lines) with the
eigenvalues shown in Fig.3. Insert: absolute errors between the time histories.

E. Approximation of the moments

In this section we illustrate the performance of Algorithm 1
by showing how the approximated reduced order model
improves as k in Algorithm 1 increases. The surfaces in Fig. 4
represent the magnitude (left graphs) and phase (right graphs)
of the elements W1,1 (top), W10,2 (middle), W11,3 (bottom)
of the transfer matrix of the reduced order model as a function
of tk, with 3.4448 ≤ tk ≤ 48.4299 s. For comparison, the
solid/black lines indicate the magnitude and phase of the
respective elements of the transfer matrix of the reduced order
model for the exact moments CΠ, i.e. computed solving (2).
The figures show how the approximated magnitude and phase
of the reduced order model (6) evolve over time and approach
the respective quantities of the exact reduced order model as
tk →∞. Finally note that we have chosen to show these three
particular components of the transfer matrix because the rest
of the components are very similar to these. These are the
components that present the most distinctive graphical features.
Fig. 5 shows the magnitude of the elements W1,1 (top), W10,2

(middle) and W11,3 (bottom) of the transfer matrix of system (9)
(solid lines) and of the reduced order model (dotted lines). We
note that the curves of the reduced order model are close to the
curves of the system along all the frequencies. As expected,
the approximation is not uniformly good for all the elements
of W . In fact, the curve in the top graph does not approximate
the given system as well as the one of the other two graphs.
This is caused by the use of the tangential interpolation, i.e. we
are trying to capture more information maintaining the same
number of parameters (the order of the reduced order model).

F. Fault behavior

Dynamic simulations of the power system have been
performed. We have considered three fault scenarios.

1) A self-clearing fault at bus 14 of the study area occurring
at t = 1 s and cleared at 1.15 s (clearing time of 150ms).
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Fig. 4. The colored mesh represents the magnitude (left graphs) and phase (right graphs) of the elements W1,1 (top), W10,2 (middle), W11,3 (bottom) of the
transfer matrix of the reduced order model as a function of tk , with 3.4448 ≤ tk ≤ 48.4299 s. The solid/black lines indicate the magnitude and phase of the
respective elements of the transfer matrix of the reduced order model for the exact moments CΠ, i.e. computed solving (2).
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is connected to the nonlinear system describing the external area (solid lines)
and when it is connected to the reduced order model (dotted lines) with the
eigenvalues shown in Fig.3. Insert: absolute errors between the time histories.
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2) A self-clearing fault at bus 42 of the study area occurring
at t = 1 s and cleared at 2.50 s (clearing time of
1500ms).

3) A self-clearing fault at bus 15 of the study area occurring
at t = 1 s and cleared at 1.85 s followed by a self-clearing
fault at bus 16 of the study area occurring at t = 3 s and
cleared at 3.30 s (clearing time of 850ms and 300ms,
respectively).

In the first scenario, Fig. 6 shows the angular velocities (large)
and respective absolute errors (insert) of the study area when
this is connected to the nonlinear system describing the external
area (solid lines) and when it is connected to the reduced order
model (dotted lines). We see that the two time histories are
almost indistinguishable as confirmed by the small value of
absolute error.

Remark 12. The dynamic simulation of the fault has been
implemented with the function “ode45” of MATLAB, with
the option “odeset(’RelTol’,1e-9,’AbsTol’,1e-9)”. The elapsed
time of the simulation of the nonlinear interconnected power
system is 0.550235 s. The elapsed time of the simulation of the
reduced order model interconnected with the nonlinear model
of the study area is 0.300701 s. Thus, the simulation time of
the reduced order model is 54.65% of the original time. It is
expected that as the complexity of the original system increases
the difference in simulation time will grows (in fact note that
the benchmark system is a simple example for which only 13
machines have been reduced).

Since a clearing time of 150ms may be a too simple scenario
to verify that the reduced order model is a good approximation
of the power system, we consider now the second and third
scenarios. In the second, Fig. 7 shows, with the same color
coding of Fig. 6, the angular velocities and absolute errors for a
fault cleared in 1500ms. We notice that, although the angular
velocities undergo a variation ten times greater than the one
in Fig. 6, the system is able to recover and the transient and
steady-state behaviors are well approximated by the reduced
order model. The third scenario is shown in Fig. 8, with the
same color coding of Fig. 6. The second fault is occurring
during the transient behavior caused by the first fault and it
can be seen as a simulation of a domino effect. Moreover,
the simulation targets the 16th generator that in the previous
two scenarios underwent a small variation (with respect to
the 14th and 15th). Also this more complex scenario is well
approximated by the reduced order model. Thus, the analysis
and control of the nonlinear system describing the study area
can be performed using the interconnection of such area with
the reduced order model instead of the full nonlinear description
of the external area: in fact, the dynamic response to faults is
almost identical but the number of the equations is reduced.

VI. CONCLUSION

We have presented a low complexity algorithm for the fast
estimation of the moments of MIMO systems. The estimated
moments have been exploited for the model reduction of large-
scale interconnected power systems. The technique that we
have demonstrated offers, simultaneously, a low computational

complexity approximation of the moments and the possibility
to easily enforce constraints on the reduced order model. This
possibility has been used to preserve selected slow and poorly
damped modes which are important both from a mathematical
and physical point of view. The problem of the choice of the
so-called tangential directions has also been studied and an
heuristic for their approximation has been given. The techniques
have been validated with the study of the dynamic response
of the NETS-NYPS benchmark system.
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APPENDIX

Proof of Theorem 2. The matrix Π defined in equation (2) is
such that

ẋ(t)|tk = ΠSω(tk) +AeAtk(x(0)−Πkω(0)) (13)

hold. Consider the first equation of system (4) computed at tk,
namely

ẋ(t)|tk = Ax(tk) +BLω(tk). (14)

Substituting (13) in equation (14) yields

ΠSω(tk) +AeAtk(x(0)−Πkω(0)) = Ax(tk) +BLω(tk)

and multiplying on the left-hand side by CjA−1 we obtain

CjA−1ΠSω(tk) + CjeAtk(x(0)−Πkω(0)) =
Cjx(tk) + CjA−1BLω(tk).

The matrix C̃jΠk defined in equation (7) is such that

Cjx(tk) = yj(tk) = C̃jΠkω(tk), (15)

which yields

CjA−1ΠSω(tk) + CjeAtk(x(0)−Πkω(0)) =

C̃jΠkω(tk) + CjA−1BLω(tk)

and(
C̃jΠk + CjA−1(BL−ΠS)

)
ω(tk) = CjeAtk(x(0)−Πω(0)).

Using equation (2), yields(
C̃jΠk − CjΠ

)
ω(tk) = CjeAtk(x(0)−Πω(0)).

The rest of the proof follows from [31, Lemma 4 and Theorem
6].
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