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Abstract

This note considers the solution to the generalized Sylvester matrix equation AV + BW = EV F with F being an arbitrary
matrix, where V and W are the matrices to be determined. With the help of the Kronecker map, some properties of the Sylvester
sum are first proposed. By applying the Sylvester sum as tools, an explicit parametric solution to this matrix equation is established.
The proposed solution is expressed by the Sylvester sum, and allows the matrix F to be undetermined.
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1. Introduction

When dealing with many problems for descriptor linear systems, such as, eigenstructure assignment [1,2], output
regulation [3], observer design and fault detection [4], the following generalized Sylvester matrix equation is often
encountered:

AV + BW = EV F, (1)

where A, E ∈ Rn×n , F ∈ Rp×p are known matrices, and V ∈ Rn×p and W ∈ Rr×p need to be determined. When
E = I in (1), it arises in solutions of related problems of eigenstructure assignment, eigenvalue assignment and
observer design for conventional linear systems [5,6].

For the solution of (1), there exist several numerical solutions, such as the SVD-based block algorithm [7,8] and
the large-scale algorithms [9,10]. It is well known that one can obtain only a special solution by applying a numerical
method. When dealing with some problems related to optimization, for example, the robust pole assignment problem
[11], it is better to request complete explicit solutions of the matrix equation (1). Efforts in this direction have been
made. When F is in Jordan form, an analytical and restriction-free solution for (1) with E = I is presented in [12].

∗ Corresponding author at: Institute for Information and Control, Harbin Institute of Technology Shenzhen Graduate School, HIT Campus,
University Town of Shenzhen, Shenzen 518055, PR China.

E-mail addresses: ag.wu@163.com (A.-G. Wu), g.r.duan@hit.edu.cn (G.-R. Duan).

0893-9659/$ - see front matter c© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2007.12.004

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82487264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/aml
mailto:ag.wu@163.com
mailto:g.r.duan@hit.edu.cn
http://dx.doi.org/10.1016/j.aml.2007.12.004


1070 A.-G. Wu et al. / Applied Mathematics Letters 21 (2008) 1069–1073

Reference [13] proposes two solutions to the matrix equation (1) in an iterative form and an explicit parametric
form, also for the case where the matrix F is in Jordan form. Besides, when the matrix F is an arbitrary matrix, a
neat parametric solution is presented in [15] for the matrix equation (1) in terms of an R-controllability matrix, an
observability matrix and a so-called generalized symmetric operator matrix. This solution has been used in [14] to
design a kind of observer for descriptor linear systems.

In this note, the main objective is to give a closed-form solution for the linear matrix equation (1) with F being an
arbitrary matrix with the aid of the Kronecker map. The concept of the so-called Kronecker map was first introduced
in [15], based on the underlying idea of [16]. In [15], the Kronecker map is utilized to prove the completeness of the
proposed solution. In contrast to the idea in [15], in this note the Kronecker map is first applied to obtain some good
properties of the Sylvester sum. The solution of the linear matrix equation (1) is then established with the aid of the
Sylvester sum.

Throughout this note, σ(A) denotes the set of eigenvalues of matrix A. For a matrix A ∈ Cm×n , vec(A) is
defined as

vec(A) =
[
aT

1 aT
2 · · · aT

n

]T
,

where ai is the i-th column of the matrix A. The symbol “⊗” denotes the Kronecker product of two matrices. For two
matrices A = [ai j ]m×n and B, the Kronecker product A ⊗ B is defined as

A ⊗ B =


a11 B a12 B · · · a1n B
a21 B a22 B · · · a2n B
· · · · · · · · ·

am1 B am2 B · · · amn B

 .

For matrices M , X and N with appropriate dimensions, the following property of the Kronecker product is well
known:

vec(M X N ) = (N T
⊗ M)vec(X). (2)

2. Kronecker map

First, we introduce the concepts of the Sylvester sum and the Kronecker map which were first proposed in [15].

Definition 1. Let T (s) =
∑t

i=0 Ti si
∈ Rm×q

[s], F ∈ Rp×p and Z ∈ Rq×p. The following matrix sum:

Syl(T (s), F, Z) =

t∑
i=0

Ti Z F i

is called the Sylvester sum associated with T (s), F and Z .

Definition 2. Let T (s) =
∑t

i=0 Ti si
∈ Rm×q

[s], F ∈ Rp×p. The following map:

F[T (s)] =

t∑
i=0

(FT)i
⊗ Ti

is called the F-Kronecker map.

On the basis of the definition of the Kronecker map, by applying the property (2) of the Kronecker product we have
the following relation:

vec (Syl(T (s), F, Z)) = F[T (s)]vec(Z).

The following lemmas give some important properties of the Kronecker map, which can be found in [15].

Lemma 1. Let X (s) ∈ Rq×r
[s], Y (s) ∈ Rr×m

[s] and F be a square real matrix. Then

F[X (s)Y (s)] = F[X (s)]F[Y (s)].
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Lemma 2. For any unimodular matrix U (s) ∈ Rq×q
[s] and any square real matrix F ∈ R, it holds that

(F [U (s)])−1
= F

[
U−1(s)

]
.

On the basis of the above properties of the Kronecker map, the following conclusion is obtained. This conclusion
can be found in [15]. For completeness, we give the proof of this result.

Theorem 1. Let D(s) ∈ R(n+r)×r
[s], F ∈ Rp×p. Then rank F [D(s)] = r p if and only if rank D(s) = r for any

s ∈ σ(F).

Proof. Let P(s) ∈ R(n+r)×(n+r)
[s] and Q(s) ∈ Rr×r

[s] be two unimodular matrices that transform D(s) into the
Smith normal form, say

D(s) = P(s)

[
Σ (s)

0

]
Q(s), (3)

with Σ (s) = diag(d1(s), d2(s), . . . , dr (s)). Applying the result of Lemmas 1 and 2, we have

rank F [D(s)] = rank F[Σ (s)] =

r∑
i=1

rank di (FT).

It is obvious that rank F [D(s)] = r p if and only if

rank di (FT) = p, i = 1, 2, . . . , r.

These relations hold if and only if

det Σ (s) 6= 0, ∀s ∈ σ(F).

Combining this with (3) shows that the conclusion is true. �

Like in the proof of the above theorem, the following conclusion is obvious.

Corollary 1. Let T (s) ∈ Rn×(n+r)
[s], F ∈ Rp×p. Then rank F[T (s)] = np if and only if rank T (s) = n for any

s ∈ σ(F).

As the end of this section, we propose some good properties of the Sylvester sum with the aid of the Kronecker
map.

Theorem 2. Let X (s) ∈ Rq×r
[s], Y (s) ∈ Rr×m

[s], Z ∈ Rm×p and F ∈ Rp×p. Then

Syl(X (s), F, Syl(Y (s), F, Z)) = Syl(X (s)Y (s), F, Z).

Proof. According to the definition of the Kronecker map, by applying Lemma 1 and properties of Kronecker products
we have

vec (Syl(X (s), F, Syl(Y (s), F, Z))) = F [X (s)] vec (Syl(Y (s), F, Z))

= F [X (s)]F [Y (s)] vec(Z)

= F[X (s)Y (s)]vec(Z)

= vec (Syl(X (s)Y (s), F, Z)) .

This implies that the conclusion is true. �

It follows from Theorem 1 and Corollary 1 that we have immediately the following conclusions on the Sylvester
sum.

Corollary 2. Let D(s) ∈ R(n+r)×r
[s], F ∈ Rp×p. Then the mapping Z → Syl(D(s), F, Z) is injective if and only if

rank D(s) = r for any s ∈ σ(F).

Corollary 3. Let T (s) ∈ Rn×(n+r)
[s], F ∈ Rp×p. Then the mapping Z → Syl(D(s), F, Z) is surjective if and only

if rank T (s) = n for any s ∈ σ(F).
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3. The main result

In this section, we discuss the solution to the matrix equation (1) with the help of the Kronecker map, the degrees
of freedom of the matrix equation (1) are given in the next lemma.

Lemma 3 ([15]). Let E, A ∈ Rn×n, B ∈ Rn×r , F ∈ Rp×p. Then the matrix equation (1) has r p degrees of freedom
if and only if

rank
[
A − s E B

]
= n, ∀s ∈ σ(F). (4)

Considering the solution of the matrix equation (1) leads to the following theorem.

Theorem 3. Let E, A ∈ Rn×n, B ∈ Rn×r , F ∈ Rp×p satisfy

rank
[
A − s E B

]
= n, for any s ∈ σ(F).

Further, let N ∈ R(n+r)×r
[s] be a polynomial matrix satisfying[

A − s E B
]

N (s) = 0n×r .

Then:

(1) The matrices V ∈ Rn×p and W ∈ Rr×p given by[
V
W

]
= Syl(N (s), F, Z) (5)

satisfy the matrix equation (1) for any matrix Z ∈ Rr×p.
(2) When rank N (s) = r for any s ∈ σ(F), all the matrices V and W satisfying the matrix equation (1) can be

explicitly expressed by (5).

Proof. Let T (s) and X be defined as

T (s) =
[
A − s E B

]
, X =

[
V
W

]
.

Then the matrix equation (1) can be rewritten as Syl(T (s), F, X) = 0. By applying Theorem 2, we have

Syl(T (s), F, Syl (N (s), F, Z)) = Syl(T (s)N (s), F, Z)

= Syl(0, F, Z)

= 0.

This implies that the matrices V and W given by (5) satisfy the matrix equation (1).
On the other hand, it follows from Corollary 2 that the mapping Z → Syl (N (s), F, Z) is injective when

rank N (s) = r for any s ∈ σ(F). Combining this fact and Z ∈ Rr×p with Lemma 3 gives the conclusion in
Item 2. �

According to the above theorem, we have the following two remarks on the solution of the matrix equation (1).

Remark 1. In this section, we provide a general complete parametric solution for the matrix equation (1). The
presented solution is in an explicit form with respect to the matrix F . Therefore, this matrix F , together with the
parameter matrix Z , can be further utilized to achieve some system performances in some applications. This will give
some convenience and advantages for practical applications.

Remark 2. From the result in this note, we have shown that the Kronecker map and the Sylvester sum are crucial and
suitable for serving as the theoretical basis of the matrix equations considered. It is expected that further insight into
the intrinsic properties of the matrix equation mentioned in this note and the Sylvester sum can be developed with the
aid of the Kronecker map.
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4. Conclusions

With the help of the Kronecker map, some good properties of the Sylvester sum are proposed. By applying the
properties of the Sylvester sum, an explicit solution is established for the generalized Sylvester matrix equation
AV + BW = EV F , where the matrix F can be an arbitrary matrix. This solution can offer all the degrees of
freedom of the matrix equation, which is represented by the free parameter matrix Z . It is recommended that one can
apply the concept of the Kronecker map to exploit further properties of the aforementioned matrix equation.
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