1,557 research outputs found

    Design and simulation of solar grid-connected charger for electric vehicles

    Get PDF
    © 2018 IEEE. Electric Vehicles (EV) are playing major role in decreasing carbon emissions. The major problem so far with the Electric Vehicles are overloading the Distribution Grids and availability of enough charging stations. The main objective of this research is to design and install a solar powered charging station for EVs in the UAE environment. This research aims to focus on the need for the shifting from the traditional gas and petrol vehicles to Electric vehicles in the UAE. Additionally, the project intends to ease the problem of the additional load that these EVs impose on the grid by powering the charging station from solar energy. This will help evolve the existing transport system of the UAE into a cleaner and greener system. The project is divided mainly into three important parts. First of all, the system components are designed to match with the ratings of available most common EVs. Then the system has been modelled in DIgSILENT Power factory for the simulation and validation of design. Finally, the results from calculations and simulations are described and compared

    Optimization of Bi-Directional V2G Behavior With Active Battery Anti-Aging Scheduling

    Get PDF

    A comprehensive overview of electric vehicle charging using renewable energy

    Get PDF
    The integration of PV with the electric vehicle (EV) charging system has been on the rise due to several factors, namely continuous reduction in the price of PV modules, rapid growth in EV and concern over the effects of greenhouse gases. Over the years, numerous papers have been published on EV charging using the standard utility (grid) electrical supply; however, there seems to be an absence of a comprehensive overview using PV as one of the components for the charger. With the growing interest in this topic, it is timely to review, summarize and update all the related works on PV charging, and to present it as a single reference. For the benefit of a wider audience, the paper also includes the bries description on EV charging stations, background of EV, as well as a brief description of PV systems. Some of the main features of battery management system (BMS) for EV battery are also presented. It is envisaged that the information gathered in this paper will be a valuable one–stop source of information for researchers working in this topic

    Modeling and Characterization of Power Distribution Networks with Installed Distributed Generation and Connected PHEVs

    Get PDF
    This thesis is focused on the modeling and characterization of power distribution networks with installed distributed generation and connected plug-in hybrid electric vehicles (PHEV). A PHEV charging/discharging (bidirectional) model has been developed in MATLAB®-Simulink. Installed photovoltaic systems with varying irradiance rates are modeled and characterized. Moreover, installed wind generators with varying wind speeds are modeled and characterized. Furthermore, the charging and discharging characteristics of connected PHEV are determined. The system characteristics are determined and investigated against the PHEV battery state of charge (SOC)

    Technical Challenges and Solutions of a three-phase bidirectional two stage Electric Vehicle charger

    Get PDF
    The sustainability of the power grid owing to the building strain of the ever-growing demand for electrical energy urges innovative and more practical solutions that enable active participation of end-users in stable and reliable management of power systems. One of the emerging projections of such a two-way exchange of electrical power between the grid and consumers is the developing field of bidirectional energy trade between power providers and electric vehicle owners. A bidirectional, three-phase, two-stage off-board electric vehicle EV charger design is proposed in this research. The first stage acts as alternating current AC to direct current DC converter during charging operation and behaves as three phase inverter and power factor corrector when energy exchange is from vehicle to grid. The second stage is a bidirectional DC-DC level converter linked to the first stage by a DC bus. The grid side filter is designed to enable the grid interfacing without any significant power quality problems. The proposed design, topology and the devised control infrastructure are tested through simulations on MATLAB/Simulink platform by interfacing the charger to a three-phase AC microgrid and the results approve the performance of the proposed charging topology
    corecore