33,703 research outputs found

    Cage Active Contours for image warping and morphing

    Get PDF
    Cage Active Contours (CACs) have shown to be a framework for segmenting connected objects using a new class of parametric region-based active contours. The CAC approach deforms the contour locally by moving cage's points through affine transformations. The method has shown good performance for image segmentation, but other applications have not been studied. In this paper, we extend the method with new energy functions based on Gaussian mixture models to capture multiple color components per region and extend their applicability to RGB color space. In addition, we provide an extended mathematical formalization of the CAC framework with the purpose of showing its good properties for segmentation, warping, and morphing. Thus, we propose a multiple-step combined method for segmenting images, warping the correspondences of the object cage points, and morphing the objects to create new images. For validation, both quantitative and qualitative tests are used on different datasets. The results show that the new energies produce improvements over the previously developed energies for the CAC. Moreover, we provide examples of the application of the CAC in image segmentation, warping, and morphing supported by our theoretical conclusions

    Markov mezƑk a kĂ©pmodellezĂ©sben, alkalmazĂĄsuk az automatikus kĂ©pszegmentĂĄlĂĄs terĂŒletĂ©n = Markovian Image Models: Applications in Unsupervised Image Segmentation

    Get PDF
    1) KifejlesztettĂŒnk egy olyan szĂ­n Ă©s textĂșra alapĂș szegmentĂĄlĂł MRF algoritmust, amely alkalmas egy kĂ©p automatikus szegmentĂĄlĂĄsĂĄt elvĂ©gezni. Az eredmĂ©nyeinket az Image and Vision Computing folyĂłiratban publikĂĄltuk. 2) KifejlesztettĂŒnk egy Reversible Jump Markov Chain Monte Carlo technikĂĄn alapulĂł automatikus kĂ©pszegmentĂĄlĂł eljĂĄrĂĄst, melyet sikeresen alkalmaztunk szĂ­nes kĂ©pek teljesen automatikus szegmentĂĄlĂĄsĂĄra. Az eredmĂ©nyeinket a BMVC 2004 konferenciĂĄn Ă©s az Image and Vision Computing folyĂłiratban publikĂĄltuk. 3) A modell többrĂ©tegƱ tovĂĄbbfejlesztĂ©sĂ©t alkalmaztuk video objektumok szĂ­n Ă©s mozgĂĄs alapĂș szegmentĂĄlĂĄsĂĄra, melynek eredmĂ©nyeit a HACIPPR 2005 illetve az ACCV 2006 nemzetközi konferenciĂĄkon publikĂĄltuk. SzintĂ©n ehhez az alapproblĂ©mĂĄhoz kapcsolĂłdik HorvĂĄth PĂ©ter hallgatĂłmmal az optic flow szamĂ­tĂĄsĂĄval illetve szĂ­n, textĂșra Ă©s mozgĂĄs alapĂș GVF aktĂ­v kontĂșrral kapcsoltos munkĂĄink. TDK dolgozata elsƑ helyezĂ©st Ă©rt el a 2004-es helyi versenyen, az eredmĂ©nyeinket pedig a KEPAF 2004 konferenciĂĄn publikĂĄltuk. 4) HorvĂĄth PĂ©ter PhD hallgatĂłmmal illetve az franciaorszĂĄgi INRIA Ariana csoportjĂĄval, kidolgoztunk egy olyan kĂ©pszegmentĂĄlĂł eljĂĄrĂĄst, amely a szegmentĂĄlandĂł objektum alakjĂĄt is figyelembe veszi. Az eredmĂ©nyeinket az ICPR 2006 illetve az ICCVGIP 2006 konferenciĂĄn foglaltuk össze. A modell elƑzmĂ©nyekĂ©nt kidolgoztunk tovĂĄbbĂĄ egy alakzat-momemntumokon alapulĂł aktĂ­v kontĂșr modellt, amelyet a HACIPPR 2005 konferenciĂĄn publikĂĄltunk. | 1) We have proposed a monogrid MRF model which is able to combine color and texture features in order to improve the quality of segmentation results. We have also solved the estimation of model parameters. This work has been published in the Image and Vision Computing journal. 2) We have proposed an RJMCMC sampling method which is able to identify multi-dimensional Gaussian mixtures. Using this technique, we have developed a fully automatic color image segmentation algorithm. Our results have been published at BMVC 2004 international conference and in the Image and Vision Computing journal. 3) A new multilayer MRF model has been proposed which is able to segment an image based on multiple cues (such as color, texture, or motion). This work has been published at HACIPPR 2005 and ACCV 2006 international conferences. The work on optic flow computation and color-, texture-, and motion-based GVF active contours doen with my student, Mr. Peter Horvath, won a first price at the local Student Research Competition in 2004. Results have been presented at KEPAF 2004 conference. 4) A new shape prior, called 'gas of circles' has been introduced using active contour models. This work is done in collaboration with the Ariana group of INRIA, France and my PhD student, Mr. Peter Horvath. Results are published at the ICPR 2006 and ICCVGIP 2006 conferences. A preliminary study on active contour models using shape-moments has also been done, these results are published at HACIPPR 2005

    A spatially distributed model for foreground segmentation

    Get PDF
    Foreground segmentation is a fundamental first processing stage for vision systems which monitor real-world activity. In this paper we consider the problem of achieving robust segmentation in scenes where the appearance of the background varies unpredictably over time. Variations may be caused by processes such as moving water, or foliage moved by wind, and typically degrade the performance of standard per-pixel background models. Our proposed approach addresses this problem by modeling homogeneous regions of scene pixels as an adaptive mixture of Gaussians in color and space. Model components are used to represent both the scene background and moving foreground objects. Newly observed pixel values are probabilistically classified, such that the spatial variance of the model components supports correct classification even when the background appearance is significantly distorted. We evaluate our method over several challenging video sequences, and compare our results with both per-pixel and Markov Random Field based models. Our results show the effectiveness of our approach in reducing incorrect classifications

    Color image segmentation using a self-initializing EM algorithm

    Get PDF
    This paper presents a new method based on the Expectation-Maximization (EM) algorithm that we apply for color image segmentation. Since this algorithm partitions the data based on an initial set of mixtures, the color segmentation provided by the EM algorithm is highly dependent on the starting condition (initialization stage). Usually the initialization procedure selects the color seeds randomly and often this procedure forces the EM algorithm to converge to numerous local minima and produce inappropriate results. In this paper we propose a simple and yet effective solution to initialize the EM algorithm with relevant color seeds. The resulting self initialised EM algorithm has been included in the development of an adaptive image segmentation scheme that has been applied to a large number of color images. The experimental data indicates that the refined initialization procedure leads to improved color segmentation

    Fair comparison of skin detection approaches on publicly available datasets

    Full text link
    Skin detection is the process of discriminating skin and non-skin regions in a digital image and it is widely used in several applications ranging from hand gesture analysis to track body parts and face detection. Skin detection is a challenging problem which has drawn extensive attention from the research community, nevertheless a fair comparison among approaches is very difficult due to the lack of a common benchmark and a unified testing protocol. In this work, we investigate the most recent researches in this field and we propose a fair comparison among approaches using several different datasets. The major contributions of this work are an exhaustive literature review of skin color detection approaches, a framework to evaluate and combine different skin detector approaches, whose source code is made freely available for future research, and an extensive experimental comparison among several recent methods which have also been used to define an ensemble that works well in many different problems. Experiments are carried out in 10 different datasets including more than 10000 labelled images: experimental results confirm that the best method here proposed obtains a very good performance with respect to other stand-alone approaches, without requiring ad hoc parameter tuning. A MATLAB version of the framework for testing and of the methods proposed in this paper will be freely available from https://github.com/LorisNann
    • 

    corecore