
A Spatially Distributed Model for Foreground Segmentation

Patrick Dickinson, Andrew Hunter, Kofi Appiah
Center for Visual Surveillance and Machine Perception, University of Lincoln, Lincoln, UK

Abstract

Foreground segmentation is a fundamental first processing stage for vision systems which monitor real-world activity. In this paper

we consider the problem of achieving robust segmentation in scenes where the appearance of the background varies unpredictably

over time. Variations may be caused by processes such as moving water, or foliage moved by wind, and typically degrade the

performance of standard per-pixel background models.

Our proposed approach addresses this problem by modeling homogeneous regions of scene pixels as an adaptive mixture of

Gaussians in color and space. Model components are used to represent both the scene background and moving foreground objects.

Newly observed pixel values are probabilistically classified, such that the spatial variance of the model components supports correct

classification even when the background appearance is significantly distorted. We evaluate our method over several challenging

video sequences, and compare our results with both per-pixel and Markov Random Field based models. Our results show the

effectiveness of our approach in reducing incorrect classifications.
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1. Introduction

The purpose of an automated visual surveillance sys-
tem is to extract meaningful information from an image
sequence. A series of “bottom-up” processing steps is typ-
ically applied to each new image frame, each eliciting a
more refined and descriptive representation of the observed
scene.

The lowest level of processing is applied to the entire
set of image pixels. The aim is to identify regions of inter-
est (usually moving objects) for further processing. With-
out making prior assumptions about appearance, an effec-
tive approach is to first build a model of the empty scene,
or background. New foreground objects may then be seg-
mented by comparison: “background subtraction” removes
those pixels which closely match the background model,
leaving a residual subset of pixels corresponding to fore-
ground objects. Typically, further stages of processing clus-
ter the foreground pixels into object representations, track
objects from frame-to-frame, and infer relevant behavioral
characteristics. The process of background subtraction is
critical to the system performance, as segmentation errors
reduce the effectiveness of subsequent processing. However,
this remains a challenging task outside of laboratory con-
ditions.

Until recently, most background subtraction schemes

have employed a per-pixel background model. Previous
observations are used to construct a background represen-
tation for each pixel location: this may include intensity,
color, and possibly other features. The background sub-
traction process then independently classifies each pixel:
the new observed value is compared with its model, and la-
beled as either foreground or background. There are many
examples of per-pixel models. Haritaoglu’s “W4” [4] sys-
tem models each pixel’s background as a mean value, with
lower and upper ranges of tolerance. A statistical model
is used by Wren’s “Pfinder” system [28], which maintains
adaptive Gaussian distributions. The model parameters
are estimated from previous observed values, and new ob-
servations with low probability are labeled as foreground.
The Wallflower system [25] uses a Weiner filter to pre-
dict pixel background values from a linear combination of
recent observations.

We can expect that the appearance of the scene back-
ground will change over time; for example, due to gradual
changes in lighting, or small movements by background ob-
jects. To account for this, systems such as those described
above employ adaptive models. However, some changed
pixels will be misclassified during the adaptation process.
Moreover, simple adaptation is not enough to capture more
complex background processes. Dynamic backgrounds,
which exhibit repeating spatio-temporal variations, are
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common: for example, outdoor scenes often include foliage
which may move in the wind.

In such cases, background values observed at a single
pixel may be generated by more than one process. Per-
pixel models have therefore been developed which repre-
sent multi-modal behavior. For example, Elgammal [2] uses
a non-parametric kernel density estimate to model back-
ground distributions. The most widely adopted model is
that proposed by Stauffer and Grimson [23].

Stauffer uses an adaptive mixture of Gaussians (MoG)
to model observations of each pixel’s process in RGB color
space. Thus, at time t, the probability of observing a new
color value xi,t at pixel i is given by:

p
(

x(i,t)|Θ(i,t)

)

=
∑K

k=1
ωk

(i,t)η
(

µk
(i,t),Σ

k
(i,t)

)

(1)

Where Θ(i,t) =
{

θ1
(i,t) . . . θK

(i,t)

}

are the mixture model

parameters estimated at time t, K is the (fixed) number
of components, η is the multivariate Gaussian probability
distribution function, and

∑K

k=1
ωk

(i,t) = 1 (2)

Typically, between 3 and 5 components are used, and
highly weighted components are taken to be generated by
background processes. Each new pixel value is matched
against existing components. If it is matched to a back-
ground component, the pixel is labeled as background; or
foreground otherwise. The model is then updated to incor-
porate the new observation.

Stauffer’s multi-modal scheme allows a time-varying
background to be modeled on a per-pixel basis, provided
that the model is suitably parameterized, and that each
pixel’s background modes are frequently presented. This
model has become a de facto standard in automated
surveillance, and much research has been directed at refin-
ing it. For example, KaewTraKulPong [8] proposes a differ-
ent model update procedure, and a normalized color space;
Harville [5] adds depth information from a stereo camera,
and sets a separate learning rate for each pixel; Shimada
[21] and Cheng [1] have both recently investigated optimal
model orders; and Tian [24] has developed modifications
to deal with illumination changes, and shadowing.

Despite its popularity, there are a number of well doc-
umented limitations to the per-pixel MoG model. Varia-
tions which are sporadic, or where one mode dominates,
are still not well represented. Unfortunately such variations
are common where the underlying process is erratic, for ex-
ample, moving foliage. Similarly, as Tian [24] notes, fore-
ground objects are absorbed at different rates at different
pixels, causing object fragmentation. Fragmentation prob-
lems also arise where foreground objects overlap spatially
with background objects of similar color.

These types of errors are systemic under the assump-
tion of an independent pixel model. Scene images are gen-
erated by a set of discrete objects (both background and
foreground) such that pixel values generated by the same

object exhibit a strong spatial, chromatic, and temporal
coherence. Such relationships are not represented by a per-
pixel model, but can be used to address the above classifica-
tion problems, and to produce a more robust segmentation
in general.

The work we present here is directed at this goal. We be-
gin by reviewing some existing approaches to this problem,
and proceed to describe our algorithm in detail. We con-
clude with an experimental comparison of our algorithm
with Stauffer’s original, and also with a recent Markov Ran-
dom Field (MRF) based model, in sequences with challeng-
ing spatio-temporal backgrounds variations.

2. Previous Work

Interest has grown recently in background models which
represent spatial relationships between pixels, and in this
section we review some existing work. In particular we ex-
amine methods which, like ours, explicitly model spatial
distributions in the background. We also pay particular at-
tention to Random Field based methods, which we use for
comparison in our evaluation.

Although per-pixel models do not directly express spa-
tial relationships between pixels, some authors have modi-
fied the classification process to account for perturbations
in scene structure. In this type of approach, classification
incorporates not only the background model of the pixel,
but also the models of pixels in its local neighborhood. Each
pixel model is still independent, and so no account is made
of the overall coherency of segmentation; however, misclas-
sifications may be locally eliminated.

At the simplest level, Elgammal [2] adds a neighborhood
comparison to his non-parametric model. Pixels which do
not match their own background model are compared to
the models in a small neighborhood. A similar, but more
comprehensive, approach is taken by Ren’s “Spatially Dis-
tributed Gaussians” (SDG) [16] to account for global back-
ground transformations caused by a moving camera. This
system first registers global image features to estimate a
global translation between the background model and ob-
served image. This estimate is used as the starting point for
a search for matches between an observed pixel value and a
neighborhood of background models. A MoG background
is used, and a background label is generated for any match
in the search area.

Spagnolo [22] takes a slightly different approach, incorpo-
rating neighboring values directly into the matching value
of each pixel. A radiometric similarity measure is used
to compare an observed pixel value with its background
value, and incorporates values from the local neighbour-
hood. Classification is performed by thresholding the simi-
larity. Pixel-wise temporal difference is first generated from
the two most recent frames, and used as a mask for the
background subtraction.

Toyama [25] also uses pixel neighborhood color values to
identify pixels incorrectly labeled as background. Strongly
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supported regions of foreground pixels are used to build
color histograms, and then to seed areas for connected com-
ponents expansion against their color model. Although this
approach still employs a per-pixel model, there some con-
sideration of how the structure of a segmented object can
be used to support pixel classification.

3. Sub-space Background Representations

Eigenbackgrounds [12] represent the background as a set
of dominant eigenvectors, extracted from a set of training
images. This sub-space identifies regions of the image which
are invariant, and foreground pixels are identified by com-
paring a new image with its projection through the sub-
space back to image space. Monnet [11] develops this by em-
ploying an on-line auto-regressive model to predict changes
in background structure. This method captures repeating
variations in the spatial structure of the scene background,
but is inflexible as only variations presented during train-
ing are represented.

An interesting and unusual approach is taken by Seki
[19], who uses co-occurrence of adjacent spatial features
to model the spatio-temporal structure of a time-varying
background. A series of background training frames are di-
vided into blocks of pixels, and eigen-decomposition [12] is
used to represent each block in an appropriate sub-space.
The training data is used to learn model temporal correla-
tions between adjacent blocks, such that an observed value
for a block may be used to predict the appearance of its
neighbors. Sets of blocks which are not well correlated in
an input image are considered to have low background like-
lihood. This offers an improvement over eigenbackgrounds,
as the correlations are localized. However, as these spatial
relationships are learned the model still lacks the flexibility
to deal with unpredictable variations.

3.1. Random Fields

The methods discussed above are somewhat limited: they
are either modifications of pixel-based methods, or learn
patterns of invariance to detect unusual observations. A
more flexible and useful model is one which can express
general spatial properties of a scene’s structure. For this
reason, Markov Random Fields (MRFs), and (more gener-
ally) Conditional Random Fields (CRFs), have recently re-
ceived some recent attention as a foreground segmentation
method.

MRFs are probabilistic graphical models in which each
node represents a random variable, and edges between
nodes represent dependencies. In the case of foreground
segmentation schemes, nodes represent pixel labelings
{foreground, background}, and each node is connected
to its spatial 4 or 8 pixel neighborhood. The edge depen-
dencies express the Markovian nature of the local node
dependency: given its neighbors, each node is condition-
ally independent of the rest of the field. Given an observed

image I, and suitable observation likelihood function, the
aim is to estimate the labeling L which maximizes the
posterior (MAP estimate):

p (L|I) = p (I|L) p (L) (3)

This is made tractable by the Hammersley-Clifford theo-
rem which by re-expresses the dependencies as a set of node-
clique potentials. Quantifying these potentials defines the
prior probability for a given global field labeling. Assuming
an independent observation likelihood for each pixel, the
probability of a single node label change can be estimated
by simply summing energy terms. This forms the basis of
standard MAP-MRF labeling techniques. The advantage
of these techniques is that clique potentials which impose
suitable spatial dependencies can be easily expressed at
pixel level. An appropriate observation likelihood can also
be defined for each pixel, and the MAP estimation results
in a segmentation which is globally optimal.

Paragios [13] proposed a MRF segmentation scheme for a
subway monitoring system which used normalized color as
an observation likelihood. Pixel-wise gradient observations
were also used to relax spatial continuity constraints across
discontinuities. The iterated conditional modes algorithm
is used to estimate the optimal labeling. More recently,
Schindler [18] uses a per-pixel MoG model to develop the
observation likelihood, and resolves the field using a graph
cutting algorithm. Sheikh [20] also uses a graph cutting
algorithm in conjunction with a kernel density estimate to
build background and foreground observation likelihoods.
Both these methods uses 4-neighborhood cliques to simplify
the graph.

Wang has sought to incorporate temporal as well as spa-
tial constraints by incorporating a Hidden Markov Model
(HMM) into a MRF framework [26] and by using a CRF
[27]. In both cases, a third label and corresponding obser-
vation likelihood is added to represent areas of shadow.

The MRF scheme proposed by Migdal and Grimson [10]
develops directly from Stauffer’s per-pixel MoG model. The
MoG model is used to initialize the field for each frame,
and the dominant background distribution is used as a
background observation likelihood. Foreground likelihood
is modeled as a uniform distribution in RGB color space.
This model also includes temporal dependencies by linking
each pixel to its previous labeling. We have chosen this al-
gorithm as a benchmark for our work, and so we describe
some implementation details here.

The Hammersley-Clifford theorem formulates the prob-
ability of a field labeling L ∈ Φ, where Φ is the set of all
possible labellings, as a Gibbs distribution:

p (L) =
e−U(L)/T

Z
(4)

Where Z is a normalisation constant, T is a temperature
term used in the annealing process, and (L) is an energy
function such that:
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U (L) =
∑

c∈C

V (L) (5)

Migdal uses Gibbs sampling to estimate the MAP field
labeling, proposing a linear annealing schedule for T over a
fixed number of field iterations. The clique potentials V (L)
define the spatial and temporal constraints, and are applied
to pair-wise cliques in a pixel’s 8-neighborhood. Values for
the pair-wise clique potentials are not specified, but we have
experimented with a range of values in our evaluation.

3.2. Spatially Distributed Model Components

A scene object is likely to generate pixels which are spa-
tially coherent, and share similar color attributes. Conse-
quently, a number of authors [14,6,7,3] have proposed back-
ground (and foreground) models in which clusters of ho-
mogeneous pixels are represented parametrically in an ex-
tended feature space. A typical feature spaces includes spa-
tial and color information, such that a single pixel is rep-
resented by a 5-dimensional vector xt = [x, y,R,G,B]

T
.

Classifying an individual pixel involves assigning it to the
model component most likely to have generated it.

Pixels are not then explicitly labeled as foreground or
background: a model component may represent either part
of the foreground or the background, so labeling is implied
by association. Model adaptation may be implemented by
re-estimating the components from their assigned pixels.

In a probabilistic framework this approach amounts to
expressing learned spatial relationships in the observation
likelihood, rather than, in the case of random fields, apply-
ing spatial dependencies as a prior. Like per-pixel models,
spatial distributions may be learned and updated as the
scene evolves, but considerably fewer components are re-
quired.

This type of representation naturally captures small
changes in background structure. Small movements of
background objects generate new background pixels which
still have a high likelihood under the background model.
In addition, there are a number of other advantages over
the more typical processing architecture. Pixel clustering
is more usually executed after classification, as a second
foreground processing stage [9], [28]. Using clusters di-
rectly for segmentation integrates the two processes such
that model adaptation automatically effects frame-to-
frame object correspondence, and changes in scene struc-
ture are fed back to the next image classification step. It
also allows foreground and background to be defined at
the object level rather than pixel level: attributes such as
size, or movement, can be used to specify which pixels are
foreground and which are background.

A partial implementation of this type of model is pre-
sented by Raja’s object tracker [15] which builds an off-line
MoG model of color distributions for a known object and
scene background. A spatial component is not included in
the likelihood function, but implemented more simply as
an axis-aligned bounding box approximating the extents of

the object. Pixels inside the bounding box are classified as
foreground or background according to their likelihood of
their observed color value.

A more principled approach is taken by Pece [14], using
pixel intensity rather than color. In this system, the spa-
tial foreground components are represented by a Gaussian
distribution, and the intensity as a uniform distribution.
The background distribution is uniform in space, and ex-
ponential in pixel intensity. For each new image, each pixel
is assigned to the most likely component, and the compo-
nents are updated using Expectation Maximisation (EM).
Foreground clusters are added and removed to adapt the
model as objects appear and disappear from the scene.

Heisele [6] uses an iterative K-Means algorithm to cluster
pixels in 5-Dimensional space. The model is adapted appro-
priately, and clusters with similar trajectories are grouped
to form object hypotheses. Recently, Huac [7] has built on
this work by explicitly classifying clusters as background
or foreground. Spatial ambiguities are resolved by defining
an elliptical search area for each cluster derived from the
spatial covariance of its assigned pixels.

The distribution model used by Greenspan’s video in-
dexing system [3] bears some similarity to ours. Spatial and
color cluster coordinates are modeled separately as inde-
pendent Gaussian distributions, and time is added to give a
6-dimensional feature space. A video sequence is split into
sub-sequences, and each is segmented separately. This is a
two stage process: first, an appropriate model order is esti-
mated, and then it is used to segment each image.

The modeling process using EM, and the Minimum De-
scription Length principle to estimate the optimal model
order. This involves building a series of models for each sub-
sequence, and then selecting the most appropriate: conse-
quently there is a considerable processing overhead. The
sub-sequences are then aligned by building correspondences
between components in successive sub-sequences, which al-
lows objects to be tracked across the entire sequence.

Unlike our system, Greenspan’s is unsuitable for on-line
processing. Firstly, it is necessary to capture and sub-divide
the sequence before segmentation can be applied. Secondly,
model estimation requires that many models are built and
compared for each sub-sequence, incurring a high process-
ing overhead. Greenspan’s system also exhibits model dis-
continuity at the transition from one sub-sequence to the
next: a separate correspondence scheme is needed to track
objects across transitions.

4. Our Approach

In our system we model homogeneous regions of the scene
using an adaptive mixture of Gaussians in 5-dimensional
feature space. Each pixel observation is represented by a
corresponding feature vector xt = [x, y, Y, U, V ]

T
where

color is encoded using the YUV format. The probability
distribution function for each model component is given by:
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p(xt|θ(j,t)) = ω(j,t)
e−

1
2 (xt−µ(j,t))(Σ(j,t))

−1(xt−µ(j,t))

√

(2π)d|Σ(j,t)|
(6)

Where the parameters θ(j,t) =
{

ω(j,t), µ(j,t),Σ(j,t)

}

are
the component weight, mean, and covariance matrix of the
jth component at time t, and the dimensionality, d, is 5. For
k components, the general mixture model conditions given
by equations (1) and (2) also hold in their appropriate form.

Given a new observed image, and a set of model parame-
ters, an observed pixel value may be classified by assigning
it to the component with the maximum posterior probabil-
ity, Cmap. Using log likelihoods:

Cmap = argmaxj

{

log(p(xt|θ(j,t))
}

(7)

We have simplified the model slightly by assuming that
the spatial and color distributions are independent and un-
correlated. The distribution function in equation (7) is re-
expressed as the product of a 2-dimensional spatial Gaus-
sian and a 3-dimensional color Gaussian, with parameter
sets θs

(j,t) and θc
(j,t). Each pixel value is then expressed by

corresponding spatial vectors xs
t = [x, y]T , and color vector

xc
t = [Y,U, V ]T . Hence, equation (7) becomes:

Cmap = argmaxj

{

log(p(xs
t |θ

s
(j,t)) + log(p(xc

t |θ
c
(j,t))

}

(8)

4.1. Implementation Overview

We use model components to represent both background
and foreground regions of the scene, under the premise that
such a region is generated by a single corresponding pro-
cess, such as part of an object. Background components are
initialized from the first image of a sequence, in which it is
assumed no foreground objects appear. Foreground com-
ponents are introduced as required, in response to the ap-
pearance of pixel values which are not well represented by
the background. Each component is explicitly labeled as
Lc ∈ {foreground, background}, and pixels are implicitly
labeled according to the component to which were assigned
using equation (8).

The current assignments are stored in an image “sup-
port map”. Figure 1 depicts a model instantiation corre-
sponding to a frame from one of our test sequences. In this
visualization the components are represented by rendering
their mean color value at each pixel where they are spa-
tially dominant.

All model components are updated by the statistics of
their assigned pixels. Background components are updated
more slowly than foreground components, reflecting the ex-
pectation that foreground will exhibit more dynamic be-
havior. The initialisation, assignments, and update proce-
dures are described in more detail in the remainder of this
section.

4.2. Building the Background Model

The initial set of background components are con-
structed from the first frame of the sequence. We have
already described how Greenspan’s system [3] uses EM
to build a maximum likelihood parameter set for a simi-
lar Gaussian mixture. This technique is effective and well
principled, but there are some problems using it for on-
line processing. Firstly, a large number of iterations are
required, making it computationally expensive. Secondly,
we wish to adapt the model dynamically, in response to
changes in scene structure. EM is proven to converge
for a fixed data set, however, our data set changes with
each new input image: thus, for example, we may need to
re-estimate the model order when new objects enter the
scene. Greenspan deals with this by dividing the video into
closed sections, and building a separate model for each.
However, this is not suitable for on-line processing.

The technique of splitting and merging components has
been used by Raja [15] and by Pece [14] as a technique
for dynamically adapting model order. We use an iterative
splitting and merging technique to build an initial set of
background components. We find that this method is com-
putationally manageable, and, by minimizing the variance
of components, generates an appropriate representation of
the major regions of the scene. We use the following proce-
dure to build the components:

1 The model is initialized with a single component, and
each pixel’s support map entry is set.

2 It is iteratively split until a suitable number of new
components have been generated.

3 Pairs of similar components are then merged.
4 Any components which are spatially disconnected

(possibly representing more than one object or pro-
cess) are split.

4.3. Splitting a Background Component

A single iteration of the splitting procedure described in
step 2 divides an existing component into two new ones.
Given the background image, and current set of compo-
nents, we first find the component with the highest spatial
variance.

We calculate the principle eigenvalue, λs
j and correspond-

ing eigenvector, Λs
j for each component’s spatial covariance

matrix. The component Cs
sp = argmaxj

{

λs
j

}

is selected.
Let Isp be the pixels currently assigned to this compo-
nent. If its eigenvalue λs

sp > T s
sp, where T s

sp is a predefined
threshold, then it is split. We create a new component and
re-assign to it those pixels x ∈ Isp which satisfy:

(xs − µs
sp) · Λ

s
sp > 0 (9)

This amounts to placing a separating plane through the
spatial mean, perpendicular to Λs

sp. The parameters of both
components are then re-estimated from the statistics of
their respective assigned pixels:
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Fig. 1. Background and Foreground Models. Left to right : Original image, background model, foreground model, Foreground pixel set. In

this visualization the model components are rendered with their mean color value, covering the area in which they are spatially dominant.

ωj =
nj

N
(10)

µj =
1

nj

∑

x∈Isp

x (11)

zj = µj
T µj (12)

Σj =

∑

x∈Isp
xT x

nj
− zj (13)

Where nj is the number of pixels assigned to the com-
ponent, and N is the total number of pixels in the image,
and the value of µj used in equation (12) is the new value
calculated using equation (11). We then apply the same se-
lection and splitting procedure in color space, using a cor-
responding threshold T c

sp, to split the component with the
highest color variance.

We repeat this process, alternating between highest spa-
tial and color variances, until reaching a maximum number
of components, or until the largest found eigenvalues fall
below their thresholds. The procedure is initialized with
the single component built in step 1. The parameters of
this component are estimated from the entire set of image
pixels, using equations (10) to (13) with nj = N .

4.4. Completing the Initial Background Model

We can now merge any similar components. If Ms
j(x

s)
is the spatial Mahalanobis distance of xs from µs

j , and
Mc

j(x
c) is the color Mahalanobis distance of xc from µc

j ,
then a pair of components is considered suitable for merg-
ing if the following holds:

Ms
1(µ

s
2) < T s

mg ∧ Ms
2(µ

s
1) < T s

mg ∧

Mc
1(µ

c
2) < T c

mg ∧ Mc
2(µ

c
1) < T c

mg (14)

Where T s
mg and T c

mg are predefined thresholds. We con-
sider each pair of components, and merge the qualifying
pair with the lowest value of max(Mc

1(µ
c
2), M

c
2(µ

c
1)). This

procedure is repeated until no qualifying pairs remain.
We next seek to identify components which represent

spatially disconnected regions, and split them to represent
those regions separately. The purpose of this step is to
identify single components which represent more than one

background process, and separate them. We order the com-
ponents in descending value of λs

i , and step through the
list. For each, we use a connected components algorithm
to determine if it represents two or more disconnected re-
gions of the support map: if so, we split the largest region
away from the rest as a new component. For reasons of ef-
ficiency we implement this at a reduced resolution. We re-
peat this until no disconnected components are found, or
for a maximum number of iterations. Finally, when this
process is complete, components which have a zero or very
small weight are culled from the model.

4.5. Assigning Image Pixels to Model Components

When a new image frame is captured, each pixel is as-
signed to its most likely model component, using equation
(8). The pixel’s support map entry is updated to record the
assignment. The spatial variance Σs

i for large background
components is typically high. This frequently results in pix-
els being assigned to regions from which they are signifi-
cantly disconnected, and in particular, hampers detection
of new foreground regions. To resolve this we apply the ad-
ditional restriction that a pixel may only be assigned to a
background component if its spatial likelihood exceeds a
predefined threshold T s

lik:

log(p(xs|θs
j )) > T s

lik (15)

A minimum probability threshold Tmap is used to detect
new objects and processes in the scene. The pixel is labeled
“unassigned” in the support map if:

log(p(xt|θCmap)) < Tmap (16)

We implement Tmap by introducing a uniformly dis-
tributed component into the model. The density of this
component is given by the extents of the feature space.
For a frame size of 720 × 576 and YUV components in the
range [0, 1]:

p(xt) =
1

720 × 576
(17)

This component has a fixed weight Wu, and pixels for
which this is the most likely component are set as unas-
signed.
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We also make an important performance optimization to
the assignment process. If a pixel is currently assigned to an
existing component, its color value remains relatively un-
changed, and its probability given the same assignment is
greater than Tmap then we leave its assignment unchanged.
This significantly reduces processing time, as we do not
need to calculate the likelihood of each model component.
A pixel value is defined as unchanged if each element of its
YUV color value is within a threshold deviation from the
value first used to assign it to the component. The result
of this optimization is a significant increase in execution
speed (approximately 5×), and an increase in the perceived
stability of the algorithm. We have experimented with ap-
plying this optimization to all assigned pixels, and also to
only those pixels assigned to background components, with
similar results.

4.6. Introducing Foreground Components

All of the initial model components are labeled as back-
ground. Foreground components are introduced when re-
gions of pixels appear which have a low probability under
the mixture model. Such regions are taken to be generated
by new foreground objects entering the scene, and appear
in the support map as regions in which a high density of
pixels have been labeled as unassigned by equation (16).

The support map is divided into a grid such that each
cell has a resolution 16 × 16 pixels. The number of unas-
signed pixels is counted for each location. Locations ex-
ceeding a threshold density are considered to correspond to
new foreground regions. A single foreground component is
built from the statistics of all the unassigned pixels in these
locations. The parameters of the component are estimated
using equations of the form (10) to (13) to build the spatial
and color distributions. This new component is then recur-
sively split using the same procedure used to split back-
ground components. All new components introduced into
the model in this way are initially labeled as foreground.

4.7. Updating the Model

After pixel assignment, the parameters of the existing
background and foreground components are re-estimated.
For foreground components, equations of the form (10) to
(13) are used to calculate the spatial and color parameters
from their assigned pixels.

For background components we adapt the parameters
more slowly. For each component j we start by calculating
a set of parameter values θ(j,sm) from the new support map,
in the same way as for foreground components. Given the
previous parameters θ(j,t−1), we calculate the new set θ(j,t)

using an adaptive learning rate:

θ(j,t) = αjθ(j,sm) + (1 − αj)θ(j,t−1) (18)

Where αj is a vector of learning rates, one for each model
parameter, modified by a variable factor αc

j such that:

αj = αc
j

[

αs
µ, αs

Σ, αc
µ, αc

Σ

]

(19)

Where αs
µ, αs

Σ, αc
µ, αc

Σ are constants used to update the
spatial mean and covariance, and color mean and covari-
ance, respectively, and:

αc
j =

ω(j,sm)

ω(j,t−1)
, αc

j ∈ [0, 1] (20)

Where ω(j,sm) and ω(j,t−1) are the weights from θ(j,sm)

and θ(j,t−1) respectively. Using αc
j to factor the adaptation

in this way ensures that if a background component is oc-
cluded it does not adapt too quickly to represent only the
visible part. It also helps to prevent the background from
over adapting to misclassified foreground pixels. It is nec-
essary to renormalize the component weights at this point,
to enforce the condition in equation (2).

Regardless of whether any new foreground components
have been added this frame, we test all foreground com-
ponents for possible merging. First, we restrict the spatial
and color variances of each component to pre-defined max-
imum values. This helps prevent over adaptation to mis-
classified background pixels. We then merge similar com-
ponents using the same pair-wise method as was used for
the background model. We also examine foreground com-
ponents for fragmentation, using a similar process to that
used for detection and splitting of disconnected background
components. This helps to maintain a one-to-one correla-
tion between components and object processes. Finally, we
conclude frame processing by culling any foreground com-
ponents which have a zero or very low weight.

4.8. Reclassifying Components

All components introduced after model initialisation are
classified as foreground. However, occasionally, a new fore-
ground component will be introduced which does not cor-
respond to foreground component, but to a change in the
background process (for example, an illumination change).
In such cases, the component classification is erroneous,
and needs to be corrected.

We expect that foreground components will represent
objects that are moving through the scene when they are
first detected. Background components represent processes
which may show some movement around an a mean posi-
tion, but are relatively static.

We use this feature to detect inappropriately classified
foreground components. In order to retain its classification,
we impose the condition that a foreground component must
exhibit a significant spatial translation immediately after
instantiation. We implement this using two thresholds T s

fg

and T t
fg such that if the the following condition is not satis-

fied, a foreground component is reclassified as background:

|µ(j,t=0) − µ(j,t=T t
fg

)| ≥ T s
fg (21)

Where t = 0 corresponds to the image frame at which the
component was created. The values used for T s

fg and T t
fg
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are contextualized and reflect our expectations about fore-
ground object behavior. Thus, unlike per-pixel methods,
we can define the difference between foreground and back-
ground as an object-level attribute. We have experimented
with various values of T s

fg and T t
fg in our experiments.

4.9. Frame to Frame Object Correspondence

Many systems (for example, [9]) implement frame-to-
frame foreground object correspondence as a separate
higher level process. In our system, correspondence is
integrated with the model update process.

Assuming that foreground object movements from one
frame to the next are relatively small, pixel values gener-
ated by a moving foreground object at time t will generally
be assigned to the corresponding component θ(j,t−1). Al-
though spatial translation of the object decreases the com-
ponent likelihood, the color likelihood will remain high.
Thus object pixels are repeatedly re-assigned to the cor-
responding component(s), and the component parameters
are re-estimated, such that the spatial mean of the compo-
nent tracks the moving object.

Large object translations, or nearby similarly colored
background components may cause pixels to be incorrectly
assigned to a different component. In this case the existing
corresponding foreground component will be extinguished,
and a new component re-introduced automatically: the seg-
mentation process is still effective, but correspondence is
lost.

5. Experiments

We have performed a series of experiments to compare
the segmentation quality of our model with Stauffer’s per-
pixel algorithm [23], and with Migdal’s MRF based scheme
[10]. We are particularly interested in the ability of our algo-
rithm to extract foreground objects where the scene back-
ground exhibits unpredictable changes in spatial structure;
however, we are also interested in general performance. We
have therefore conducted evaluations against two separate
data sets.

The first set comprises eleven video sequences filmed
mainly in indoor environments in which the background is
static: the only variations arise from slight changes in light-
ing conditions. Most sequences comprise one or two human
targets performing routine actions such as walking and sit-
ting down.

The second set comprises ten sequences which are more
challenging. These have been filmed in outdoor sequences
in which there is significant, and sometimes large, move-
ment in the background. Some backgrounds comprise back-
ground foliage which are moved by wind. Others contain
moving water. In most sequences the foreground target is
human, though we have also included a sequence in which
the target is a car, and in another, a moving bird. Some

example frames from sequences in the second data set are
shown in the left hand column of figure 2.

All sequences were filmed using a standard consumer DV
camcorder producing a PAL format video stream (720 ×
576 pixel frame size, at 25 Hz, interlaced). The captured
sequences were re-sampled to a frequency of 10Hz (by omit-
ting frames), and a simple de-interlacing algorithm was ap-
plied. The duration of the processed sequences ranged be-
tween 50 and 500 frames. For each of the algorithms we
used parameter ranges which ensured that the background
model was learned robustly well within the minimum se-
quence duration (see section 5.1).

5.1. Quantifying Performance

In order to quantify the performance of the three algo-
rithms we constructed a set of “ground truth” frames for
each of the sequences. From each we arbitrarily selected a
sample of sixteen frames: to avoid bias, the frames were se-
lected without prior inspection. We also avoided selecting
frames from the beginning each sequence, so that the al-
gorithms were able to properly initialise their background
models. These frames were then copied, and the copies
manually annotated by marking the foreground pixels as
pure red (RGB 255,0,0) in an image editing program. These
annotated frames are considered to represent a “correct”
ground truth segmentation of the corresponding frames.

For each of the three algorithms we performed the fol-
lowing automated procedure. The algorithm was run over
each sequence, generating a set of foreground pixels for each
frame. For our algorithm, this corresponds to the set of pix-
els assigned to foreground components. For frames which
have a ground truth, the algorithm output was compared to
the manual segmentation. A pixel classified as foreground
by both the algorithm and the annotation is denoted “true
positive” (TP) foreground. If it classified as foreground by
only the algorithm, it is considered “false positive” (FP).
Finally, if it classified as foreground by only the annota-
tion then it is considered “false negative” (FN). The total
number of TP, FP, and FN pixels is summed for for each
sequence, resulting totals for each algorithm against each
sequence. We avoided choosing ground truth frames near
the beginning of each sequence, so that the algorithms were
able to initialize properly before we examined their output.

We use the TP, FP, and FN values for each sequence
(and summed for all sequences in each data set) to con-
struct two different comparison metrics. A range of metrics
is presented by Rosin [17], including Jaccard coefficient Jc,
where:

Jc =
TP

(TP + FP + FN)
(22)

This metric was also used by Migdal [10], and so we use
it to represent our results. For our second metric we use the
total error, Etot, used by Toyama [25], where:

Etot = FP + FN (23)
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Parameter Value

Max. Background Components 1000

Max. Foreground Components 300

Background split (spatial) T
s
sp 800

Background split (color) T
c
sp 50

Background merge (spatial) T
s
mg 2

Background merge (color) T
c
mg 1

Background update rate (Color) α
c
µ 0.05

Background update rate (Spatial) α
s
µ 0.0 (no update)

Uniform Component Weight Wu 0.1

Foreground reclassification time T
t
fg

2.0s

Foreground reclassification distance T
s
fg

48 pixels

Table 1
Most Effective Parameter Values for our Algorithm (Data Set 2)

Parameter Value

Number of components per pixel 3

Learning rate 0.02

Match threshold 3.0

Table 2
Most Effective Parameter Values for Stauffer’s Algorithm (Data Set
2)

Parameter Value

Learning rate (component weight) 0.005

Learning rate (component parameters) 0.05

Start temperature 1.0

End temperature 0.2

Table 3
Most Effective Parameter Values for Migdal’s Algorithm (Data Set
2)

We repeated our experiments with a range of parameters
for each algorithm. In the case of Migdal’s algorithm we
experimented with both the proposed linear cooling sched-
ule, and an exponential schedule more commonly used to
estimate MAP-MRF field labelings. For our algorithm, the
parameters which effect performance were found to be the
number of components used for the model, the model up-
date rate, and the parameters used to reclassify foreground
components as background. A summary of the best param-
eter values found for the second data set is shown in table
1. We compared results using this parameter set against
the best parameters found for both Stauffer’s and Migdal’s
algorithms. The best parameters for these are shown in ta-
bles 2 and 3 respectively.

5.2. Results

Results for the first data set, with static backgrounds, are
shown in table 4. These table shows Jaccard coefficients and
total errors for each sequence, and totals for the whole set.
Both metrics indicate that the MRF segmentation gives a

Jaccard Coefficient Total Errors (×103)

Sequence Stauffer Migdal Ours Stauffer Migdal Ours

1 0.54 0.83 0.68 244 76 196

2 0.63 0.84 0.72 333 109 174

3 0.48 0.84 0.73 354 79 147

4 0.19 0.31 0.32 374 577 386

5 0.54 0.62 0.52 237 202 164

6 0.53 0.78 0.65 98 38 52

7 0.39 0.48 0.45 194 182 150

8 0.23 0.63 0.56 890 221 313

9 0.65 0.70 0.60 434 350 264

10 0.68 0.84 0.79 162 59 122

11 0.36 0.52 0.44 194 165 187

total 0.47 0.66 0.59 3515 2060 2154

Table 4

Jaccard Coefficients and Total errors (×103) for Scenes with Static
Backgrounds (Data Set 1)

better overall performance than our algorithm, with both
giving much better results than Stauffer’s model. Migdal’s
scheme has the highest Jaccard coefficient for ten of the
eleven sequences, and the lowest error rate in seven cases.
Our algorithm has the highest Jaccard coefficient for one
sequence, and the lowest error rate in three sequences.

Although Migdal’s algorithm gives a better performance
on the first data set, results for the second data set, with
dynamic backgrounds, are very different. These are shown
in table 5. On this data set, our algorithm outperforms the
MRF and per-pixel models by a considerable margin, with
the highest Jaccard coefficient in nine out of ten cases, and
a lower error rate in all cases. To visualize, Figure 2 shows
example image frames and segmentations from six of the
ten sequences. In each case, the original frame is shown
in the left hand column, the per-pixel segmentation in the
next column, the MRF segmentation in the next, and the
result for our algorithm in the right hand column. In all
cases, the background exhibits significant spatio-temporal
variation during the sequence.

Comparing the results for the two data sets, we see that
variations in the background, caused by moving foliage or
water, drastically reduce the effectiveness of both the MRF
and per-pixel models whilst our algorithm remains robust.
The total Jaccard coefficient for the MRF scheme reduces
from 0.66 for the first data set to only 0.15 for the second.
For Stauffer’s algorithm, it is reduced from 0.44 to 0.07. In
both cases, the segmentations for the second data set are
poor. For our algorithm, performance drops only a little,
from 0.59 to 0.52. Based on these results we assert that our
algorithm gives a better segmentation than either Stauffer’s
or Migdal’s in scenes with significant levels of background
movement.
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Fig. 2. Segmented foreground pixels. Left to right : Original image, Stauffer, Migdal, Our algorithm
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Jaccard Coefficient Total Errors (×103)

Sequence Stauffer Migdal Ours Stauffer Migdal Ours

1 0.10 0.15 0.58 1322 1100 109

2 0.04 0.04 0.52 1642 1529 77

3 0.14 0.52 0.34 546 131 127

4 0.01 0.23 0.33 964 567 14

5 0.07 0.21 0.58 886 250 40

6 0.05 0.08 0.61 1146 797 46

7 0.14 0.25 0.58 1237 671 181

8 0.09 0.28 0.45 1000 348 118

9 0.02 0.01 0.46 981 382 187

10 0.09 0.21 0.53 933 328 95

total 0.07 0.15 0.52 10657 5594 827

Table 5
Jaccard Coefficients and Total errors (×103) for Scenes with Dynamic

Backgrounds (Data Set 2)

5.3. Significance of the Results

In this section we verify that the differences in perfor-
mance apparent in the previous section are statistically sig-
nificant.

We first consider the results of our algorithm against
Stauffer’s on the second data set. Our hypothesis is that our
algorithm gives a better segmentation (referenced against
the ground truth) than Stauffer’s, on sequences with a high
degree of background movement. Our null hypothesis, H1

0 ,
is that there is at least a 0.5 probability that Stauffer’s algo-

rithm will return a higher Jaccard coefficient than ours on

an image sequence. This hypothesis asserts that, using the
Jaccard coefficient as a performance metric, Stauffer’s al-
gorithm will out-perform ours on average. We consider the
result on each sequence as a Bernoulli trial with p = 0.5
and use the binomial distribution to determine an appro-
priate p-value. In this case our algorithm returns a higher
Jaccard coefficient for all ten sequences, resulting in a p-
value of 0.510 ≈ 0.001. We can therefore reject H1

0 at the
standard 5% significance level. Similarly, we reject the null
hypothesis regarding total errors, H2

0 , that there is at least

a 0.5 probability that Stauffer’s algorithm will return a lower

total error than ours, at the same significance level.
Applying the same procedure to the results against

Migdal’s algorithm, we construct two similar null hypothe-
ses H3

0 and H4
0 . Our algorithm returns a higher Jaccard

coefficient than Migdal’s in all but one case. For H3
0 this

equates to a p-value of 11 × 0.510 ≈ 0.011. Again, this is
well within than standard 5% significance level, and we can
reject H3

0 . Our algorithm returns a lower total error than
Migdal’s in all cases, and so, as with H2

0 , we can reject H4
0

at the 5% significance level.
We proceed to consider the significance of our results

against data set 1, shown in table 4. In this dataset, our al-
gorithm gave a higher Jaccard coefficient that Stauffer’s in
nine out of 11 sequences, and a lower error rate in ten cases.

Algorithm Approx. frame processing time (s)

Stauffer 0.1

Migdal 5.0

Our algorithm 2.0 - 4.0

Table 6

Approximate image frame processing times, in seconds

Following the same procedure as for data set 2, we propose
the same null hypotheses for data set 1: H5

0 and H6
0 which

correspond to H1
0 and H2

0 respectively. Corresponding p-
values are 67 × 0.511 ≈ 0.033 and 12 × 0.511 ≈ 0.006, and
we can reject both at the 5% significance level.

We use a different treatment for our results against
Migdal’s algorithm on data set 1, since Migdal’s algo-
rithm returns a better Jaccard coefficient in ten cases,
and lower error rate in 7 cases. We therefore propose al-
ternative null hypotheses to validate the superiority of
Migdal’s algorithm on sequences with static backgrounds,
denoted H7

0 and H8
0 respectively: there is at least a 0.5

probability that our algorithm will return a higher Jaccard

coefficient than Migdal’s; there is at least a 0.5 probabil-

ity that our algorithm will return a lower total error than

Migdal’s. Corresponding p-values are 12 × 0.511 ≈ 0.001
and 552 × 0.511 ≈ 0.27. We therefore reject H7

0 at the 5%
significance level, and conclude that Migdal’s algorithm
returns a better Jaccard coefficient for scenes with static
backgrounds. However, we are unable to reject H8

0 , so our
comparison of error rates is inconclusive in this case.

We have thus shown that our results are statistically sig-
nificant except in one case: the comparison of total error
rates between our algorithm and Migdal’s on data set 1,
supporting our assertions in the previous section.

5.4. Frame Processing Time

All three algorithms were coded in unoptimized C++
and our experiments were run on a 2.8 GHz Pentium 4
based PC. As previously mentioned, the processed frame
size is 720× 576. The execution times per frame are shown
in table 6. From this table it can be seen that Stauffer’s al-
gorithm is considerably faster than ours or Migdal’s, trad-
ing segmentation accuracy for speed. Migdal’s algorithm is
the slowest, whereas execution time for our algorithm varies
depending on the number of components and the relative
change in scene structure between frames.

The results reported in table 6 suggest that, whilst our al-
gorithm is significantly faster than Migdal’s MRF scheme,
neither scheme is yet capable of real-time performance. In
comparison with Stauffer’s algorithm it is clear that there
is a significant computational cost to enforcing spatial co-
herency, using either method. However, we believe that
there is considerable scope for improving the frame execu-
tion times that we have reported: firstly through optimiza-
tion of our C++ implementation, and secondly by the use
of specialized hardware.
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6. Conclusions

The processes observed in real-world scenes are com-
plex and chaotic, and often make accurate background sub-
traction a challenging task. We have considered the prob-
lem of robust segmentation in scenes with dynamic back-
grounds: where objects in the background are subject to
spatial variations. Per-pixel background models are unable
to effectively represent such variations, leading to frequent
mis-classifications. Random field models are able to impose
global spatial and temporal dependencies on field label-
ings, but do not explicitly model the spatial structure of
the scene.

We have proposed a scheme in which homogeneous re-
gions of the scene are modeled by an adaptive mixture of
Gaussians in color and space. Components of the model rep-
resent clusters of pixels generated by discreet processes or
objects in both the background and foreground. We use this
model to probabilistically classify new pixel observations,
and remove misclassifications caused by spatio-temporal
background variations.

We conducted a series of experiments to investigate the
effectiveness of our model, and compare its performance
to per-pixel and MRF-based algorithms. We tested the al-
gorithms on two data sets, the first comprising sequences
with static backgrounds, and the second comprising scenes
in which the background exhibited significant structural
variations.

Our results show that whilst all three models are able
to produce effective segmentations when the background is
static, the output of the per-pixel and MRF based models
is severely degraded by background variations. Our model
is robust, however, and the segmentation quality was only
marginally reduced. Having demonstrated the statistical
significance of our results, there is strong evidence that ex-
plicitly modeling spatial features of the background results
in a more robust segmentation.

There is a trade off between accuracy and processing
time. A more complex model requires more processing, and
both our system and the MRF-based system we tested were
an order of magnitude slower than the per-pixel model. This
is an issue for real-time monitoring systems; however, we
believe that there is scope for speed optimizations, which
would make our system a viable proposition for real-time
implementation.
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