5,355 research outputs found

    On the Complexity of Making a Distinguished Vertex Minimum or Maximum Degree by Vertex Deletion

    Full text link
    In this paper, we investigate the approximability of two node deletion problems. Given a vertex weighted graph G=(V,E)G=(V,E) and a specified, or "distinguished" vertex pVp \in V, MDD(min) is the problem of finding a minimum weight vertex set SV{p}S \subseteq V\setminus \{p\} such that pp becomes the minimum degree vertex in G[VS]G[V \setminus S]; and MDD(max) is the problem of finding a minimum weight vertex set SV{p}S \subseteq V\setminus \{p\} such that pp becomes the maximum degree vertex in G[VS]G[V \setminus S]. These are known NPNP-complete problems and have been studied from the parameterized complexity point of view in previous work. Here, we prove that for any ϵ>0\epsilon > 0, both the problems cannot be approximated within a factor (1ϵ)logn(1 - \epsilon)\log n, unless NPDTIME(nloglogn)NP \subseteq DTIME(n^{\log\log n}). We also show that for any ϵ>0\epsilon > 0, MDD(min) cannot be approximated within a factor (1ϵ)logn(1 -\epsilon)\log n on bipartite graphs, unless NPDTIME(nloglogn)NP \subseteq DTIME(n^{\log\log n}), and that for any ϵ>0\epsilon > 0, MDD(max) cannot be approximated within a factor (1/2ϵ)logn(1/2 - \epsilon)\log n on bipartite graphs, unless NPDTIME(nloglogn)NP \subseteq DTIME(n^{\log\log n}). We give an O(logn)O(\log n) factor approximation algorithm for MDD(max) on general graphs, provided the degree of pp is O(logn)O(\log n). We then show that if the degree of pp is nO(logn)n-O(\log n), a similar result holds for MDD(min). We prove that MDD(max) is APXAPX-complete on 3-regular unweighted graphs and provide an approximation algorithm with ratio 1.5831.583 when GG is a 3-regular unweighted graph. In addition, we show that MDD(min) can be solved in polynomial time when GG is a regular graph of constant degree.Comment: 16 pages, 4 figures, submitted to Elsevier's Journal of Discrete Algorithm

    Unifying Sparsest Cut, Cluster Deletion, and Modularity Clustering Objectives with Correlation Clustering

    Get PDF
    Graph clustering, or community detection, is the task of identifying groups of closely related objects in a large network. In this paper we introduce a new community-detection framework called LambdaCC that is based on a specially weighted version of correlation clustering. A key component in our methodology is a clustering resolution parameter, λ\lambda, which implicitly controls the size and structure of clusters formed by our framework. We show that, by increasing this parameter, our objective effectively interpolates between two different strategies in graph clustering: finding a sparse cut and forming dense subgraphs. Our methodology unifies and generalizes a number of other important clustering quality functions including modularity, sparsest cut, and cluster deletion, and places them all within the context of an optimization problem that has been well studied from the perspective of approximation algorithms. Our approach is particularly relevant in the regime of finding dense clusters, as it leads to a 2-approximation for the cluster deletion problem. We use our approach to cluster several graphs, including large collaboration networks and social networks

    Structural Rounding: Approximation Algorithms for Graphs Near an Algorithmically Tractable Class

    Get PDF
    We develop a framework for generalizing approximation algorithms from the structural graph algorithm literature so that they apply to graphs somewhat close to that class (a scenario we expect is common when working with real-world networks) while still guaranteeing approximation ratios. The idea is to edit a given graph via vertex- or edge-deletions to put the graph into an algorithmically tractable class, apply known approximation algorithms for that class, and then lift the solution to apply to the original graph. We give a general characterization of when an optimization problem is amenable to this approach, and show that it includes many well-studied graph problems, such as Independent Set, Vertex Cover, Feedback Vertex Set, Minimum Maximal Matching, Chromatic Number, (l-)Dominating Set, Edge (l-)Dominating Set, and Connected Dominating Set. To enable this framework, we develop new editing algorithms that find the approximately-fewest edits required to bring a given graph into one of a few important graph classes (in some cases these are bicriteria algorithms which simultaneously approximate both the number of editing operations and the target parameter of the family). For bounded degeneracy, we obtain an O(r log{n})-approximation and a bicriteria (4,4)-approximation which also extends to a smoother bicriteria trade-off. For bounded treewidth, we obtain a bicriteria (O(log^{1.5} n), O(sqrt{log w}))-approximation, and for bounded pathwidth, we obtain a bicriteria (O(log^{1.5} n), O(sqrt{log w} * log n))-approximation. For treedepth 2 (related to bounded expansion), we obtain a 4-approximation. We also prove complementary hardness-of-approximation results assuming P != NP: in particular, these problems are all log-factor inapproximable, except the last which is not approximable below some constant factor 2 (assuming UGC)

    Spider covers for prize-collecting network activation problem

    Full text link
    In the network activation problem, each edge in a graph is associated with an activation function, that decides whether the edge is activated from node-weights assigned to its end-nodes. The feasible solutions of the problem are the node-weights such that the activated edges form graphs of required connectivity, and the objective is to find a feasible solution minimizing its total weight. In this paper, we consider a prize-collecting version of the network activation problem, and present first non- trivial approximation algorithms. Our algorithms are based on a new LP relaxation of the problem. They round optimal solutions for the relaxation by repeatedly computing node-weights activating subgraphs called spiders, which are known to be useful for approximating the network activation problem

    An FPT algorithm and a polynomial kernel for Linear Rankwidth-1 Vertex Deletion

    Get PDF
    Linear rankwidth is a linearized variant of rankwidth, introduced by Oum and Seymour [Approximating clique-width and branch-width. J. Combin. Theory Ser. B, 96(4):514--528, 2006]. Motivated from recent development on graph modification problems regarding classes of graphs of bounded treewidth or pathwidth, we study the Linear Rankwidth-1 Vertex Deletion problem (shortly, LRW1-Vertex Deletion). In the LRW1-Vertex Deletion problem, given an nn-vertex graph GG and a positive integer kk, we want to decide whether there is a set of at most kk vertices whose removal turns GG into a graph of linear rankwidth at most 11 and find such a vertex set if one exists. While the meta-theorem of Courcelle, Makowsky, and Rotics implies that LRW1-Vertex Deletion can be solved in time f(k)n3f(k)\cdot n^3 for some function ff, it is not clear whether this problem allows a running time with a modest exponential function. We first establish that LRW1-Vertex Deletion can be solved in time 8knO(1)8^k\cdot n^{\mathcal{O}(1)}. The major obstacle to this end is how to handle a long induced cycle as an obstruction. To fix this issue, we define necklace graphs and investigate their structural properties. Later, we reduce the polynomial factor by refining the trivial branching step based on a cliquewidth expression of a graph, and obtain an algorithm that runs in time 2O(k)n42^{\mathcal{O}(k)}\cdot n^4. We also prove that the running time cannot be improved to 2o(k)nO(1)2^{o(k)}\cdot n^{\mathcal{O}(1)} under the Exponential Time Hypothesis assumption. Lastly, we show that the LRW1-Vertex Deletion problem admits a polynomial kernel.Comment: 29 pages, 9 figures, An extended abstract appeared in IPEC201

    Solid/FEM integration at SNLA

    Get PDF
    The effort at Sandia National Labs. on the methodologies and techniques being used to generate strict hexahedral finite element meshes from a solid model is described. The functionality of the modeler is used to decompose the solid into a set of nonintersecting meshable finite element primitives. The description of the decomposition is exported, via a Boundary Representative format, to the meshing program which uses the information for complete finite element model specification. Particular features of the program are discussed in some detail along with future plans for development which includes automation of the decomposition using artificial intelligence techniques
    corecore