9 research outputs found

    NASA's surface biology and geology designated observable: A perspective on surface imaging algorithms

    Full text link
    The 2017–2027 National Academies' Decadal Survey, Thriving on Our Changing Planet, recommended Surface Biology and Geology (SBG) as a “Designated Targeted Observable” (DO). The SBG DO is based on the need for capabilities to acquire global, high spatial resolution, visible to shortwave infrared (VSWIR; 380–2500 nm; ~30 m pixel resolution) hyperspectral (imaging spectroscopy) and multispectral midwave and thermal infrared (MWIR: 3–5 μm; TIR: 8–12 μm; ~60 m pixel resolution) measurements with sub-monthly temporal revisits over terrestrial, freshwater, and coastal marine habitats. To address the various mission design needs, an SBG Algorithms Working Group of multidisciplinary researchers has been formed to review and evaluate the algorithms applicable to the SBG DO across a wide range of Earth science disciplines, including terrestrial and aquatic ecology, atmospheric science, geology, and hydrology. Here, we summarize current state-of-the-practice VSWIR and TIR algorithms that use airborne or orbital spectral imaging observations to address the SBG DO priorities identified by the Decadal Survey: (i) terrestrial vegetation physiology, functional traits, and health; (ii) inland and coastal aquatic ecosystems physiology, functional traits, and health; (iii) snow and ice accumulation, melting, and albedo; (iv) active surface composition (eruptions, landslides, evolving landscapes, hazard risks); (v) effects of changing land use on surface energy, water, momentum, and carbon fluxes; and (vi) managing agriculture, natural habitats, water use/quality, and urban development. We review existing algorithms in the following categories: snow/ice, aquatic environments, geology, and terrestrial vegetation, and summarize the community-state-of-practice in each category. This effort synthesizes the findings of more than 130 scientists

    Study of Aerosol, Trace Gases and Water Vapour optical properties, using spectral measurements of solar irradiance

    Get PDF
    Θέμα της παρούσας διατριβής είναι η μελέτη των ατμοσφαιρικών στοιχείων και η ανάπτυξη μεθόδων για τον υπολογισμό φυσικών και οπτικών ιδιοτήτων τους, χρησιμοποιώντας φασματικές μετρήσεις της ηλιακής ακτινοβολίας. Στόχος της μελέτης είναι η ανάπτυξη μεθόδων για την βελτιστοποίηση της ακρίβειας των δεδομένων ατμοσφαιρικών μεταβλητών. Συγκεκριμένα, αναπτύχθηκε μέθοδος για τον υπολογισμό της κατακόρυφης στήλης όζοντος από τις μετρήσεις του οργάνου UVMFR κι εφαρμόστηκε σε δεδομένα 5 ετών, τα οποία συγκρίθηκαν με μετρήσεις από το όργανο Brewer και από δορυφόρο. Η βελτίωση της μεθόδου περιλαμβάνει την ποσοτικοποίηση της επιρροής στον υπολογισμό, τόσο της στρατοσφαιρικής θερμοκρασίας όσο και του οπτικού βάθους αερολυμάτων. Σημαντική για την χρήση της μεθόδου ήταν η σταθερότητα που έδειξαν τα αποτελέσματα σε μια χρονοσειρά 5 ετών. H διακρίβωση της κατακόρυφης στήλης όζοντος που υπολογίστηκε με αυτή την μέθοδο, συγκρίθηκε με μετρήσεις από επίγεια και δορυφορικά όργανα πρωτοποριακής τεχνολογίας και τα αποτελέσματα κατέδειξαν ικανοποιητική συμφωνία. Επίσης τα αποτελέσματα είχαν σταθερή ποιότητα σε όλη την χρονοσειρά, υποδεικνύοντας την δυνατότητα μακροπρόθεσμης χρήσης της μεθόδου. Δυο προσεγγίσεις χρησιμοποιήθηκαν για τον υπολογισμό της στήλης υδρατμών από μετρήσεις PSR. Η πρώτη μέθοδος ήταν μονοχρωματική, ακολουθώντας την προσέγγιση που χρησιμοποιείται στα ραδιόμετρα φίλτρων. Τα αποτελέσματα της συγκρίθηκαν με άλλα δεδομένα (από CIMEL, GPS, MWP, ραδιοβολίσεις) και βρέθηκε ότι το κανάλι των 946nm παρουσιάζει τα πιο αξιόπιστα αποτελέσματα. Η δεύτερη μέθοδος εκμεταλλεύεται την φασματική ανάλυση του οργάνου και υπολογίζει την στήλη υδρατμών χρησιμοποιώντας το φασματικό παράθυρο 934-948nm. Επίσης, αναπτύχθηκε μέθοδος για τον υπολογισμό της λευκαύγειας μονής σκέδασης στα υπεριώδη μήκη κύματος και εφαρμόστηκε σε μια πενταετή βάση δεδομένων. Δεδομένα από φωτόμετρο CIMEL χρησιμοποιήθηκαν για την αξιολόγηση των αποτελεσμάτων και την μελέτη της φασματικής συμπεριφοράς των απορροφητικών σωματιδίων. Σημαντική φασματική εξάρτηση παρατηρήθηκε στις περιπτώσεις με χαμηλό εκθέτη Ångström, συνοδευόμενα με μείωση της λευκαύγειας μονής σκέδασης και με την μείωση του οπτικού βάθους αερολυμάτων, καταδεικνύοντας την συσχέτιση με τη σύνθεση των αερολυμάτων. Σημαντικό είναι το γεγονός ότι μέρος της φασματικής διακύμανσης δεν μπορεί να προσδιοριστεί εξαιτίας της αβεβαιότητας υπολογισμού της λευκαύγειας μονής σκέδασης. Οι απορροφητικές ιδιότητες στο υπεριώδες της σκόνης και του καφέ άνθρακα ερευνήθηκαν για να εξηγηθούν οι εποχικές διακυμάνσεις. Τέλος, η υπεριώδης ακτινοβολία υπολογίστηκε και συγκρίθηκε, χρησιμοποιώντας διαφορετικές βάσεις δεδομένων για την λευκαύγεια μονής σκέδασης, για την Αθήνα την περίοδο 2009-2014. Χρησιμοποιήθηκαν δεδομένα από UVMFR, AERONET, AEROCOM και OMI. Η ακτινοβολία εκτιμήθηκε με την χρήση μοντέλου διάδοσης ακτινοβολίας. Οι ακτινοβολίες UVA και UVB υπολογίστηκαν και βρέθηκε ότι χρησιμοποιώντας τα δεδομένα από το UVFMR υπάρχει σημαντική μείωση. Οι επιδόσεις των υπολογισμών του μοντέλου αξιολογήθηκαν με μετρήσεις από Brewer στα 324nm. Συνοψίζοντας, η παρούσα διατριβή συνεισφέρει στην βελτίωση των κατανόησης και στον υπολογισμό ατμοσφαιρικών συστατικών που επηρεάζουν το φασματικό ισοζύγιο ακτινοβολιών του συστήματος Γη- Ατμόσφαιρα, όπως η στήλη του όζοντος, η στήλη υδρατμών και οι απορροφητικές ιδιότητες των αερολυμάτων. Για την περίπτωση της στήλης όζοντος, παρέχει ενδείξεις για την εγκυρότητα μιας σχετικά απλής μεθόδου που μπορεί να χρησιμοποιηθεί από φωτόμετρο φίλτρου και να συνεισφέρει στην αύξηση της παγκόσμιας επίγειας καταγραφής της μεταβλητής. Η μέθοδος που προτείνεται σχετικά με τους υδρατμούς, εκμεταλλεύεται την τεχνολογική πρόοδο των φασματικών μετρήσεων της ηλιακής ακτινοβολίας. Τέλος σε σχέση με τα αερολύματα υπάρχει σημαντική συνεισφορά στο ανοιχτό επιστημονικό ερώτημα της λευκαύγειας μονής σκέδασης στην υπεριώδη περιοχή του ηλιακού φάσματος.The subject of thethesis is to study and develop methods for retrieving optical and physical properties of atmospheric components using spectral solar irradiance measurements, while goals of the present thesis is to develop methods to enhance the accuracy of available data of atmospheric variables.In particular, a method to retrieve Total Ozone Column fromUltraviolet Multifilter Radiometer(UVMFR)measurements was developed, which was applied to a 5 years dataset and was compared with Brewer and satellite retrievals. Enhancement of the method is the quantification of stratospheric temperature and aerosols influence on the retrieval. Also, it is crucial for monitoring purposes that the retrieval was stable throughout the 5 years period. Additionally,theinfluence of stratospheric temperature and AOD to the retrieved values wasinvestigated and corrections to the retrieved product were appliedaccordingly. The validation of TOC retrieved with this method compared with state of the art ground based and satellite based TOC retrievals showed good results towards its use in long term or case studies concerning TOC.Two approaches were used toretrieve Integrated Water Vapour(IWV) from a Precision Solar Spectroradiometer (PSR). The first method was monochromatic, following the approach used in many filter radiometers, and was tested against other retrievals (CIMEL, GPS, MWP, radiosondes) andwasfound that 946 nm channelprovidesthe most reliable results. The second method was an enhancement, benefiting from the dense spectral recording of PSR, using a spectral window of 934-948 nm to retrieve IWV. This method provided less varied retrievalswith better agreement to reference methods.Also, a method for retrieving Single Scattering Albedo (SSA) in UV wavelengths was developed and applied on 5 years dataset. Retrievals from a collocated CIMEL sun photometer were used to evaluate the products andStudy the spectral dependence of aerosol absorption. Strong SSA wavelength dependence is revealed for cases of low Ångström exponents, accompanied by a SSA decrease with decreasing extinction optical depth, suggesting varying influence under different aerosol composition. However, part of this dependence for low aerosol optical depths is masked by the enhanced SSA retrieval uncertainty. Dust and brown carbon UV absorbing properties were also investigated to explain seasonal patterns.Finally, UV irradiance was calculated and compared using different SSA datasets retrieved at Athens, Greece during 2009-2014; including SSA timeseries 8from UVMFR at 332 and 368 nm, SSA from AERONET at 440 nm, fromOMI satellite at 342.5 nm and AeroCom climatological database at 300 nm. Irradiances were estimated using a Radiative Transfer Model(RTM). UVA and UVB were estimated and found that using UVFMR retrieved SSA and AOD leads to significant drops. Performance of the modeled data was evaluated using Brewer measurements at 324 nm.Summarizing, this thesis deals with the improvement of knowledge and retrieval of atmospheric constituents that affect spectrally the Earth –Atmosphere radiative balance such as the total column ozone, the integrated water vapourand the columnar absorption properties of aerosols. For the case of TOC it provides evidence on the validity of a simple method that can be used by filter instruments and can contribute to the enhancement of the TOC measurement stations densityworldwide. For IWV a new method is proposed using the advantage of spectral direct sun measurements and for the case of aerosols it contributes to a scientifically open aspect dealing with the SSA columnar retrieval in the UV region

    COMBAT SYSTEMS Volume 1. Sensor Elements Part I. Sensor Functional Characteristics

    Get PDF
    This document includes: CHAPTER 1. SIGNATURES, OBSERVABLES, & PROPAGATORS. CHAPTER 2. PROPAGATION OF ELECTROMAGNETIC RADIATION. I. – FUNDAMENTAL EFFECTS. CHAPTER 3. PROPAGATION OF ELECTROMAGNETIC RADIATION. II. – WEATHER EFFECTS. CHAPTER 4. PROPAGATION OF ELECTROMAGNETIC RADIATION. III. – REFRACTIVE EFFECTS. CHAPTER 5. PROPAGATION OF ELECTROMAGNETIC RADIATION IV. – OTHER ATMOSPHERIC AND UNDERWATER EFFECTS. CHAPTER 6. PROPAGATION OF ACOUSTIC RADIATION. CHAPTER 7. NUCLEAR RADIATION: ITS ORIGIN AND PROPAGATION. CHAPTER 8. RADIOMETRY, PHOTOMETRY, & RADIOMETRIC ANALYSIS. CHAPTER 9. SENSOR FUNCTIONS. CHAPTER 10. SEARCH. CHAPTER 11. DETECTION. CHAPTER 12. ESTIMATION. CHAPTER 13. MODULATION AND DEMODULATION. CHAPTER 14. IMAGING AND IMAGE-BASED PERCEPTION. CHAPTER 15. TRACKING. APPENDIX A. UNITS, PHYSICAL CONSTANTS, AND USEFUL CONVERSION FACTORS. APPENDIX B. FINITE DIFFERENCE AND FINITE ELEMENT TECHNIQUES. APPENDIX C. PROBABILITY AND STATISTICS. INDEX TO VOLUME 1. Note by author: Note: Boldface entries in the table of contents are not yet completed

    Development and Implementation of the Midwest Geological Sequestration Consortium CO2-Technology Transfer Center

    Get PDF
    In 2009, the Illinois State Geological Survey (ISGS), in collaboration with the Midwest Geological Sequestration Consortium (MGSC), created a regional technology training center to disseminate carbon capture and sequestration (CCS) technology gained through leadership and participation in regional carbon sequestration projects. This technology training center was titled and branded as the Sequestration Training and Education Program (STEP). Over the last six years STEP has provided local, regional, national, and international education and training opportunities for engineers, geologists, service providers, regulators, executives, K-12 students, K-12 educators, undergraduate students, graduate students, university and community college faculty members, and participants of community programs and functions, community organizations, and others. The goal for STEP educational programs has been on knowledge sharing and capacity building to stimulate economic recovery and development by training personnel for commercial CCS projects. STEP has worked with local, national and international professional organizations and regional experts to leverage existing training opportunities and provide stand-alone training. This report gives detailed information on STEP activities during the grant period (2009-2015).Department of Energy Agreement DE-FE0002462Ope

    Izaña Atmospheric Research Center. Activity Report 2019-2020

    Get PDF
    Editors: Emilio Cuevas, Celia Milford and Oksana Tarasova.[EN]The Izaña Atmospheric Research Center (IARC), which is part of the State Meteorological Agency of Spain (AEMET), is a site of excellence in atmospheric science. It manages four observatories in Tenerife including the high altitude Izaña Atmospheric Observatory. The Izaña Atmospheric Observatory was inaugurated in 1916 and since that date has carried out uninterrupted meteorological and climatological observations, contributing towards a unique 100-year record in 2016. This reports are a summary of the many activities at the Izaña Atmospheric Research Center to the broader community. The combination of operational activities, research and development in state-of-the-art measurement techniques, calibration and validation and international cooperation encompass the vision of WMO to provide world leadership in expertise and international cooperation in weather, climate, hydrology and related environmental issues.[ES]El Centro de Investigación Atmosférica de Izaña (CIAI), que forma parte de la Agencia Estatal de Meteorología de España (AEMET), representa un centro de excelencia en ciencias atmosféricas. Gestiona cuatro observatorios en Tenerife, incluido el Observatorio de Izaña de gran altitud, inaugurado en 1916 y que desde entonces ha realizado observaciones meteorológicas y climatológicas ininterrumpidas y se ha convertido en una estación centenaria de la OMM. Estos informes resumen las múltiples actividades llevadas a cabo por el Centro de Investigación Atmosférica de Izaña. El liderazgo del Centro en materia de investigación y desarrollo con respecto a las técnicas de medición, calibración y validación de última generación, así como la cooperación internacional, le han otorgado una reputación sobresaliente en lo que se refiere al tiempo, el clima, la hidrología y otros temas ambientales afines

    Terrestrial Environment (Climatic) Criteria Guidelines for use in Aerospace Vehicle Development

    Get PDF
    This document provides guidelines for the terrestrial environment that are specifically applicable in the development of design requirements/specifications for NASA aerospace vehicles, payloads, and associated ground support equipment. The primary geographic areas encompassed are the John F. Kennedy Space Center, FL; Vandenberg AFB, CA; Edwards AFB, CA; Michoud Assembly Facility, New Orleans, LA; John C. Stennis Space Center, MS; Lyndon B. Johnson Space Center, Houston, TX; George C. Marshall Space Flight Center, Huntsville, AL; and the White Sands Missile Range, NM. This document presents the latest available information on the terrestrial environment applicable to the design and operations of aerospace vehicles and supersedes information presented in NASA-HDBK-1001 and TM X-64589, TM X-64757, TM-78118, TM-82473, and TM-4511. Information is included on winds, atmospheric thermodynamic models, radiation, humidity, precipitation, severe weather, sea state, lightning, atmospheric chemistry, seismic criteria, and a model to predict atmospheric dispersion of aerospace engine exhaust cloud rise and growth. In addition, a section has been included to provide information on the general distribution of natural environmental extremes in the conterminous United States, and world-wide, that may be needed to specify design criteria in the transportation of space vehicle subsystems and components. A section on atmospheric attenuation has been added since measurements by sensors on certain Earth orbital experiment missions are influenced by the Earth s atmosphere. There is also a section on mission analysis, prelaunch monitoring, and flight evaluation as related to the terrestrial environment inputs. The information in these guidelines is recommended for use in the development of aerospace vehicle and related equipment design and associated operational criteria, unless otherwise stated in contract work specifications. The terrestrial environmental data in these guidelines are primarily limited to information below 90 km altitude

    Investigating summer thermal stratification in Lake Ontario

    Get PDF
    Summer thermal stratification in Lake Ontario is simulated using the 3D hydrodynamic model Environmental Fluid Dynamics Code (EFDC). Summer temperature differences establish strong vertical density gradients (thermocline) between the epilimnion and hypolimnion. Capturing the stratification and thermocline formation has been a challenge in modeling Great Lakes. Deviating from EFDC's original Mellor-Yamada (1982) vertical mixing scheme, we have implemented an unidimensional vertical model that uses different eddy diffusivity formulations above and below the thermocline (Vincon-Leite, 1991; Vincon-Leite et al., 2014). The model is forced with the hourly meteorological data from weather stations around the lake, flow data for Niagara and St. Lawrence rivers; and lake bathymetry is interpolated on a 2-km grid. The model has 20 vertical layers following sigma vertical coordinates. Sensitivity of the model to vertical layers' spacing is thoroughly investigated. The model has been calibrated for appropriate solar radiation coefficients and horizontal mixing coefficients. Overall the new implemented diffusivity algorithm shows some successes in capturing the thermal stratification with RMSE values between 2-3°C. Calibration of vertical mixing coefficients is under investigation to capture the improved thermal stratification
    corecore