2,847 research outputs found

    Radix-2 x 2 x 2 algorithm for the 3-D discrete hartley transform

    Get PDF
    The discrete Hartley transform (DHT) has proved to be a valuable tool in digital signal/image processing and communications and has also attracted research interests in many multidimensional applications. Although many fast algorithms have been developed for the calculation of one- and two-dimensional (1-D and 2-D) DHT, the development of multidimensional algorithms in three and more dimensions is still unexplored and has not been given similar attention; hence, the multidimensional Hartley transform is usually calculated through the row-column approach. However, proper multidimensional algorithms can be more efficient than the row-column method and need to be developed. Therefore, it is the aim of this paper to introduce the concept and derivation of the three-dimensional (3-D) radix-2 2X 2X algorithm for fast calculation of the 3-D discrete Hartley transform. The proposed algorithm is based on the principles of the divide-and-conquer approach applied directly in 3-D. It has a simple butterfly structure and has been found to offer significant savings in arithmetic operations compared with the row-column approach based on similar algorithms

    Type-II/III DCT/DST algorithms with reduced number of arithmetic operations

    Full text link
    We present algorithms for the discrete cosine transform (DCT) and discrete sine transform (DST), of types II and III, that achieve a lower count of real multiplications and additions than previously published algorithms, without sacrificing numerical accuracy. Asymptotically, the operation count is reduced from ~ 2N log_2 N to ~ (17/9) N log_2 N for a power-of-two transform size N. Furthermore, we show that a further N multiplications may be saved by a certain rescaling of the inputs or outputs, generalizing a well-known technique for N=8 by Arai et al. These results are derived by considering the DCT to be a special case of a DFT of length 4N, with certain symmetries, and then pruning redundant operations from a recent improved fast Fourier transform algorithm (based on a recursive rescaling of the conjugate-pair split radix algorithm). The improved algorithms for DCT-III, DST-II, and DST-III follow immediately from the improved count for the DCT-II.Comment: 9 page

    Type-IV DCT, DST, and MDCT algorithms with reduced numbers of arithmetic operations

    Full text link
    We present algorithms for the type-IV discrete cosine transform (DCT-IV) and discrete sine transform (DST-IV), as well as for the modified discrete cosine transform (MDCT) and its inverse, that achieve a lower count of real multiplications and additions than previously published algorithms, without sacrificing numerical accuracy. Asymptotically, the operation count is reduced from ~2NlogN to ~(17/9)NlogN for a power-of-two transform size N, and the exact count is strictly lowered for all N > 4. These results are derived by considering the DCT to be a special case of a DFT of length 8N, with certain symmetries, and then pruning redundant operations from a recent improved fast Fourier transform algorithm (based on a recursive rescaling of the conjugate-pair split radix algorithm). The improved algorithms for DST-IV and MDCT follow immediately from the improved count for the DCT-IV.Comment: 11 page

    Non-power-of-Two FFTs: Exploring the Flexibility of the Montium TP

    Get PDF
    Coarse-grain reconfigurable architectures, like the Montium TP, have proven to be a very successful approach for low-power and high-performance computation of regular digital signal processing algorithms. This paper presents the implementation of a class of non-power-of-two FFTs to discover the limitations and Flexibility of the Montium TP for less regular algorithms. A non-power-of-two FFT is less regular compared to a traditional power-of-two FFT. The results of the implementation show the processing time, accuracy, energy consumption and Flexibility of the implementation

    Generating and Searching Families of FFT Algorithms

    Full text link
    A fundamental question of longstanding theoretical interest is to prove the lowest exact count of real additions and multiplications required to compute a power-of-two discrete Fourier transform (DFT). For 35 years the split-radix algorithm held the record by requiring just 4n log n - 6n + 8 arithmetic operations on real numbers for a size-n DFT, and was widely believed to be the best possible. Recent work by Van Buskirk et al. demonstrated improvements to the split-radix operation count by using multiplier coefficients or "twiddle factors" that are not n-th roots of unity for a size-n DFT. This paper presents a Boolean Satisfiability-based proof of the lowest operation count for certain classes of DFT algorithms. First, we present a novel way to choose new yet valid twiddle factors for the nodes in flowgraphs generated by common power-of-two fast Fourier transform algorithms, FFTs. With this new technique, we can generate a large family of FFTs realizable by a fixed flowgraph. This solution space of FFTs is cast as a Boolean Satisfiability problem, and a modern Satisfiability Modulo Theory solver is applied to search for FFTs requiring the fewest arithmetic operations. Surprisingly, we find that there are FFTs requiring fewer operations than the split-radix even when all twiddle factors are n-th roots of unity.Comment: Preprint submitted on March 28, 2011, to the Journal on Satisfiability, Boolean Modeling and Computatio
    corecore