43,951 research outputs found

    A new Constant Pushing Force Device for human walking analysis

    Get PDF
    Walking mechanics has been studied for a long time, being essentially simple but nevertheless including quite tricky aspects. During walking, muscular forces are needed to support body weight and accelerate the body, thereby requiring a metabolic demand. In this paper, a new Constant Pushing Force Device (CPFD) is presented. Based on a novel actuation concept, the device is totally passive and is used to apply a constant force to the pelvis of a subject walking on a treadmill. The device is a serial manipulator featuring springs that provide gravity balancing to the device and exert a constant force regardless of the pelvis motion during walking. This is obtained using only two extension springs and no auxiliary links, unlike existing designs. A first experiment was carried out on a healthy subject to experimentally validate the device and assess the effect of the external force on gait kinematics and timing. Results show that the device was capable of exerting an approximately constant pushing force, whose action affected subject’s cadence and the motion of the hip and ankle joints

    Empowering and assisting natural human mobility: The simbiosis walker

    Get PDF
    This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staf

    Work, exercise, and space flight. 3: Exercise devices and protocols

    Get PDF
    Preservation of locomotor capacity by earth equivalent, exercise in space is the crucial component of inflight exercise. At this time the treadmill appears to be the only way possible to do this. Work is underway on appropriate hardware but this and a proposed protocol to reduce exercise time must be tested. Such exercise will preserve muscle, bone Ca(++) and cardiovascular-respiratory capacity. In addition, reasonable upper body exercise can be supplied by a new force generator/measurement system-optional exercise might include a rowing machine and bicycle ergometer. A subject centered monitoring-evaluation program will allow real time adjustments as required. Absolute protection for any astronaut will not be possible and those with hypertrophied capacities such as marathoners or weight lifters will suffer significant loss. However, the program described should return the crew to earth with adequate capacity of typical activity on earth including immediate ambulation and minimal recovery time and without permanent change. An understanding of the practical mechanics and biomechanics involved is essential to a solution of the problem

    Research regarding development and application of tactile sensing for robots

    Get PDF
    制度:新 ; 報告番号:甲3063号 ; 学位の種類:博士(工学) ; 授与年月日:2010/2/25 ; 早大学位記番号:新532

    Nordic walking multibody analysis and experimental identification

    Get PDF
    The widespread diffusion of Nordic walking as a trending sport discipline has increased the need for a tool to study the movement, both at the beginner and professional level. This article presents a methodology for the analysis of the body motion during Nordic walking. The main goal was to design a numerical tool able to replicate human body behaviour when performing this sport. With this approach, it is possible to study several biomechanical aspects, like the kinematics of each body segment, estimating loads applied to the joints for given tasks. Results can be used to compare the user movements with a standard technique implemented in the virtual environment. In fact, using a specific monitoring device developed in previous works, different parameters like the pole angle, arms cycle frequency and synchronization, as well as the pushing force applied to the ground, can be measured during the activity. This acquisition system can be used to save data to be compared with results from the standard numerical model, evaluating the user performance. In this work, numerical results were compared and discussed with measurements from the aforementioned device in terms of pole force and pole angle. The ground reaction force obtained with the multi-body model during Nordic walking was then compared with results from the literature

    The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking

    Get PDF
    Background: Robotic ankle-foot prostheses that provide net positive push-off work can reduce the metabolic rate of walking for individuals with amputation, but benefits might be sensitive to push-off timing. Simple walking models suggest that preemptive push-off reduces center-of-mass work, possibly reducing metabolic rate. Studies with bilateral exoskeletons have found that push-off beginning before leading leg contact minimizes metabolic rate, but timing was not varied independently from push-off work, and the effects of push-off timing on biomechanics were not measured. Most lower-limb amputations are unilateral, which could also affect optimal timing. The goal of this study was to vary the timing of positive prosthesis push-off work in isolation and measure the effects on energetics, mechanics and muscle activity. Methods: We tested 10 able-bodied participants walking on a treadmill at 1.25 m.s(-1). Participants wore a tethered ankle-foot prosthesis emulator on one leg using a rigid boot adapter. We programmed the prosthesis to apply torque bursts that began between 46% and 56% of stride in different conditions. We iteratively adjusted torque magnitude to maintain constant net positive push-off work. Results: When push-off began at or after leading leg contact, metabolic rate was about 10% lower than in a condition with Spring-like prosthesis behavior. When push-off began before leading leg contact, metabolic rate was not different from the Spring-like condition. Early push-off led to increased prosthesis-side vastus medialis and biceps femoris activity during push-off and increased variability in step length and prosthesis loading during push-off. Prosthesis push-off timing had no influence on intact-side leg center-of-mass collision work. Conclusions: Prosthesis push-off timing, isolated from push-off work, strongly affected metabolic rate, with optimal timing at or after intact-side heel contact. Increased thigh muscle activation and increased human variability appear to have caused the lack of reduction in metabolic rate when push-off was provided too early. Optimal timing with respect to opposite heel contact was not different from normal walking, but the trends in metabolic rate and center-of-mass mechanics were not consistent with simple model predictions. Optimal push-off timing should also be characterized for individuals with amputation, since meaningful benefits might be realized with improved timing

    A Comparison of Video and Accelerometer Based Approaches Applied to Performance Monitoring in Swimming.

    Get PDF
    The aim of this paper is to present a comparison of video- and sensor based studies of swimming performance. The video-based approach is reviewed and contrasted to the newer sensor-based technology, specifically accelerometers based upon Micro-Electro-Mechanical Systems (MEMS) technology. Results from previously published swim performance studies using both the video and sensor technologies are summarised and evaluated against the conventional theory that upper arm movements are of primary interest when quantifying free-style technique. The authors conclude that multiple sensor-based measurements of swimmers’ acceleration profiles have the potential to offer significant advances in coaching technique over the traditional video based approach

    Kinesin Is an Evolutionarily Fine-Tuned Molecular Ratchet-and-Pawl Device of Decisively Locked Direction

    Get PDF
    Conventional kinesin is a dimeric motor protein that transports membranous organelles toward the plus-end of microtubules (MTs). Individual kinesin dimers show steadfast directionality and hundreds of consecutive steps, yetthe detailed physical mechanism remains unclear. Here we compute free energies for the entire dimer-MT system for all possible interacting configurations by taking full account of molecular details. Employing merely first principles and several measured binding and barrier energies, the system-level analysis reveals insurmountable energy gaps between configurations, asymmetric ground state caused by mechanically lifted configurational degeneracy, and forbidden transitions ensuring coordination between both motor domains for alternating catalysis. This wealth of physical effects converts a kinesin dimer into a molecular ratchet-and-pawl device, which determinedly locks the dimer's movement into the MT plus-end and ensures consecutive steps in hand-over-hand gait.Under a certain range of extreme loads, however, the ratchet-and-pawl device becomes defective but not entirely abolished to allow consecutive back-steps. This study yielded quantitative evidence that kinesin's multiple molecular properties have been evolutionarily adapted to fine-tune the ratchet-and-pawl device so as to ensure the motor's distinguished performance.Comment: 10 printed page
    corecore