39 research outputs found

    Stance Control Inspired by Cerebellum Stabilizes Reflex-Based Locomotion on HyQ Robot

    Get PDF
    Advances in legged robotics are strongly rooted in animal observations. A clear illustration of this claim is the generalization of Central Pattern Generators (CPG), first identified in the cat spinal cord, to generate cyclic motion in robotic locomotion. Despite a global endorsement of this model, physiological and functional experiments in mammals have also indicated the presence of descending signals from the cerebellum, and reflex feedback from the lower limb sensory cells, that closely interact with CPGs. To this day, these interactions are not fully understood. In some studies, it was demonstrated that pure reflex-based locomotion in the absence of oscillatory signals could be achieved in realistic musculoskeletal simulation models or small compliant quadruped robots. At the same time, biological evidence has attested the functional role of the cerebellum for predictive control of balance and stance within mammals. In this paper, we promote both approaches and successfully apply reflex-based dynamic locomotion, coupled with a balance and gravity compensation mechanism, on the state-of-art HyQ robot. We discuss the importance of this stability module to ensure a correct foot lift-off and maintain a reliable gait. The robotic platform is further used to test two different architectural hypotheses inspired by the cerebellum. An analysis of experimental results demonstrates that the most biologically plausible alternative also leads to better results for robust locomotion

    Hierarchical neural control of human postural balance and bipedal walking in sagittal plane

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 177-192).The cerebrocerebellar system has been known to be a central part in human motion control and execution. However, engineering descriptions of the system, especially in relation to lower body motion, have been very limited. This thesis proposes an integrated hierarchical neural model of sagittal planar human postural balance and biped walking to 1) investigate an explicit mechanism of the cerebrocerebellar and other related neural systems, 2) explain the principles of human postural balancing and biped walking control in terms of the central nervous systems, and 3) provide a biologically inspired framework for the design of humanoid or other biomorphic robot locomotion. The modeling was designed to confirm neurophysiological plausibility and achieve practical simplicity as well. The combination of scheduled long-loop proprioceptive and force feedback represents the cerebrocerebellar system to implement postural balance strategies despite the presence of signal transmission delays and phase lags. The model demonstrates that the postural control can be substantially linear within regions of the kinematic state-space with switching driven by sensed variables.(cont.) A improved and simplified version of the cerebrocerebellar system is combined with the spinal pattern generation to account for human nominal walking and various robustness tasks. The synergy organization of the spinal pattern generation simplifies control of joint actuation. The substantial decoupling of the various neural circuits facilitates generation of modulated behaviors. This thesis suggests that kinematic control with no explicit internal model of body dynamics may be sufficient for those lower body motion tasks and play a common role in postural balance and walking. All simulated performances are evaluated with respect to actual observations of kinematics, electromyogram, etc.by Sungho JoPh.D

    Interaction Dynamics in Oscillator and Human-in-the-loop Systems.

    Full text link
    This dissertation addresses control system analysis and system identification in three areas: error propagation in synchronization of harmonic oscillators, modeling of human active movement, and identification of human control strategies in manual pursuit tracking. 1) While most studies of synchronization in oscillator systems have focused on the existence of synchronous solutions in steady state, many problems pertaining to the transient dynamics have not been fully resolved. We extend the well-established theory of fundamental limitations to study the transient error propagation (string stability) in a string of synchronized harmonic oscillators. We first translate design requirements in terms of time-domain response and hardware limitations into a set of constraints on closed-loop frequency response. We further capture the conflict between string stability on the one hand and time-domain design requirements and hardware limitations on the other through a new Bode integral. 2) Modeling human active movement is a challenging problem not only because muscle has very sophisticated and highly nonlinear dynamics but also because neural and other signals internal to the body are difficult to observe directly. We seek a simple yet general and competent model to describe active movement in object manipulation tasks. Inspired by the Norton equivalent circuit in electrical engineering, we build a model based on the motion and force/torque signals that may be observed at the points of contact between the human body and the environment. The model consists of a motion source to represent a human's motor plan and a spring-mass-damper coupler to capture the time-varying driving point impedance of the human hand. The model is validated using occasional experimental trials in which a participant experiences unexpected loads in a grasp and twist task. 3) Although a large amount of literature has provided methods to identify feedback control in manual tracking tasks, very little research has been undertaken to experimentally identify feedforward control. We capitalize on the theory of fundamental limitations to study the link between a human's ability to simultaneously reject disturbances and perform pursuit tracking. We further develop an identification method to separate human feedback and feedforward control strategies in sinusoidal tracking tasks.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/108853/1/ybo_1.pd

    Active Training and Assistance Device for an Individually Adaptable Strength and Coordination Training

    Get PDF
    Das Altern der Weltbevölkerung, insbesondere in der westlichen Welt, stellt die Menschheit vor eine große Herausforderung. Zu erwarten sind erhebliche Auswirkungen auf den Gesundheitssektor, der im Hinblick auf eine steigende Anzahl von Menschen mit altersbedingtem körperlichem und kognitivem Abbau und dem damit erhöhten BedĂŒrfnis einer individuellen Versorgung vor einer großen Aufgabe steht. Insbesondere im letzten Jahrhundert wurden viele wissenschaftliche Anstrengungen unternommen, um Ursache und Entwicklung altersbedingter Erkrankungen, ihr Voranschreiten und mögliche Behandlungen, zu verstehen. Die derzeitigen Modelle zeigen, dass der entscheidende Faktor fĂŒr die Entwicklung solcher Krankheiten der Mangel an sensorischen und motorischen EinflĂŒssen ist, diese wiederum sind das Ergebnis verringerter MobilitĂ€t und immer weniger neuer Erfahrungen. Eine Vielzahl von Studien zeigt, dass erhöhte körperliche AktivitĂ€t einen positiven Effekt auf den Allgemeinzustand von Ă€lteren Erwachsenen mit leichten kognitiven BeeintrĂ€chtigungen und den Menschen in deren unmittelbarer Umgebung hat. Diese Arbeit zielt darauf ab, Ă€lteren Menschen die Möglichkeit zu bieten, eigenstĂ€ndig und sicher ein individuelles körperliches Training zu absolvieren. In den letzten zwei Jahrzehnten hat die Forschung im Bereich der robotischen Bewegungsassistenten, auch Smarte Rollatoren genannt, den Fokus auf die sensorische und kognitive UnterstĂŒtzung fĂŒr Ă€ltere und eingeschrĂ€nkte Personen gesetzt. Durch zahlreiche BemĂŒhungen entstand eine Vielzahl von AnsĂ€tzen zur Mensch-Rollator-Interaktion, alle mit dem Ziel, Bewegung und Navigation innerhalb der Umgebung zu unterstĂŒtzen. Aber trotz allem sind Trainingsmöglichkeiten zur motorischen Aktivierung mittels Smarter Rollatoren noch nicht erforscht. Im Gegensatz zu manchen Smarten Rollatoren, die den Fokus auf Rehabilitationsmöglichkeiten fĂŒr eine bereits fortgeschrittene Krankheit setzen, zielt diese Arbeit darauf ab, kognitive BeeintrĂ€chtigungen in einem frĂŒhen Stadium soweit wie möglich zu verlangsamen, damit die körperliche und mentale Fitness des Nutzers so lang wie möglich aufrechterhalten bleibt. Um die Idee eines solchen Trainings zu ĂŒberprĂŒfen, wurde ein Prototyp-GerĂ€t namens RoboTrainer-Prototyp entworfen, eine mobile Roboter-Plattform, die mit einem zusĂ€tzlichen Kraft-Momente-Sensor und einem Fahrradlenker als Eingabe-Schnittstelle ausgestattet wurde. Das Training beinhaltet vordefinierte Trainingspfade mit Markierungen am Boden, entlang derer der Nutzer das GerĂ€t navigieren soll. Der Prototyp benutzt eine Admittanzgleichung, um seine Geschwindigkeit anhand der Eingabe des Nutzers zu berechnen. Desweiteren leitet das GerĂ€t gezielte Regelungsaktionen bzw. VerhaltensĂ€nderungen des Roboters ein, um das Training herausfordernd zu gestalten. Die Pilotstudie, die mit zehn Ă€lteren Erwachsenen mit beginnender Demenz durchgefĂŒhrt wurde, zeigte eine signifikante Steigerung ihrer InteraktionsfĂ€higkeit mit diesem GerĂ€t. Sie bewies ebenfalls den Nutzen von Regelungsaktionen, um die KomplexitĂ€t des Trainings stĂ€ndig neu anzupassen. Obwohl diese Studie die DurchfĂŒhrbarkeit des Trainings zeigte, waren GrundflĂ€che und mechanische StabilitĂ€t des RoboTrainer-Prototyps suboptimal. Deswegen fokussiert sich der zweite Teil dieser Arbeit darauf, ein neues GerĂ€t zu entwerfen, um die Nachteile des Prototyps zu beheben. Neben einer erhöhten mechanischen StabilitĂ€t, ermöglicht der RoboTrainer v2 eine Anpassung seiner GrundflĂ€che. Dieses spezifische Merkmal der Smarten Rollatoren dient vor allem dazu, die UnterstĂŒtzungsflĂ€che fĂŒr den Benutzer anzupassen. Das ermöglicht einerseits ein agiles Training mit gesunden Personen und andererseits Rehabilitations-Szenarien bei Menschen, die körperliche UnterstĂŒtzung benötigen. Der Regelungsansatz fĂŒr den RoboTrainer v2 erweitert den Admittanzregler des Prototypen durch drei adaptive Strategien. Die erste ist die Anpassung der SensitivitĂ€t an die Eingabe des Nutzers, abhĂ€ngig von der StabilitĂ€t des Nutzer-Rollater-Systems, welche Schwankungen verhindert, die dann passieren können, wenn die HĂ€nde des Nutzers versteifen. Die zweite Anpassung beinhaltet eine neuartige nicht-lineare, geschwindigkeits-basierende Änderung der Admittanz-Parameter, um die Wendigkeit des Rollators zu erhöhen. Die dritte Anpassung erfolgt vor dem eigentlichen Training in einem Parametrierungsprozess, wo nutzereigene InteraktionskrĂ€fte gemessen werden, um individuelle Reglerkonstanten fein abzustimmen und zu berechnen. Die Regelungsaktionen sind VerhaltensĂ€nderungen des GerĂ€tes, die als Bausteine fĂŒr unterstĂŒtzende und herausfordernde Trainingseinheiten mit dem RoboTrainer dienen. Sie nutzen das virtuelle Kraft-Feld-Konzept, um die Bewegung des GerĂ€tes in der Trainingsumgebung zu beeinflussen. Die Bewegung des RoboTrainers wird in der Gesamtumgebung durch globale oder, in bestimmten Teilbereichen, durch rĂ€umliche Aktionen beeinflusst. Die Regelungsaktionen erhalten die Absicht des Nutzers aufrecht, in dem sie eine unabhĂ€ngige Admittanzdynamik implementieren, um deren Einfluss auf die Geschwindigkeit des RoboTrainers zu berechnen. Dies ermöglicht die entscheidende Trennung von ReglerzustĂ€nden, um wĂ€hrend des Trainings passive und sichere Interaktionen mit dem GerĂ€t zu erreichen. Die oben genannten BeitrĂ€ge wurden getrennt ausgewertet und in zwei Studien mit jeweils 22 bzw. 13 jungen, gesunden Erwachsenen untersucht. Diese Studien ermöglichen einen umfassenden Einblick in die ZusammenhĂ€nge zwischen unterschiedlichen FunktionalitĂ€ten und deren Einfluss auf die Nutzer. Sie bestĂ€tigen den gesamten Ansatz, sowie die gemachten Vermutungen im Hinblick auf die Gestaltung einzelner Teile dieser Arbeit. Die Einzelergebnisse dieser Arbeit resultieren in einem neuartigen ForschungsgerĂ€t fĂŒr physische Mensch-Roboter-Interaktionen wĂ€hrend des Trainings mit Erwachsenen. ZukĂŒnftige Forschungen mit dem RoboTrainer ebnen den Weg fĂŒr Smarte Rollatoren als Hilfe fĂŒr die Gesellschaft im Hinblick auf den bevorstehenden demographischen Wandel

    Application of a model of cerebellar function to the maintenance of human upright posture

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2001.Includes bibliographical references (leaves 82-87).In this thesis a simple human postural control model is suggested and analyzed based on hypothesized neurophysiology of the cerebellar function and the musculoskeletal system. The cerebellum model is made up of simple linear filters such as differentiator and integrator. The simple linear filters implement a linear feedback control scheme including a phase lead compensator. The neural feedback signal represents the action of the cerebellum in the processing of angular position and angular velocity error signals. The goal of the investigation is to indicate whether the simple linear filters can describe neurophysiological functions of the cerebellum to compensate for the neural delays and coordinate the postural strategies that make possible human upright posture in gravity. Performance of the model is investigated with regard to disturbance rejection after adjustment of the parameters representing the cerebellum and the muscle. Whether the combination of the cerebellar and musculoskeletal control systems can realistically model human posture balance recovery is evaluated by simulating human postural maintenance during backward translation of a support surface. The simulation is compared with actual human postures and movements. The simulation realizes the ankle and hip strategy that prevails in human posture, and suggests the functions of the cerebellum.by Sungho Jo.S.M

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Opinions and Outlooks on Morphological Computation

    Get PDF
    Morphological Computation is based on the observation that biological systems seem to carry out relevant computations with their morphology (physical body) in order to successfully interact with their environments. This can be observed in a whole range of systems and at many different scales. It has been studied in animals – e.g., while running, the functionality of coping with impact and slight unevenness in the ground is "delivered" by the shape of the legs and the damped elasticity of the muscle-tendon system – and plants, but it has also been observed at the cellular and even at the molecular level – as seen, for example, in spontaneous self-assembly. The concept of morphological computation has served as an inspirational resource to build bio-inspired robots, design novel approaches for support systems in health care, implement computation with natural systems, but also in art and architecture. As a consequence, the field is highly interdisciplinary, which is also nicely reflected in the wide range of authors that are featured in this e-book. We have contributions from robotics, mechanical engineering, health, architecture, biology, philosophy, and others

    Neuro-musculoskeletal Models: A Tool to Study the Contribution of Muscle Dynamics to Biological Motor Control

    Get PDF
    Das VerstĂ€ndnis der Prinzipien, die menschlichen Bewegungen zugrunde liegen, ist die Basis fĂŒr die Untersuchung der Entstehung gesunder Bewegungen und, was noch wichtiger ist, der Entstehung motorischer Störungen aufgrund neurodegenerativer Erkrankungen oder anderer pathologischer ZustĂ€nde. Dieses VerstĂ€ndnis zu erlangen ist jedoch herausfordernd, da menschliche Bewegung das Ergebnis eines komplexen, dynamischen Zusammenspiels von biochemischen und biophysikalischen Prozessen im Bewegungsapparat und den hierarchisch organisierten neuronalen Kontrollstrukturen ist. Um die Wechselwirkungen dieser Strukturen zu untersuchen, bieten Computersimulationen, die mathematische Modelle des muskuloskelettalen Systems mit Modellen seiner neuronalen Kontrolle kombinieren, ein nĂŒtzliches Werkzeug. In diesen Simulationen können einzelne Prozesse oder ganze Funktionseinheiten deaktiviert oder gestört werden, um die Auswirkungen dieser VerĂ€nderungen auf die vorhergesagten Bewegungen zu untersuchen. Die PlausibilitĂ€t der zugrundeliegenden Modelle kann durch den Vergleich der Simulationen mit Daten aus Humanexperimenten und biologisch inspirierten Robotermodellen beurteilt werden. Das Ziel dieser Arbeit war es, neuro-muskuloskelettale Modelle als Hilfsmittel zur Untersuchung von Konzepten der biologischen Bewegungskontrolle zu verwenden. Von besonderem Interesse war der Beitrag der Muskeldynamik zur Kontrolle, d.h. wie die intrinsischen muskuloskelettalen Eigenschaften die motorische Kontrolle vereinfachen, ohne die motorische Genauigkeit zu beeintrĂ€chtigen. ZusĂ€tzlich wurde der Einfluss propriozeptiver Reflexmechanismen in verschiedenen Szenarien getestet. Die verwendeten neuro-muskuloskelettalen Modelle sind eine Kombination von Mehrkörpermodellen der Muskel-Skelett-Struktur des Armes oder des ganzen Körpers mit einem biologisch inspirierten hybriden Gleichgewichtspunkt-Kontrollmodell. In einer Simulationsstudie stellten wir fest, dass unser Armmodell realistische Reaktionen auf externe mechanische Störungen fĂŒr zielgerichtete Bewegungen mit einem Freiheitsgrad vorhersagt. Auf dieser Grundlage simulierten wir die Anwendung von tragbaren AssistenzgerĂ€ten zur Kompensation unerwĂŒnschter Hypermetrie, d.h. einer ĂŒberschießenden Reaktion bei zielgerichteten Bewegungen im Zusammenhang mit zerebellĂ€rer Ataxie und anderen neurodegenerativen Erkrankungen. Wir fanden heraus, dass einfache mechanische Hilfsmittel ausreichend sein können, um die Hypermetrien auf ein normales Niveau zu reduzieren. Wir stellten jedoch auch fest, dass die GrĂ¶ĂŸe des Drehmoments und der Kraft, die zur Kompensation der Störung erforderlich sind, möglicherweise deutlich unterschĂ€tzt wird, wenn die Muskel-Sehnen-Eigenschaften im Modell nicht berĂŒcksichtigt werden. Die Ergebnisse dieser beiden Studien bestĂ€tigten die Hypothese aus der Literatur, dass die Morphologie des Muskel-Skelett-Systems signifikant zur Bewegung beitrĂ€gt und somit deren Kontrolle vereinfacht. Deshalb haben wir einen informationstheoretischen Ansatz verwendet, um diesen Beitrag fĂŒr zielgerichtete und oszillatorische Armbewegungen mit zwei Freiheitsgraden zu charakterisieren. Die Ergebnisse bestĂ€tigten, dass die unteren Kontrollebenen, einschließlich der Muskeln und ihrer Aktivierungsdynamik, wichtige BeitrĂ€ge zur gesamten Kontrollhierarchie leisten. Beispielsweise fĂŒhrt ein einfaches, stĂŒckweise konstantes Muskelstimulationssignal, das nur wenig Information enthĂ€lt, zu einer geschmeidigen Bewegung. Der physiologische Detailgrad, der in unseren Muskel-Skelett-Modellen enthalten ist, ermöglicht nicht nur die Untersuchung von Theorien zur motorischen Kontrolle, sondern auch die Untersuchung von GrĂ¶ĂŸen wie inneren KrĂ€ften in Muskeln und Gelenken, die experimentell normalerweise nicht zugĂ€nglich sind. Diese GrĂ¶ĂŸen sind zum Beispiel in der Ergonomie und fĂŒr die Entwicklung von AssistenzgerĂ€ten von Bedeutung. In einer Ganzkörpersimulationsstudie untersuchten wir den Beitrag des Dehnungsreflexes zu den resultierenden MuskelkrĂ€ften bei einer aktiven externen Repositionierung des HĂŒftgelenkes fĂŒr einen großen Bereich von Bewegungsgeschwindigkeiten. Wir fanden heraus, dass der relative Kraftbeitrag des Feedback-Mechanismus vom modellierten kognitiven Zustand abhĂ€ngig ist und einen nicht vernachlĂ€ssigbaren Beitrag leistet, insbesondere bei hohen Repositionsgeschwindigkeiten. Die Gesamtheit unserer Ergebnisse zeigt, dass die Eigenschaften des Bewegungsapparates signifikant zur Erzeugung und Kontrolle von Bewegung beitragen und es daher wichtig ist, sie bei der Modellierung der menschlichen Bewegung zu berĂŒcksichtigen. Daher sprechen die Ergebnisse fĂŒr die Kombination eines physiologisch fundierten biomechanischen und biochemischen Modells des Bewegungsapparates mit biologisch inspirierten Konzepten der motorischen Kontrolle. Diese Computersimulationen haben sich als ein nĂŒtzliches Werkzeug zum VerstĂ€ndnis der Prozesse erwiesen, die der Erzeugung gesunder und pathologisch beeintrĂ€chtigter menschlicher Bewegungen zugrunde liegen.Understanding the principles underlying human movement is the basis for investigating the generation of healthy movements and, more importantly, the origins of motor disorders due to neurodegenerative diseases or other pathological conditions. However, gaining this understanding is challenging since human motion is the result of a complex, dynamic interplay of biochemical and biophysical processes in the musculoskeletal system and the hierarchically organized neuronal control structures. To study the interactions of these structures, computer simulations that combine mathematical models of the musculoskeletal system with models of its neuronal control provide a useful tool. In these simulations, single processes or whole functional units can be disabled or perturbed to study the effects of these changes on the predicted movements. The plausibility of the underlying models can be assessed by comparing the simulations with data from human experiments and biologically inspired robotic models. The purpose of this work was to use neuro-musculoskeletal models as tools to study concepts of biological motor control. Of particular interest was the contribution of muscle dynamics to the control, i.e. how the intrinsic musculoskeletal properties simplify motor control without compromising motor accuracy. Additionally, the influence of proprioceptive reflex mechanisms was tested in different scenarios. The neuro-musculoskeletal models that were used are a combination of multibody musculoskeletal models of the arm or the whole body with a biologically inspired hybrid equilibrium-point controller. In a simulation study, we found that our arm model predicts realistic reactions to external mechanical perturbations while performing one-degree-of-freedom goal-directed movements. Based on this, we simulated the application of wearable assistive devices to compensate for unwanted hypermetria, i.e. an overshooting response in goal-directed movements associated with cerebellar ataxia and other neurodegenerative disorders. We found that simple mechanical devices may be sufficient to reduce the hypermetria to a normal level. However, we also observed that the magnitude of torque and power that is required to compensate for the disorder may be significantly underestimated if muscle-tendon characteristics are not considered in the computational model. The results of these two studies confirmed the hypothesis from literature that the morphology of musculoskeletal systems significantly contributes to the movement and thus simplifies its control. Therefore, we made use of the information-theoretic approach of quantifying morphological computation to characterize this contribution for goal-directed and oscillatory arm movements with two degrees of freedom. The results asserted that the lower levels of control, including the muscles and their activation dynamics, make important contributions to the overall control hierarchy. For example, a simple piecewise constant muscle stimulation signal that contains only little information results in a smooth movement. The level of physiological detail that is included in our musculoskeletal models does not only allow for the examination of motor control theories but also makes it possible to study quantities like internal forces in muscles and joints, usually not experimentally accessible. These quantities are relevant, for example, in ergonomics and for the development of assistive devices. In a whole-body simulation study, we investigated the contribution of the stretch reflex to the resulting muscle forces during active external repositioning of the hip joint for a large range of movement velocities. We found that, depending on the modeled cognitive state, the relative force contribution of the feedback mechanism is not negligible, especially for high repositioning velocities. The entirety of our results shows that the properties of the musculoskeletal system significantly contribute to the generation and control of movement and, thus, it is important to take them into account when modeling human movement. Therefore, the results advocate the combination of a physiologically well-founded biomechanical and biochemical model of the musculoskeletal system with biologically inspired concepts of motor control. These computer simulations have proven to be a useful tool towards the comprehension of the processes underlying the generation of healthy and pathologically impaired human movements

    Virtual Reality

    Get PDF
    At present, the virtual reality has impact on information organization and management and even changes design principle of information systems, which will make it adapt to application requirements. The book aims to provide a broader perspective of virtual reality on development and application. First part of the book is named as "virtual reality visualization and vision" and includes new developments in virtual reality visualization of 3D scenarios, virtual reality and vision, high fidelity immersive virtual reality included tracking, rendering and display subsystems. The second part named as "virtual reality in robot technology" brings forth applications of virtual reality in remote rehabilitation robot-based rehabilitation evaluation method and multi-legged robot adaptive walking in unstructured terrains. The third part, named as "industrial and construction applications" is about the product design, space industry, building information modeling, construction and maintenance by virtual reality, and so on. And the last part, which is named as "culture and life of human" describes applications of culture life and multimedia-technology
    corecore