544 research outputs found

    Computer-assisted diagnosis of wireless-capsule endoscopic images using neural network based techniques

    Get PDF
    Computerised processing of medical images can ease the search of the representative features in the images. The endoscopic images possess rich information expressed by texture. In this paper schemes have been developed to extract texture features from the texture spectra in the chromatic and achromatic domains for a selected region of interest from each colour component histogram of images acquired by the new M2A Swallowable Capsule. The implementation of advanced learning-based schemes and the concept of fusion of multiple classifiers have been also adopted in this paper. The preliminary test results support the feasibility of the proposed methodology

    Neural network-based approach for the classification of wireless-capsule endoscopic images

    Get PDF
    The importance of computer-assisted diagnosis in endoscopy is to assist the physician in detecting the status of tissues by characterising the features from the endoscopic image. In this paper schemes have been developed to extract new texture features from the texture spectra in the chromatic and achromatic domains for a selected region of interest from each colour component histogram of images acquired by the new M2A Swallowable Imaging Capsule. The concept of fusion of multiple classifiers dedicated to specific feature parameters and the implementation of an advanced intelligent scheme have been also adopted in this study. The high detection accuracy of the proposed systems provides thus an indication that such intelligent schemes could be used as a supplementary diagnostic tool in capsule endoscopy

    Technical Evolution of Medical Endoscopy

    Get PDF
    This paper gives a summary of the technical evolution of medical endoscopy. The first documented redirection of sunlight into the human body dates back to the 16th century. Rigid tubes with candle light were given a trial later on. Low light intensity forced the development of alternative light sources. Some of these experiments included burning chemical components. Electric lighting finally solved the problems of heat production and smoke. Flexible endoscopy increased the range of medical examinations as it allowed access to tight and angular body cavities. The first cameras for endoscopic applications made taking photos from inside the human body possible. Later on, digital video endoscopy made endoscopes easier to use and allowed multiple spectators to observe the endoscopic intervention. Swallowable capsules called pill-cams made endoscopic examinations of the small intestine possible. Modern technologies like narrow band imaging and fluorescence endoscopy increased the diagnostic significance of endoscopic images. Today, image processing is applied to decrease noise and enhance image quality. These enhancements have made medical endoscopy an invaluable tool in many diagnostic processes. In closing, an example is given of an interdisciplinary examination, which is taken from the archaeological field.

    Roadmap on signal processing for next generation measurement systems

    Get PDF
    Signal processing is a fundamental component of almost any sensor-enabled system, with a wide range of applications across different scientific disciplines. Time series data, images, and video sequences comprise representative forms of signals that can be enhanced and analysed for information extraction and quantification. The recent advances in artificial intelligence and machine learning are shifting the research attention towards intelligent, data-driven, signal processing. This roadmap presents a critical overview of the state-of-the-art methods and applications aiming to highlight future challenges and research opportunities towards next generation measurement systems. It covers a broad spectrum of topics ranging from basic to industrial research, organized in concise thematic sections that reflect the trends and the impacts of current and future developments per research field. Furthermore, it offers guidance to researchers and funding agencies in identifying new prospects.AerodynamicsMicrowave Sensing, Signals & System

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not
    corecore